Skip to main content
Erschienen in: Current Nutrition Reports 4/2023

29.08.2023 | REVIEW

Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability

verfasst von: Vanessa Fernandes, Bangera Sheshappa Mamatha

Erschienen in: Current Nutrition Reports | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation.

Recent Findings

Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability.

Summary

This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Literatur
1.
Zurück zum Zitat Matsuno T. Aquatic animal carotenoids. Fish Sci. 2001;67(5):771–83.CrossRef Matsuno T. Aquatic animal carotenoids. Fish Sci. 2001;67(5):771–83.CrossRef
2.
Zurück zum Zitat Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91(7):1166–74.PubMedCrossRef Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91(7):1166–74.PubMedCrossRef
3.
Zurück zum Zitat Sun X, Xu Y, Zhao L, Yan H, Wang S, Wang D. The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Adv. 2018;8(61):35139–49.PubMedPubMedCentralCrossRef Sun X, Xu Y, Zhao L, Yan H, Wang S, Wang D. The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Adv. 2018;8(61):35139–49.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Zapata M, Fraga S, Rodríguez F, Garrido JL. Pigment-based chloroplast types in dinoflagellates. Mar Ecol Prog Ser. 2012;465(3):33–52.CrossRef Zapata M, Fraga S, Rodríguez F, Garrido JL. Pigment-based chloroplast types in dinoflagellates. Mar Ecol Prog Ser. 2012;465(3):33–52.CrossRef
5.
Zurück zum Zitat Shannon E, Abu-Ghannam N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol. 2017;29(2):1027–36.CrossRef Shannon E, Abu-Ghannam N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol. 2017;29(2):1027–36.CrossRef
6.
Zurück zum Zitat Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11): 158618.PubMedCrossRef Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11): 158618.PubMedCrossRef
7.
Zurück zum Zitat Zhang Y, Wu H, Wen H, Fang H, Hong Z, Yi R, et al. Simultaneous determination of fucoxanthin and its deacetylated metabolite fucoxanthinol in rat plasma by liquid chromatography-tandem mass spectrometry. Mar Drugs. 2015;13(10):6521–36.PubMedPubMedCentralCrossRef Zhang Y, Wu H, Wen H, Fang H, Hong Z, Yi R, et al. Simultaneous determination of fucoxanthin and its deacetylated metabolite fucoxanthinol in rat plasma by liquid chromatography-tandem mass spectrometry. Mar Drugs. 2015;13(10):6521–36.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Sangeetha RK, Bhaskar N, Divakar S, Baskaran V. Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI). Mol Cell Biochem. 2010;333(1–2):299–310.PubMedCrossRef Sangeetha RK, Bhaskar N, Divakar S, Baskaran V. Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI). Mol Cell Biochem. 2010;333(1–2):299–310.PubMedCrossRef
9.
Zurück zum Zitat Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9(10):1806–28.PubMedPubMedCentralCrossRef Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9(10):1806–28.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55(21):8516–22.PubMedCrossRef Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55(21):8516–22.PubMedCrossRef
11.
Zurück zum Zitat Kumar SR, Hosokawa M, Miyashita K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs. 2013;11(12):5130–47.PubMedPubMedCentralCrossRef Kumar SR, Hosokawa M, Miyashita K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs. 2013;11(12):5130–47.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Scic World J. 2014. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Scic World J. 2014.
13.
Zurück zum Zitat Neumann U, Derwenskus F, Flister VF, Schmid-Staiger U, Hirth T, Bischoff SC. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants. 2019;8(6):1–11.CrossRef Neumann U, Derwenskus F, Flister VF, Schmid-Staiger U, Hirth T, Bischoff SC. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants. 2019;8(6):1–11.CrossRef
14.
Zurück zum Zitat Staleva-Musto H, Kuznetsova V, West RG, Keşan G, Minofar B, Fuciman M, et al. Nonconjugated acyloxy group deactivates the intramolecular charge-transfer state in the carotenoid fucoxanthin. J Phys Chem B. 2018;122(11):2922–30.PubMedCrossRef Staleva-Musto H, Kuznetsova V, West RG, Keşan G, Minofar B, Fuciman M, et al. Nonconjugated acyloxy group deactivates the intramolecular charge-transfer state in the carotenoid fucoxanthin. J Phys Chem B. 2018;122(11):2922–30.PubMedCrossRef
15.
Zurück zum Zitat Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct. 2020;11(11):9338–58.PubMedCrossRef Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct. 2020;11(11):9338–58.PubMedCrossRef
16.
