Skip to main content
Erschienen in: Annals of Surgical Oncology 1/2020

Open Access 25.07.2019 | Peritoneal Surface Malignancy

Gastric Cancer Peritoneal Carcinomatosis Risk Score

verfasst von: Liang Ji, MBA, MPH, Matthew J. Selleck, DO, John W. Morgan, DrPH, Jane Xu, BA, Blake D. Babcock, MD, David Shavlik, PhD, MSPH, Nathan R. Wall, PhD, William H. Langridge, PhD, Sharon S. Lum, MD, Carlos A. Garberoglio, MD, Mark E. Reeves, MD, PhD, Naveenraj Solomon, MD, Jukes P. Namm, MD, Maheswari Senthil, MD

Erschienen in: Annals of Surgical Oncology | Ausgabe 1/2020

Abstract

Background

Gastric cancer (GC) peritoneal carcinomatosis (PC) is associated with a poor prognosis. Although grade, histology, and stage are associated with PC, the cumulative risk of PC when multiple risk factors are present is unknown. This study aimed to develop a cumulative GCPC risk score based on individual demographic/tumor characteristics.

Methods

Patient-level data (2004–2014) from the California Cancer Registry were reviewed by creating a keyword search algorithm to identify patients with gastric PC. Multivariable logistic regression was used to assess demographic/tumor characteristics associated with PC in a randomly selected testing cohort. Scores were assigned to risk factors based on beta coefficients from the logistic regression result, and these scores were applied to the remainder of the subjects (validation cohort). The summed scores of each risk factor formed the total risk score. These were grouped, showing the percentages of patients with PC.

Results

The study identified 4285 patients with gastric adenocarcinoma (2757 males, 64.3%). The median age of the patients was 67 years (interquartile range [IQR], 20 years). Most of the patients were non-Hispanic white (n = 1748, 40.8%), with proximal (n = 1675, 39.1%) and poorly differentiated (n = 2908, 67.9%) tumors. The characteristics most highly associated with PC were T4 (odds ratio [OR], 3.12; 95% confidence interval [CI], 2.19–4.44), overlapping location (OR 2.27; 95% CI 1.52–3.39), age of 20–40 years (OR 3.42; 95% CI 2.24–5.21), and Hispanic ethnicity (OR 1.86; 95% CI 1.36–2.54). The demographic/tumor characteristics used in the risk score included age, race/ethnicity, T stage, histology, tumor grade, and location. Increasing GCPC score was associated with increasing percentage of patients with PC.

Conclusion

Based on demographic/tumor characteristics in GC, it is possible to distinguish groups with varying odds for PC. Understanding the risk for PC based on the cumulative effect of high-risk features can help clinicians to customize surveillance strategies and can aid in early identification of PC.
Hinweise
Liang Ji and Matthew J. Selleck are co-first authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer death in the world.1 The 5-year relative survival is 68.1% for localized, 30.6% for regional, and 5.2% for distant (metastatic) stage gastric cancer.2 The peritoneum is a common site of metastasis in gastric cancer, and approximately 15% of the patients have a diagnosis of peritoneal carcinomatosis (PC) at presentation.3,4 An additional 15–52% go on to experience PC as a result of treatment failure.38 Yang et al.8 observed that 52.4% of the treatment-related failures among patients treated with D2 gastrectomyand adjuvant chemoradiation had PC as a single pattern of dissemination.
Whether identified at initial presentation or at progression, PC is associated with a bleak survival of 2.8–4.0 months.3,4,9 In the Evolution of Peritoneal Carcinomatosis (EVOCAPE-1) study,  patients with synchronous and metachronous gastric PC had median survivals of 2.8 months and 3.1 months, respectively.9
Despite recent advances in systemic treatment of gastric PC, only marginal survival benefit has been demonstrated. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) may be an option for select patients. Although CRS ± HIPEC has not been widely accepted due to mixed results, it is well established that patients with a low peritoneal cancer burden who undergo a complete cytoreduction achieve the greatest survival benefit.8,1012
Prediction of PC risk is critical to identification of patients with limited burden of peritoneal disease. Although grade, histology, and depth of tumor invasion are associated with PC, the cumulative risk for PC when multiple risk factors are present is currently unknown.35 We therefore sought to develop a cumulative PC risk score based on individual demographic and tumor characteristics.

Methods

This research involved collaboration between Loma Linda University and California Cancer Registry (CCR) researchers. The CCR is the state-mandated cancer surveillance system that collects, organizes, and analyzes demographic and tumor-specific information for all cancers diagnosed among California residents. The following data were used to identify patients 18 years of age or older with a diagnosis of gastric adenocarcinomas (C16.0–C16.9) between 2004 and 2014: M-8140, M-8143, M-8144, M-8145, M-8210, M-8211, M-8221, M-8255, M-8260, M-8261, M-8262, M-8263, M-8480, M-8481, M-8490.13,14 Patients with missing data for one or more of the following covariates were excluded from the study: clinical T, tumor grade, anatomic subsite, histology, age, sex, and race/ethnicity. The study subjects were randomly divided into testing (n = 428) and validation (n = 3857) cohorts. Figure 1 presents the study selection inclusion and exclusion counts.

Study Variables and Validation Data Set

Eureka is a non-research data management system developed by the CCR to review, consolidate, and accession detailed information for patients receiving cancer diagnosis and care in California, most of which is not found in the CCR database. The dependent variable, PC, is not available in the CCR research database.
To identify patients with PC in the CCR, we developed a three-step Natural Language Processing (NLP) algorithm to Eureka text-field data identifying PC:yes/no.15 Step 1 used NLP keyword searches of Eureka text fields for strings that identified positive PC status based on accepted clinical terminology ("Appendix"). Findings for keywords in strings describing PC, including “no evidence of disease,” “NED,” “neg,” “negative,” “questionable,” “rule out,” “r/o,” “without,” “w/o,” and “(–),” were marked as negative for PC. Step 2 included independent review of Eureka records for a random sample of 300 patients with a diagnosis of gastric adenocarcinoma (2004–2014) by two surgeon coauthors (M.S. and B.B.). These findings were used as the “gold standard” for PC status. Step 3 involved comparison of the NLP findings for PC status with the “gold standard”.
The accuracy of data extracted using NLP was confirmed by comparing the data with results obtained by independent review of the Eureka database by the two surgeon coauthors. The findings were then compared with the actual PC status extracted from Eureka for each patient in the testing cohort. The validation cohort was used to generate a regression equation for likelihood of PC associated with each of the purposefully selected demographic and tumor characteristics assessed.
The independent categories of tumor variables extracted from the CCR research database included clinical T (T1, T2, T3, and T4), grade (1, 2, 3 + 4), and anatomic subsite (proximal including cardia [C16.0] and fundus [C16.1]), body [C16.2], distal including antrum [C16.3] and pylorus [C16.4], overlapping including lesser [C16.5] and greater [C16.6] curvature, and overlapping [C16.8]). Histology included intestinal (M-8144), diffuse (M-8145), mucinous (M-8480 and M-8481), signet ring (M-8490), and adenocarcinoma NOS (Not otherwise specified) (M-8140, M-8143, M-8210, M-8211, M-8221, M-8255, M-8260, M-8261, M-8262, and M-8263).14 The independent demographic covariates included age categories (18–39, 40–59, and 60+ years), sex (female/male), and race/ethnicity (Asian/other, non-Hispanic black, Hispanic, and non-Hispanic white). All independent variables were a priori selected based on existing literature.3,5,16