Zurück zum Zitat • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Encapsulation of fucoxanthin in binary matrices of porous starch and halloysite. Food Hydrocoll. 2020;100:105458. https://doi.org/10.1016/j.foodhyd.2019.105458. This study demonstrated the improved stability and thermal behaviour of fucoxanthin via double encapsulation. The wall materials used were porous starch and halloysite nano-tube which contributed for fucoxanthin stability at different temperatures. • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Encapsulation of fucoxanthin in binary matrices of porous starch and halloysite. Food Hydrocoll. 2020;100:105458. https://​doi.​org/​10.​1016/​j.​foodhyd.​2019.​105458This study demonstrated the improved stability and thermal behaviour of fucoxanthin via double encapsulation. The wall materials used were porous starch and halloysite nano-tube which contributed for fucoxanthin stability at different temperatures.
17.
Zurück zum Zitat •• Foo SC, Khong NMH, Yusoff FM. Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Res. 2020;51:102061. https://doi.org/10.1016/j.algal.2020.102061. This paper focuses on micro-encapsulating fucoxanthin exracted from the micro-algae Chaetoceros calcitrans, via spray drying and freeze drying. The study found freeze-dried fucoxanthin to possess the highest carotenoid and antioxidant activities. •• Foo SC, Khong NMH, Yusoff FM. Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Res. 2020;51:102061. https://​doi.​org/​10.​1016/​j.​algal.​2020.​102061This paper focuses on micro-encapsulating fucoxanthin exracted from the micro-algae Chaetoceros calcitrans, via spray drying and freeze drying. The study found freeze-dried fucoxanthin to possess the highest carotenoid and antioxidant activities.
18.
Zurück zum Zitat Koo SY, Mok IK, Pan CH, Kim SM. Preparation of fucoxanthin-loaded nanoparticles composed of casein and chitosan with improved fucoxanthin bioavailability. J Agric Food Chem. 2016;64(49):9428–35.PubMedCrossRef Koo SY, Mok IK, Pan CH, Kim SM. Preparation of fucoxanthin-loaded nanoparticles composed of casein and chitosan with improved fucoxanthin bioavailability. J Agric Food Chem. 2016;64(49):9428–35.PubMedCrossRef
19.
Zurück zum Zitat McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–8. McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–8.
20.
Zurück zum Zitat Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol. 2017;241:175–83.PubMedCrossRef Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol. 2017;241:175–83.PubMedCrossRef
21.
Zurück zum Zitat Raji V, Loganathan C, Sadhasivam G, Kandasamy S, Poomani K, Thayumanavan P. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: an in vitro and in silico studies. Int J Biol Macromol. 2020;148:696–703.PubMedCrossRef Raji V, Loganathan C, Sadhasivam G, Kandasamy S, Poomani K, Thayumanavan P. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: an in vitro and in silico studies. Int J Biol Macromol. 2020;148:696–703.PubMedCrossRef
22.
Zurück zum Zitat Shannon E, Abu-Ghannam N. Enzymatic extraction of fucoxanthin from brown seaweeds. Int J Food Sci Technol. 2018;53(9):2195–204.CrossRef Shannon E, Abu-Ghannam N. Enzymatic extraction of fucoxanthin from brown seaweeds. Int J Food Sci Technol. 2018;53(9):2195–204.CrossRef
23.
Zurück zum Zitat Koduvayur Habeebullah SF, Surendraraj A, Jacobsen C. Isolation of fucoxanthin from brown algae and its antioxidant activity: in vitro and 5% fish oil-in-water emulsion. JAOCS, J Am Oil Chem Soc. 2018;95(7):835–43.CrossRef Koduvayur Habeebullah SF, Surendraraj A, Jacobsen C. Isolation of fucoxanthin from brown algae and its antioxidant activity: in vitro and 5% fish oil-in-water emulsion. JAOCS, J Am Oil Chem Soc. 2018;95(7):835–43.CrossRef
24.
Zurück zum Zitat Mohamadnia S, Tavakoli O, Faramarzi MA, Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: a review of recent developments. Vol. 516, Aquaculture. Elsevier B.V.; 2020. 734637. Mohamadnia S, Tavakoli O, Faramarzi MA, Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: a review of recent developments. Vol. 516, Aquaculture. Elsevier B.V.; 2020. 734637.
25.
Zurück zum Zitat Lange KW, Hauser J, Nakamura Y, Kanaya S. Dietary seaweeds and obesity. Food Sci Human Wellness. 2015;4(3):87–96.CrossRef Lange KW, Hauser J, Nakamura Y, Kanaya S. Dietary seaweeds and obesity. Food Sci Human Wellness. 2015;4(3):87–96.CrossRef
26.
Zurück zum Zitat Mamatha BS, Sangeetha RK, Baskaran V. Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. Int J Food Sci Technol. 2011;46(2):315–23.CrossRef Mamatha BS, Sangeetha RK, Baskaran V. Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. Int J Food Sci Technol. 2011;46(2):315–23.CrossRef
27.
Zurück zum Zitat Bhat I, Haripriya G, Jogi N, Mamatha BS. Carotenoid composition of locally found seaweeds of Dakshina Kannada district in India. Algal Res. 2021;53:102154.CrossRef Bhat I, Haripriya G, Jogi N, Mamatha BS. Carotenoid composition of locally found seaweeds of Dakshina Kannada district in India. Algal Res. 2021;53:102154.CrossRef
28.
Zurück zum Zitat Matsuno T, Ookubo M, Komori T. Carotenoids of tunicates, III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J Nat Prod. 1985;48(4):606–13. Matsuno T, Ookubo M, Komori T. Carotenoids of tunicates, III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J Nat Prod. 1985;48(4):606–13.
29.
Zurück zum Zitat Mariani G. The role of nuclear medicine procedures in the functional characterization of patients: exclusive, complementary or alternative to other technologies. Journal of Nuclear Biology and Medicine. 1994;38:119–22. Mariani G. The role of nuclear medicine procedures in the functional characterization of patients: exclusive, complementary or alternative to other technologies. Journal of Nuclear Biology and Medicine. 1994;38:119–22.
30.
Zurück zum Zitat Symonds RC, Kelly MS, Caris-Veyrat C, Young AJ. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9′-cis-echinenone as the dominant carotenoid in gonad colour determination. Comp Biochem Physiol B Biochem Mol Biol. 2007;148(4):432–44.PubMedCrossRef Symonds RC, Kelly MS, Caris-Veyrat C, Young AJ. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9′-cis-echinenone as the dominant carotenoid in gonad colour determination. Comp Biochem Physiol B Biochem Mol Biol. 2007;148(4):432–44.PubMedCrossRef
31.
Zurück zum Zitat Daigo K, Nakano Y, Casareto BE, Suzuki Y, Shioi Y. High-performance liquid chromatographic analysis of photosynthetic pigments in corals: an existence of a variety of epizoic, endozoic and endolithic algae. Proceedings on the 11th International Coral Reef Symposium. 2008;(5):7–11. Daigo K, Nakano Y, Casareto BE, Suzuki Y, Shioi Y. High-performance liquid chromatographic analysis of photosynthetic pigments in corals: an existence of a variety of epizoic, endozoic and endolithic algae. Proceedings on the 11th International Coral Reef Symposium. 2008;(5):7–11.
32.
Zurück zum Zitat Kantha SS. Carotenoids of edible molluscs; a review. J Food Biochem. 1989;13(6):429–42.CrossRef Kantha SS. Carotenoids of edible molluscs; a review. J Food Biochem. 1989;13(6):429–42.CrossRef
33.
Zurück zum Zitat Hagen MK, Ludke A, Araujo AS, Mendes RH, Fernandes TG, Mandarino JMG, et al. Antioxidant characterization of soy derived products in vitro and the effect of a soy diet on peripheral markers of oxidative stress in a heart disease model. Can J Physiol Pharmacol. 2012;90(8):1095–103.PubMedCrossRef Hagen MK, Ludke A, Araujo AS, Mendes RH, Fernandes TG, Mandarino JMG, et al. Antioxidant characterization of soy derived products in vitro and the effect of a soy diet on peripheral markers of oxidative stress in a heart disease model. Can J Physiol Pharmacol. 2012;90(8):1095–103.PubMedCrossRef
34.
Zurück zum Zitat Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem. 1999;Vol. 63:605–7.CrossRef Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem. 1999;Vol. 63:605–7.CrossRef
35.
Zurück zum Zitat Airanthi MKWA, Hosokawa M, Miyashita K. Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci. 2011;76(1). Airanthi MKWA, Hosokawa M, Miyashita K. Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci. 2011;76(1).
36.
Zurück zum Zitat Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants. 2017;6(4). Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants. 2017;6(4).
37.
Zurück zum Zitat Satomi Y. Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid. Anticancer Res. 2017;37(4):1557–62.PubMedCrossRef Satomi Y. Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid. Anticancer Res. 2017;37(4):1557–62.PubMedCrossRef
38.
Zurück zum Zitat Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, et al. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 1993;68(2–3):159–68.PubMedCrossRef Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, et al. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 1993;68(2–3):159–68.PubMedCrossRef
39.