Statistical Analysis

Tenfold cross-validation was used to measure prediction accuracy. The study subjects were randomly divided into 10 subsets, with 9 subsets (90%) used for the validation cohort and 1 subset (10%) used for testing.17 Multivariable logistic regression was used on the validation cohort to generate a regression equation predicting peritoneal carcinomatosis (Y/N) with all tumor and demographic variables.18 This was repeated 10 times, with rotation of the testing subset. Each study subject in the testing subset with a prediction score higher than 50% was categorized as predicted-PC:yes, with the remainder scored as predicted-PC:no.
A 2 × 2 table was used to compare and calculate agreement between predicted-PC (Y/N) and actual PC (Y/N) derived from the NLP text field data. All tests used two-sided interpretations with critical values of 0.05.
Data analyses were performed using, SAS Software, version 9.4 (SAS Institue Inc., Cary, NC, USA) and RStudio 3.4.5 (R Foundation for Statistical Computing, Vienna, Austria).19,20 In compliance with institutional review board (IRB), CCR, and Eureka, data were extracted and analyzed within the Region 5 office of the CCR using statewide California data.

Gastric Cancer Peritoneal Carcinomatosis (GCPC) Risk Score

To simplify calculation, beta coefficients obtained from the logistic regression analyses were rounded to the first decimal place. For every 0.1 increase in beta coefficient, the GCPC score for each tumor and demographic variable was assigned an increment of 0.5, starting from zero. Each patient was assigned a total GCPC score as the sum of the GCPC scores for each of the tumor and demographic variables (Table 3). These scores were correlated with odds of PC and grouped into five categories.

Results

Based on the selection criteria, 4285 gastric adenocarcinoma patients were eligible for the study and further divided into testing and validation cohorts (Fig. 1). Tumor and demographic variables by PC status are presented in Table 1. The majority of the patients were older (> 60 years) and male. Hispanic and Asian/other race/ethnic groups comprised 50% of the study population. The tumor characteristics showed a high proportion of poorly differentiated or undifferentiated cancers.
Table 1
Counts (n) and column percentages of study subjects with and without peritoneal carcinomatosis (PC) by tumor and demographic variables
 
No PC
PC
n
%
n
%
Age (years)
 18–39
136
3.48
49
13.06
 40–59
992
25.37
163
43.47
 60+
2782
71.15
163
43.47
Sex
 Male
2533
64.78
224
59.73
 Female
1377
35.22
151
40.27
Race/ethnicity
 Asian/other
1003
25.65
83
22.13
 Non-Hispanic black
212
5.42
24
6.40
 Hispanic
1035
26.47
180
48.00
 Non-Hispanic white
1660
42.46
88
23.47
Clinical T
 T1
1138
29.11
57
15.20
 T2
797
20.38
59
15.73
 T3
1322
33.81
100
26.67
 T4
653
16.70
159
42.40
Histology type
 Intestinal
542
13.86
28
7.47
 Diffuse
227
5.81
41
10.93
 Signet ring
720
18.41
138
36.80
 Mucinous
70
1.79
7
1.87
 NOS
2351
60.13
161
42.93
Anatomic subsite
 Proximal
1597
40.84
78
20.80
 Body
1071
27.39
122
32.53
 Distal
901
23.05
105
28.00
 Overlapping
341
8.72
70
18.67
Grade
 Well-differentiated
221
5.66
5
1.33
 Moderately differentiated
1102
28.18
49
13.07
 Poorly differentiated or undifferentiated
2587
66.16
321
85.60
NOS Not otherwise specified
Findings from NLP review of gastric cancer patients randomly selected from the CCR research database relative to the physician “gold standard” showed a sensitivity of 88% and a specificity of 95%.
The independent PC (yes/no) odds ratios (ORs) for age at diagnosis, sex, race/ethnicity, clinical T stage, histology, anatomic subsite, and tumor grade are presented in Table 2 for the first logistic model. Each of the 10 logistic regression models with purposeful selection identified the same independent variables for model inclusion. The characteristics most highly associated with PC included T4 versus T1 (OR 3.12; 95% CI 2.19–4.44), signetring versus intestinal histology (OR 1.99; 95% CI 1.22–3.24), overlapping versus proximal anatomic subsite (OR 2.27; 95% CI 1.52–3.39), Hispanic versus non-Hispanic white ethnicity (OR 1.86; 95% CI 1.36–2.54), and age of 18–39 years versus 60+ years (OR 3.42; 95% CI 2.24–5.21).
Table 2
Adjusted odds ratio (OR) with 95% confidence interval (CI) and p value for selected tumor and demographic characteristics as indicators of peritoneal carcinomatosis among gastric cancer patients
 