Zurück zum Zitat Satomi Y, Nishino H. Implication of mitogen-activated protein kinase in the induction of G1 cell cycle arrest and gadd45 expression by the carotenoid fucoxanthin in human cancer cells. Biochim Biophys Acta Gen Subj. 2009;1790(4):260–6.CrossRef Satomi Y, Nishino H. Implication of mitogen-activated protein kinase in the induction of G1 cell cycle arrest and gadd45 expression by the carotenoid fucoxanthin in human cancer cells. Biochim Biophys Acta Gen Subj. 2009;1790(4):260–6.CrossRef
40.
Zurück zum Zitat Hou LL, Gao C, Chen L, Hu GQ, Xie SQ. Essential role of autophagy in fucoxanthin-induced cytotoxicity to human epithelial cervical cancer HeLa cells. Acta Pharmacol Sin. 2013;34(11):1403–10.PubMedPubMedCentralCrossRef Hou LL, Gao C, Chen L, Hu GQ, Xie SQ. Essential role of autophagy in fucoxanthin-induced cytotoxicity to human epithelial cervical cancer HeLa cells. Acta Pharmacol Sin. 2013;34(11):1403–10.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed. 2012;2(5):411–20.PubMedPubMedCentralCrossRef Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed. 2012;2(5):411–20.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: a review. J Ethnopharmacol. 2019;235:329–60.PubMedCrossRef Chukwuma CI, Matsabisa MG, Ibrahim MA, Erukainure OL, Chabalala MH, Islam MS. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: a review. J Ethnopharmacol. 2019;235:329–60.PubMedCrossRef
44.
Zurück zum Zitat • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr. 2021;9(7):3521–9. This work studied the anti-diabetic effect of encapsulated fucoxanthin in comparison with metformin. The results showed that fucoxanthin loaded Porous starch prevented the weight gain, decreased fasting blood glucose level and increased plasma insulin. • Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr. 2021;9(7):3521–9. This work studied the anti-diabetic effect of encapsulated fucoxanthin in comparison with metformin. The results showed that fucoxanthin loaded Porous starch prevented the weight gain, decreased fasting blood glucose level and increased plasma insulin.
45.
Zurück zum Zitat Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, et al. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys. 2010;504(1):17–25.PubMedCrossRef Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, et al. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys. 2010;504(1):17–25.PubMedCrossRef
46.
Zurück zum Zitat Abdel-Aal ESM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5(4):1169–85.PubMedPubMedCentralCrossRef Abdel-Aal ESM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5(4):1169–85.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29:S3-14.PubMedPubMedCentralCrossRef Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29:S3-14.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Mar Drugs. 2015;13(8):4799–813.PubMedPubMedCentralCrossRef Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Mar Drugs. 2015;13(8):4799–813.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Investig. 2013;123(8):3404–8.PubMedPubMedCentralCrossRef Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Investig. 2013;123(8):3404–8.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat palomo ig. Palomo IG, Jaramillo JC, Alarcon ML, Gutierrez CL, Moore-Carrasco R, Segovia FM, Leiva EM, Mujica VE, Icaza G, Diaz NS. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome. Mol Med Rep. 2008;1:667–71. palomo ig. Palomo IG, Jaramillo JC, Alarcon ML, Gutierrez CL, Moore-Carrasco R, Segovia FM, Leiva EM, Mujica VE, Icaza G, Diaz NS. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome. Mol Med Rep. 2008;1:667–71.
51.
Zurück zum Zitat Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009;53(12):1603–11.PubMedCrossRef Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009;53(12):1603–11.PubMedCrossRef
52.
Zurück zum Zitat Grasa-López A, Miliar-García Á, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, et al. Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs. 2016;14(8). Grasa-López A, Miliar-García Á, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, et al. Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs. 2016;14(8).
53.
Zurück zum Zitat Kang S Il, Shin HS, Kim HM, Yoon SA, Kang SW, Kim JH, et al. Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. J Agric Food Chem. 2012;60(13):3389–95. Kang S Il, Shin HS, Kim HM, Yoon SA, Kang SW, Kim JH, et al. Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase. J Agric Food Chem. 2012;60(13):3389–95.
54.
Zurück zum Zitat Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-A y mice. J Agric Food Chem. 2007;55(19):7701–6.PubMedCrossRef Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-A y mice. J Agric Food Chem. 2007;55(19):7701–6.PubMedCrossRef
55.
Zurück zum Zitat Hitoe S, Shimoda H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Functional Foods in Health and Disease. 2017;7(4):246.CrossRef Hitoe S, Shimoda H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Functional Foods in Health and Disease. 2017;7(4):246.CrossRef
56.