OR
95% CI
p value
Age (years)
 18–39 versus 60+
3.42
2.24–5.21
< 0.001
 40–59 versus 60+
1.90
1.46–2.46
< 0.001
Sex
 Female versus male
0.96
0.75–1.23
0.737
 Race/ethnicity
   
 Asian/other versus non-Hispanic white
1.16
0.81–1.65
0.424
 Non-Hispanic black versus non-Hispanic white
1.61
0.95–2.71
0.075
 Hispanic versus non-Hispanic white
1.86
1.36–2.54
< 0.001
Clinical T
 T2 versus T1
1.19
0.79–1.79
0.403
 T3 versus T1
1.28
0.89–1.85
0.182
 T4 versus T1
3.12
2.19–4.44
< 0.001
Histology
 Diffuse versus intestinal
1.70
0.96–3.02
0.070
 Mucinous versus intestinal
1.42
0.54–3.73
0.481
 NOS versus intestinal
1.22
0.78–1.93
0.384
 Signet ring versus Intestinal
1.99
1.22–3.24
0.006
Anatomic subsite
 Body versus proximal
1.64
1.15–2.34
0.006
 Distal versus proximal
1.63
1.16–2.30
0.005
 Overlapping versus proximal
2.27
1.52–3.39
< 0.001
Grade
   
 Moderately versus well-differentiated
1.42
0.55–3.70
0.467
 Poorly differentiated or undifferentiated versus well-differentiated
2.22
0.88–5.59
0.092
NOS Not otherwise specified
The risk factor scores for demographic/tumor characteristics were correlated with odds of PC and grouped into five categories. The incremental increase in risk score was associated with increasing odds of PC. The percentages with PC by total risk score are presented in Table 3.
Table 3
Gastric cancer peritoneal carcinomatosis (GCPC) score
Patient and tumor characteristics
Score
Age (years)
 
 18–39 versus 60+
6
 40–59 versus 60+
3
 60+
0
Race/ethnicity
 
 Non-Hispanic white
0
 Asian/other
0.5
 Non-Hispanic black
3
 Hispanic
2.5
Clinical T stage
 
 T1
0
 T2
1
 T3
1
 T4
5.5
Histology
 
 Intestinal
0
 NOS
1
 Mucinous
1.5
 Diffuse
2.5
 Signet ring
3.5
Tumor location
 
 Proximal
0
 Body
2.5
 Distal
2.5
 Overlapping
4
Tumor grade
 
 Well-differentiated
0
 Moderately well-differentiated
2
 Poorly differentiated or undifferentiated
4
Score
% With PC
0–10
3.2
10.5–14
9.5
14.5–17
15
17.5–20
26.1
20–26
46.4
NOS Not otherwise specified
Findings from the comparison of predicted versus actual PC status showed 92.2% agreement with the area under the receiver operator characteristics (ROC) curve of 0.82 (Fig. 2).

Discussion

We have created a cumulative GCPC risk score based on tumor and demographic variables available at the time of diagnosis that could be incorporated into clinical practice to guide surveillance and management strategies in GC. This score is being developed further into a publicly available nomogram.
Our model used NLP to glean relevant detailed information not available as discrete variables within the CCR research database. In addition to creation of a risk score, our results also highlight racial/ethnic differences in risk for PC, depicted by 86% higher odds for PC in Hispanics than in non-Hispanic white GC patients.
To the best of our knowledge, this is the first report to demonstrate that Hispanic ethnicity is an independent predictor of PC in GC. Factors identified as associated with PC in this study were congruent with findings reported in the literature.5,16 D’Angelica et al.5 reported on 11,172 patients who underwent an R0 resection from 1985 to 2000. Of these patients, 29% had peritoneal recurrence. Advanced T stage, distal location, diffuse subtype, and female sex each were predictive of PC.
Thomassen et al.3 found that between 1995 and 2011 in the Netherlands, metastatic disease was present in 39% of patients at presentation. The findings showed PC present in 14% of all GC patients and metastatic disease in 35% of these patients. Younger age (< 60 years), female gender, advanced T and N stage, signet ring or linitis plastica, and primary tumors of overlapping locations all were associated with higher odds for PC development.
In a study of 550 patients with GC who underwent definitive resection, Seyfried et al.4 identified grade 3/4 (OR 2.03; 95% CI 3.65–1.13), nodal positivity (OR 2.39; 95% CI 4.26–1.34), signet-ring cell (OR 3.88; 95% CI 9.71–1.56), and T3/4 (OR 2.35; 95% CI 1.35–4.12) to be independent risk factors for the development of metachronous PC. Although these factors have been recognized as predictors of PC, the cumulative risk score presented in this study, using multiple clinical and demographic variables, provides valuable information for tailoring surveillance strategies for those at highest risk for PC.
In contrast to the results reported by Thomassen et al.3 and D’Angelica et al.5 female sex was not an independent predictor of PC in the current study. Our findings showed that the slightly higher odds for GCPC among females was diminished to a near null finding when the anatomic subsite was adjusted. Additional stratification by anatomic subsite and sex (not presented in the tables) showed that only 25.1% of the female patients had proximal GC versus 46.9% of the males, which in our study was less likely to be associated with PC. These findings underscore the need for further investigation of the reason for the anatomic subsite difference in GC observed between the sexes.
Hispanics, compared to non-Hispanic whites, had a nearly twofold increase in the odds for PC (OR 1.86; 95% CI 1.36–2.54; p < 0.001) after adjustment for other covariates (Table 2). Recent studies have shown an increase in annual incidence of GC in Hispanics, particularly among young men.21,22 This concerning trend currently is compounded by our observation that Hispanic ethnicity is an independent risk factor for PC. To our knowledge, our study is the first to show this association. Inclusion of race/ethnic differences, which have been central to GC discussions for decades, should be reflected in surveillance strategies. Although our overall study population consisted of nearly 30% Hispanics, this certainly differs from the overall demographics for the remainder of the country, with reported incidence rates of 10–18%.21,23
Previous population-based studies from both California and Texas have noted an increased prevalence of Helicobacter pylori infection and risk of gastric cancer for this group.24,25 Therefore, the applicability of ethnicity as a risk factor in our study needs further validation in the general U.S. population. Nevertheless, Hispanic ethnicity was a strong predictor of PC even when controlled for other tumor factors. Environmental, social, and access issues could have been contributing to this observation. Additionally, Hispanic and non-Hispanic gastric cancers may have genomic differences, all of which warrant further work.
Various surveillance strategies and their impact on survival have been investigated previously.2629 In 2014, an international roundtable of 32 experts from 12 countries reached a consensus that currently available data do not demonstrate a survival improvement with intensive surveillance.29 However, most surveillance strategies are based on the assumption that patients with GC are sufficiently staged by tumor-node-metastasis (TNM) variables.
A key observation of our study was the ability to identify increased risk of PC in an individual patient. The majority of the risk factors incorporated into the GCPC score (clinical T stage, grade, anatomic subsite, and presence or absence of signet-ring histology) should be readily available to clinicians at the time of initial diagnosis and may help tailor management. Although short-interval imaging or diagnostic laparoscopy might be useful, the percentage of increased risk that warrants change in surveillance strategies needs prospective clinical study. In addition, advances in our understanding of the molecular subtypes of gastric cancer likely will allow further stratification based on risk. In future studies, molecular information could be added to the known risk factors to improve the predictive power of the model.
Early detection of recurrence allows intervention at a time when treatment options currently available have potential to improve survival. As coming years bring advancements in therapeutic options, a tailored surveillance strategy based on PC risk could result in meaningful improvement in patient survival.