Zurück zum Zitat Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res. 2016;30(11):1802–8.PubMedCrossRef Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res. 2016;30(11):1802–8.PubMedCrossRef
57.
Zurück zum Zitat Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol. 2010;48(8–9):2045–51. Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol. 2010;48(8–9):2045–51.
58.
Zurück zum Zitat Li Y, Liu L, Sun P, Zhang Y, Wu T, Sun H, et al. Fucoxanthinol from the diatom Nitzschia laevis ameliorates neuroinflammatory responses in lipopolysaccharide-stimulated BV-2 microglia. Mar Drugs. 2020;18(2):1–15.CrossRef Li Y, Liu L, Sun P, Zhang Y, Wu T, Sun H, et al. Fucoxanthinol from the diatom Nitzschia laevis ameliorates neuroinflammatory responses in lipopolysaccharide-stimulated BV-2 microglia. Mar Drugs. 2020;18(2):1–15.CrossRef
59.
Zurück zum Zitat Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13(1):1–7.CrossRef Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13(1):1–7.CrossRef
60.
Zurück zum Zitat • Jang H, Choi J, Park JK, Won G, Seol JW. Fucoxanthin exerts anti-tumor activity on canine mammary tumor cells via tumor cell apoptosis induction and angiogenesis inhibition. Animals. 2021;11(6). This paper evaluated fucoxanthin against CMT-U27 cells and HUVECs. The results showed that fucoxanthin induced apoptosis and suppressed angiogenesis in CMT-U27 cells proposing fucoxanthin as a potential anti-tumor agent. • Jang H, Choi J, Park JK, Won G, Seol JW. Fucoxanthin exerts anti-tumor activity on canine mammary tumor cells via tumor cell apoptosis induction and angiogenesis inhibition. Animals. 2021;11(6). This paper evaluated fucoxanthin against CMT-U27 cells and HUVECs. The results showed that fucoxanthin induced apoptosis and suppressed angiogenesis in CMT-U27 cells proposing fucoxanthin as a potential anti-tumor agent.
61.
Zurück zum Zitat Rodriguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and rosmarinic acid combination has anti-inflammatory effects through regulation of marine drugs. 2019;17(8):451.PubMed Rodriguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and rosmarinic acid combination has anti-inflammatory effects through regulation of marine drugs. 2019;17(8):451.PubMed
62.
Zurück zum Zitat Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, et al. Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Mar Drugs. 2018;16(10). Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, et al. Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Mar Drugs. 2018;16(10).
63.
Zurück zum Zitat Hu L, Chen W, Tian F, Yuan C, Wang H, Yue H. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling. Biomed Pharmacother. 2018;106(1):1484–9.PubMedCrossRef Hu L, Chen W, Tian F, Yuan C, Wang H, Yue H. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling. Biomed Pharmacother. 2018;106(1):1484–9.PubMedCrossRef
64.
Zurück zum Zitat Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:1–15. Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:1–15.
65.
Zurück zum Zitat Woo MN, Jeon SM, Kim HJ, Lee MK, Shin SK, Shin YC, et al. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact. 2010;186(3):316–22.PubMedCrossRef Woo MN, Jeon SM, Kim HJ, Lee MK, Shin SK, Shin YC, et al. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact. 2010;186(3):316–22.PubMedCrossRef
66.
Zurück zum Zitat Jeon SM, Kim HJ, Woo MN, Lee MK, Chul Shin Y, Bok Park Y, et al. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J. 2010;5(9):961–9.PubMedCrossRef Jeon SM, Kim HJ, Woo MN, Lee MK, Chul Shin Y, Bok Park Y, et al. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J. 2010;5(9):961–9.PubMedCrossRef
67.
Zurück zum Zitat Martin HD, Ruck C, Schmidt M, Sell S, Beutner S, Mayer B, et al. Chemistry of carotenoid oxidation and free radical reactions. Pure Appl Chem. 1999;71(12):2253–62.CrossRef Martin HD, Ruck C, Schmidt M, Sell S, Beutner S, Mayer B, et al. Chemistry of carotenoid oxidation and free radical reactions. Pure Appl Chem. 1999;71(12):2253–62.CrossRef
68.
Zurück zum Zitat Sugawara T, Kushiro M, Zhang H, Nara E, Ono H, Nagao A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J Nutr. 2001;131(11):2921–7.PubMedCrossRef Sugawara T, Kushiro M, Zhang H, Nara E, Ono H, Nagao A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J Nutr. 2001;131(11):2921–7.PubMedCrossRef
69.
Zurück zum Zitat Sugawara T, Baskaran V, Tsuzuki W, Nagao A. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr. 2002;132(5):946–51.PubMedCrossRef Sugawara T, Baskaran V, Tsuzuki W, Nagao A. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr. 2002;132(5):946–51.PubMedCrossRef
70.
Zurück zum Zitat Asai A, Sugawara T, Ono H, Nagao A. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos. 2004;32(2):205–11.PubMedCrossRef Asai A, Sugawara T, Ono H, Nagao A. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos. 2004;32(2):205–11.PubMedCrossRef
71.
Zurück zum Zitat Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, et al. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr. 2009;102(2):242–8.PubMedCrossRef Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, et al. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr. 2009;102(2):242–8.PubMedCrossRef
72.
Zurück zum Zitat Yonekura L, Kobayashi M, Terasaki M, Nagao A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr. 2010;140(10):1824–31.PubMedCrossRef Yonekura L, Kobayashi M, Terasaki M, Nagao A. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr. 2010;140(10):1824–31.PubMedCrossRef
73.
Zurück zum Zitat Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, et al. Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr. 2012;107(11):1566–9.PubMedCrossRef Hashimoto T, Ozaki Y, Mizuno M, Yoshida M, Nishitani Y, Azuma T, et al. Pharmacokinetics of fucoxanthinol in human plasma after the oral administration of kombu extract. Br J Nutr. 2012;107(11):1566–9.PubMedCrossRef
74.
Zurück zum Zitat Ravi H, Baskaran V. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. J Funct Foods. 2017;28:215–26.CrossRef Ravi H, Baskaran V. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. J Funct Foods. 2017;28:215–26.CrossRef
75.
Zurück zum Zitat Hii S ling, Choong P yi, Woo K kit, Wong C lee, Tunku U, Rahman A, et al. Stability studies of fucoxanthin from Sargassum binderi Department of Chemical Engineering, 2 Department of Science , Faculty of Engineering and. 2010;4(10):4580–4. Hii S ling, Choong P yi, Woo K kit, Wong C lee, Tunku U, Rahman A, et al. Stability studies of fucoxanthin from Sargassum binderi Department of Chemical Engineering, 2 Department of Science , Faculty of Engineering and. 2010;4(10):4580–4.
76.
Zurück zum Zitat Kawee-ai A, Kuntiya A, Kim SM. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat Prod Commun. 2013;8(10):1381–6.PubMed Kawee-ai A, Kuntiya A, Kim SM. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat Prod Commun. 2013;8(10):1381–6.PubMed
77.
Zurück zum Zitat Zhao D, Yu D, Kim M, Gu MY, Kim SM, Pan CH, et al. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chem. 2019;291:87–93.PubMedCrossRef Zhao D, Yu D, Kim M, Gu MY, Kim SM, Pan CH, et al. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chem. 2019;291:87–93.PubMedCrossRef
78.
Zurück zum Zitat Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. 56615. 2007;621(12):615–21. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. 56615. 2007;621(12):615–21.
79.
Zurück zum Zitat Okada T, Mizuno Y, Sibayama S, Hosokawa M, Miyashita K. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids. J Food Sci. 2011;76(1):2–6.CrossRef Okada T, Mizuno Y, Sibayama S, Hosokawa M, Miyashita K. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids. J Food Sci. 2011;76(1):2–6.CrossRef
80.
Zurück zum Zitat Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho CT, Pan MH. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem. 2012;60(4):1094–101.PubMedCrossRef Lai CS, Tsai ML, Badmaev V, Jimenez M, Ho CT, Pan MH. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J Agric Food Chem. 2012;60(4):1094–101.PubMedCrossRef
81.
Zurück zum Zitat Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, et al. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys. 2012;519(1):59–65.PubMedCrossRef Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, et al. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys. 2012;519(1):59–65.PubMedCrossRef
82.
Zurück zum Zitat •• Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Sci Nutr. 2020;8(2):1226–36. This study assessed the effect of double encapsulation of fucoxanthin with gum arabic and maltodextrin. The results demonstrated that stability of fucoxanthin increased vastly and degradation decreased from 85 to 58%. Additionally, the mixture of MD + GA exhibited the highest fucoxanthin retention upto 91.6% during the storage period. •• Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Sci Nutr. 2020;8(2):1226–36. This study assessed the effect of double encapsulation of fucoxanthin with gum arabic and maltodextrin. The results demonstrated that stability of fucoxanthin increased vastly and degradation decreased from 85 to 58%. Additionally, the mixture of MD + GA exhibited the highest fucoxanthin retention upto 91.6% during the storage period.
84.