Study Limitations

This study was subject to the biases inherent in database research such as selection, reporting, and time-dependent biases. However, we do not believe these would change the direction of our findings.
Among the 20,840 gastric adenocarcinoma patients in California (2004–2014), 13,565 were coded as Tx, 2938 were classified as unspecified grade, and 52 were missing one or more demographic or other tumor characteristics. Classification as Tx is consistent with the rapid progression of gastric cancer to advanced T stage and the limited value of T-stage information at the time of late presentation.
Generalization of the findings presented in this report should be limited to gastric PC patients with complete demographic and tumor characteristics. Nevertheless, it is reasonable to assume that the majority of patients classified as Tx actually were T4. Based on this assumption, it seems reasonable to extend the findings presented in Table 2 to Tx patients.
Although nodal status is a strong predictor of PC, clinical nodal status was not used in our PC risk score model due to wide inter-observer variability and inconsistent reporting of clinical nodal status in CCR. As with T stage, the perceived limited value of N stage information at the time the patient presents with metastases may have obviated recording by treating physicians. However, due to the prognostic value of clinical nodal status, even in PC, it is important to assign and report it accurately.30 A future validation study using a prospective data set would allow us to define the weight of nodal status in the GCPC risk score.
In addition, due to the retrospective nature and timing of the study, more granular information such as human epidermal growth factor receptor 2 (HER2)-Neu status and cytology-positive M1 disease was not available. Also, CCR does not allow distinction between synchronous and metachronous PC. However, for the purpose of this study, we focused on the presence of PC.
Our model of association was tested against a subgroup that was naïve to the regression findings. Validity might be different if the model is tested with an additional data set. However, our data set represents one of the largest and most diverse cohorts of GC in the United States, enhancing the generalizability of the reported findings.

Conclusions

This GCPC risk score uses readily available tumor and demographic variables to create a cumulative risk score for PC, which in turn can be used by clinicians to customize surveillance strategies.

Disclosure

The authors declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge

Appendix

Natural language processing keyword searches of Eureka text fields for the strings that identified positive peritoneal carcinomatosis status included the following: diaphragm carcinomatosis, diaphragm implants, diaphragm mass, diaphragm metastasis, diaphragm metastases, diaphragm mets, diaphragm studding, mesenteric caking, mesenteric carcinomatosis, mesenteric infiltration, mesenteric implants, mesenteric mass, mesenteric metastasis, mesenteric metastases, mesenteric mets, mesenteric studding, omental caking, omental carcinomatosis, omental infiltration, omental implants, omental mass, omental metastasis, omental metastases, omental mets, omental studding, peritoneal caking, peritoneal carcinomatosis, peritoneal implants, peritoneal mass, peritoneal metastasis, peritoneal metastases, peritoneal mets, peritoneal studding, and seeding.
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRef
2.
3.
Zurück zum Zitat Thomassen I, van Gestel YR, van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival, and risk factors. Int J Cancer. 2014;134:622–8.CrossRef Thomassen I, van Gestel YR, van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival, and risk factors. Int J Cancer. 2014;134:622–8.CrossRef
4.
Zurück zum Zitat Seyfried F, von Rahden BH, Miras AD, et al. Incidence, time course, and independent risk factors for metachronous peritoneal carcinomatosis of gastric origin: a longitudinal experience from a prospectively collected database of 1108 patients. BMC Cancer. 2015;15:73.CrossRef Seyfried F, von Rahden BH, Miras AD, et al. Incidence, time course, and independent risk factors for metachronous peritoneal carcinomatosis of gastric origin: a longitudinal experience from a prospectively collected database of 1108 patients. BMC Cancer. 2015;15:73.CrossRef
5.
Zurück zum Zitat D’Angelica M, Gonen M, Brennan MF, Turnbull AD, Bains M, Karpeh MS. Patterns of initial recurrence in completely resected gastric adenocarcinoma. Ann Surg. 2004;240:808–16.CrossRef D’Angelica M, Gonen M, Brennan MF, Turnbull AD, Bains M, Karpeh MS. Patterns of initial recurrence in completely resected gastric adenocarcinoma. Ann Surg. 2004;240:808–16.CrossRef
6.
Zurück zum Zitat Roviello F, Marrelli D, de Manzoni G, et al. Prospective study of peritoneal recurrence after curative surgery for gastric cancer. Br J Surg. 2003;90:1113–9.CrossRef Roviello F, Marrelli D, de Manzoni G, et al. Prospective study of peritoneal recurrence after curative surgery for gastric cancer. Br J Surg. 2003;90:1113–9.CrossRef
7.
Zurück zum Zitat Spolverato G, Ejaz A, Kim Y, et al. Rates and patterns of recurrence after curative intent resection for gastric cancer: a United States multi-institutional analysis. J Am Coll Surg. 2014;219:664–75.CrossRef Spolverato G, Ejaz A, Kim Y, et al. Rates and patterns of recurrence after curative intent resection for gastric cancer: a United States multi-institutional analysis. J Am Coll Surg. 2014;219:664–75.CrossRef
8.
Zurück zum Zitat Yang XJ, Li Y, Yonemura Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy to treat gastric cancer with ascites and/or peritoneal carcinomatosis: results from a Chinese center. J Surg Oncol. 2010;101:457–64.CrossRef Yang XJ, Li Y, Yonemura Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy to treat gastric cancer with ascites and/or peritoneal carcinomatosis: results from a Chinese center. J Surg Oncol. 2010;101:457–64.CrossRef
9.
Zurück zum Zitat Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRef Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRef
10.
Zurück zum Zitat Sayag-Beaujard AC, Francois Y, Glehen O, et al. Intraperitoneal chemo-hyperthermia with mitomycin C for gastric cancer patients with peritoneal carcinomatosis. Anticancer Res. 1999;19:1375–82.PubMed Sayag-Beaujard AC, Francois Y, Glehen O, et al. Intraperitoneal chemo-hyperthermia with mitomycin C for gastric cancer patients with peritoneal carcinomatosis. Anticancer Res. 1999;19:1375–82.PubMed
11.
Zurück zum Zitat Yonemura Y, Canbay E, Endou Y, et al. Peritoneal cancer treatment. Expert Opin Pharmacother. 2014;15:623–36.CrossRef Yonemura Y, Canbay E, Endou Y, et al. Peritoneal cancer treatment. Expert Opin Pharmacother. 2014;15:623–36.CrossRef