Zurück zum Zitat Fu F, Hu L. Temperature sensitive colour-changed composites. Advanced High Strength Natural Fibre Composites in Construction. 2017;405–23. Fu F, Hu L. Temperature sensitive colour-changed composites. Advanced High Strength Natural Fibre Composites in Construction. 2017;405–23.
85.
Zurück zum Zitat Dubey R. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82. Dubey R. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82.
86.
Zurück zum Zitat Indrawati R, Sukowijoyo H, Indriatmoko, Wijayanti RDE, Limantara L. Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chem. 2015;14:353–60. Indrawati R, Sukowijoyo H, Indriatmoko, Wijayanti RDE, Limantara L. Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chem. 2015;14:353–60.
87.
Zurück zum Zitat Ravi H, Arunkumar R, Baskaran V. Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: acute and sub-acute toxicity evaluation in rodent model. J Biomater Appl. 2015;30(4):420–34.PubMedCrossRef Ravi H, Arunkumar R, Baskaran V. Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: acute and sub-acute toxicity evaluation in rodent model. J Biomater Appl. 2015;30(4):420–34.PubMedCrossRef
88.
Zurück zum Zitat Huang Z, Xu L, Zhu X, Hu J, Peng H, Zeng Z, et al. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid. Int J Food Eng. 2017;13(1). Huang Z, Xu L, Zhu X, Hu J, Peng H, Zeng Z, et al. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid. Int J Food Eng. 2017;13(1).
89.
Zurück zum Zitat Salvia-Trujillo L, Sun Q, Um BH, Park Y, McClements DJ. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: impact of lipid carrier type. J Funct Foods. 2015;17:293–304.CrossRef Salvia-Trujillo L, Sun Q, Um BH, Park Y, McClements DJ. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: impact of lipid carrier type. J Funct Foods. 2015;17:293–304.CrossRef
90.
Zurück zum Zitat Quan J, Kim SM, Pan CH, Chung D. Characterization of fucoxanthin-loaded microspheres composed of acetyl palmitate-based solid lipid core and fish gelatin-gum arabic coacervate shell. Food Res Int. 2013;50(1):31–7.CrossRef Quan J, Kim SM, Pan CH, Chung D. Characterization of fucoxanthin-loaded microspheres composed of acetyl palmitate-based solid lipid core and fish gelatin-gum arabic coacervate shell. Food Res Int. 2013;50(1):31–7.CrossRef
91.
Zurück zum Zitat Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, et al. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem. 2018;249:66–76.PubMedCrossRef Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, et al. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem. 2018;249:66–76.PubMedCrossRef
92.
Zurück zum Zitat Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, et al. Fabrication of fucoxanthin-loaded microsphere (F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. J Oleo Sci. 2016;65(8):641–53.PubMedCrossRef Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, et al. Fabrication of fucoxanthin-loaded microsphere (F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. J Oleo Sci. 2016;65(8):641–53.PubMedCrossRef
93.
Zurück zum Zitat McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7(6):2297–316.CrossRef McClements DJ. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter. 2011;7(6):2297–316.CrossRef
94.
Zurück zum Zitat McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct. 2012;3(3):202–20.PubMedCrossRef McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct. 2012;3(3):202–20.PubMedCrossRef
95.
Zurück zum Zitat Donhowe EG, Kong F. Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food Bioproc Tech. 2014;7(2):338–54.CrossRef Donhowe EG, Kong F. Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food Bioproc Tech. 2014;7(2):338–54.CrossRef
96.
Zurück zum Zitat Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res. 2007;51(1):107–15.PubMedCrossRef Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res. 2007;51(1):107–15.PubMedCrossRef
97.
Zurück zum Zitat Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chem. 2012;135(3):1440–7.PubMedCrossRef Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chem. 2012;135(3):1440–7.PubMedCrossRef
98.
Zurück zum Zitat Vo DT, Saravana PS, Woo HC, Chun BS. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. J CO2 Util. 2018;26. 359–69. Vo DT, Saravana PS, Woo HC, Chun BS. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. J CO2 Util. 2018;26. 359–69.
99.
Zurück zum Zitat Ravi H, Kurey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng, C. 2017;2018(91):785–95. Ravi H, Kurey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng, C. 2017;2018(91):785–95.
100.
Zurück zum Zitat Kim SM, Kang SW, Kwon ON, Chung D, Pan CH. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem. 2012;55(4):477–83. Kim SM, Kang SW, Kwon ON, Chung D, Pan CH. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem. 2012;55(4):477–83.
101.
Zurück zum Zitat Vieira FA, Ventura SPM. Efficient extraction of carotenoids from Sargassum muticum using aqueous solutions of Tween 20. Mar Drugs. 2019;17(5):1–10.CrossRef Vieira FA, Ventura SPM. Efficient extraction of carotenoids from Sargassum muticum using aqueous solutions of Tween 20. Mar Drugs. 2019;17(5):1–10.CrossRef
102.
Zurück zum Zitat Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K. Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia. 2016;7:66–75.CrossRef Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K. Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia. 2016;7:66–75.CrossRef
103.
Zurück zum Zitat Sudhakar MP, Ananthalakshmi JS, Nair BB. Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. J Chem Pharm Res. 2013;5(7):169–75. Sudhakar MP, Ananthalakshmi JS, Nair BB. Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. J Chem Pharm Res. 2013;5(7):169–75.
104.
Zurück zum Zitat Xiao X, Si X, Yuan Z, Xu X, Li G. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci. 2012;35(17):2313–7.PubMedCrossRef Xiao X, Si X, Yuan Z, Xu X, Li G. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci. 2012;35(17):2313–7.PubMedCrossRef
105.
Zurück zum Zitat Sun X, Zhao H, Liu Z, Sun X, Zhang D, Wang S, et al. Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high-fat diet-fed mice. J Agric Food Chem. 2020;68(18):5118–28.PubMedCrossRef Sun X, Zhao H, Liu Z, Sun X, Zhang D, Wang S, et al. Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high-fat diet-fed mice. J Agric Food Chem. 2020;68(18):5118–28.PubMedCrossRef
106.
Zurück zum Zitat Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, et al. A lipophilic fucoxanthin-rich Phaeodactylum tricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice. Nutrients. 2019;11(4):1–17.CrossRef Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, et al. A lipophilic fucoxanthin-rich Phaeodactylum tricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice. Nutrients. 2019;11(4):1–17.CrossRef
107.
Zurück zum Zitat Koo SY, Hwang J hyun, Yang S hoon, Um J in, Hong KW. Marine drugs anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum. 2019;1–15. Koo SY, Hwang J hyun, Yang S hoon, Um J in, Hong KW. Marine drugs anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum. 2019;1–15.
108.
Zurück zum Zitat Beppu F, Niwano Y, Tsukui T, Hosokawa M, Miyashita K. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci. 2009;34(5):501–10.PubMedCrossRef Beppu F, Niwano Y, Tsukui T, Hosokawa M, Miyashita K. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci. 2009;34(5):501–10.PubMedCrossRef
109.
Zurück zum Zitat Rokkaku T, Kimura R, Ishikawa C, Yasumoto T, Senba M, Kanaya F, et al. In vivo Antioxidant Activity of Fucoxanthin on Obese/Diabetes KK-A Mice. Int J Oncol. 2013;43(4):1176–86.PubMedCrossRef Rokkaku T, Kimura R, Ishikawa C, Yasumoto T, Senba M, Kanaya F, et al. In vivo Antioxidant Activity of Fucoxanthin on Obese/Diabetes KK-A Mice. Int J Oncol. 2013;43(4):1176–86.PubMedCrossRef
111.
Zurück zum Zitat Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, et al. Identification of paracentrone in fucoxanthin-fed mice and anti-inflammatory effect against lipopolysaccharide-stimulated macrophages and adipocytes. Mol Nutr Food Res. 2021;65(2):1–38.CrossRef Takatani N, Taya D, Katsuki A, Beppu F, Yamano Y, Wada A, et al. Identification of paracentrone in fucoxanthin-fed mice and anti-inflammatory effect against lipopolysaccharide-stimulated macrophages and adipocytes. Mol Nutr Food Res. 2021;65(2):1–38.CrossRef
112.
Zurück zum Zitat Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Res. 2021;54: 102187.CrossRef Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Res. 2021;54: 102187.CrossRef
114.
Zurück zum Zitat Dai J, Kim JC. In vivo anti-obesity efficacy of fucoxanthin-loaded emulsions stabilized with phospholipid. J Pharm Investig. 2016;46(7):669–75.CrossRef Dai J, Kim JC. In vivo anti-obesity efficacy of fucoxanthin-loaded emulsions stabilized with phospholipid. J Pharm Investig. 2016;46(7):669–75.CrossRef
Metadaten
Titel
Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability
verfasst von
Vanessa Fernandes
Bangera Sheshappa Mamatha
Publikationsdatum
29.08.2023
Verlag
Springer US
Erschienen in
Current Nutrition Reports / Ausgabe 4/2023
Elektronische ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-023-00492-x

Weitere Artikel der Ausgabe 4/2023

Current Nutrition Reports 4/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.