12.
Zurück zum Zitat Sugarbaker PH, Yu W, Yonemura Y. Gastrectomy, peritonectomy, and perioperative intraperitoneal chemotherapy: the evolution of treatment strategies for advanced gastric cancer. Semin Surg Oncol. 2003;21:233–48.CrossRef Sugarbaker PH, Yu W, Yonemura Y. Gastrectomy, peritonectomy, and perioperative intraperitoneal chemotherapy: the evolution of treatment strategies for advanced gastric cancer. Semin Surg Oncol. 2003;21:233–48.CrossRef
14.
Zurück zum Zitat Fritz A PC, Jack A, Shanmugaratnam K, Sobin L, Parkin DM, Whelan S. International classification of diseases for oncology, 3rd edn. World Health Organization, Geneva, 2000. Fritz A PC, Jack A, Shanmugaratnam K, Sobin L, Parkin DM, Whelan S. International classification of diseases for oncology, 3rd edn. World Health Organization, Geneva, 2000.
16.
Zurück zum Zitat Ohi M, Mori K, Toiyama Y, et al. Preoperative prediction of peritoneal metastasis in gastric cancer as an indicator for neoadjuvant treatment. Anticancer Res. 2015;35:3511–8.PubMed Ohi M, Mori K, Toiyama Y, et al. Preoperative prediction of peritoneal metastasis in gastric cancer as an indicator for neoadjuvant treatment. Anticancer Res. 2015;35:3511–8.PubMed
17.
Zurück zum Zitat Kuhn M, Johnson K. Applied predictive modeling. Springer, New York, 2013.CrossRef Kuhn M, Johnson K. Applied predictive modeling. Springer, New York, 2013.CrossRef
18.
Zurück zum Zitat Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of variables in logistic regression. Sour Code Biol Med. 2008;3:2–7. Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of variables in logistic regression. Sour Code Biol Med. 2008;3:2–7.
19.
Zurück zum Zitat Inc SI. SAS/STAT 14.1 User’s Guide. SAS Institute Inc., Cary, NC, 2015. Inc SI. SAS/STAT 14.1 User’s Guide. SAS Institute Inc., Cary, NC, 2015.
21.
Zurück zum Zitat Merchant SJ, Kim J, Choi AH, Sun V, Chao J, Nelson R. A rising trend in the incidence of advanced gastric cancer in young Hispanic men. Gastric Cancer. 2017;20:226–34.CrossRef Merchant SJ, Kim J, Choi AH, Sun V, Chao J, Nelson R. A rising trend in the incidence of advanced gastric cancer in young Hispanic men. Gastric Cancer. 2017;20:226–34.CrossRef
22.
Zurück zum Zitat Chang ET, Gomez SL, Fish K, et al. Gastric cancer incidence among Hispanics in California: patterns by time, nativity, and neighborhood characteristics. Cancer Epidemiol Biomark Prev. 2012;21:709–19.CrossRef Chang ET, Gomez SL, Fish K, et al. Gastric cancer incidence among Hispanics in California: patterns by time, nativity, and neighborhood characteristics. Cancer Epidemiol Biomark Prev. 2012;21:709–19.CrossRef
23.
Zurück zum Zitat Gupta S, Tao L, Murphy JD, et al. Race/ethnicity-, socioeconomic status-, and anatomic subsite-specific risks for gastric cancer. Gastroenterology. 2019;156:59–62 e54.CrossRef Gupta S, Tao L, Murphy JD, et al. Race/ethnicity-, socioeconomic status-, and anatomic subsite-specific risks for gastric cancer. Gastroenterology. 2019;156:59–62 e54.CrossRef
24.
Zurück zum Zitat Rajabi B, Corral JC, Hakim N, Mulla ZD. Descriptive epidemiology of gastric adenocarcinoma in the state of Texas by ethnicity: Hispanic versus white non-Hispanic. Gastric Cancer. 2012;15:405–13.CrossRef Rajabi B, Corral JC, Hakim N, Mulla ZD. Descriptive epidemiology of gastric adenocarcinoma in the state of Texas by ethnicity: Hispanic versus white non-Hispanic. Gastric Cancer. 2012;15:405–13.CrossRef
25.
Zurück zum Zitat Dong E, Duan L, Wu BU. Racial and ethnic minorities at increased risk for gastric cancer in a regional U.S. population study. Clin Gastroenterol Hepatol. 2017;15:511–7.CrossRef Dong E, Duan L, Wu BU. Racial and ethnic minorities at increased risk for gastric cancer in a regional U.S. population study. Clin Gastroenterol Hepatol. 2017;15:511–7.CrossRef
26.
Zurück zum Zitat Bohner H, Zimmer T, Hopfenmuller W, Berger G, Buhr HJ. Detection and prognosis of recurrent gastric cancer: is routine follow-up after gastrectomy worthwhile? Hepatogastroenterology. 2000;47:1489–94.PubMed Bohner H, Zimmer T, Hopfenmuller W, Berger G, Buhr HJ. Detection and prognosis of recurrent gastric cancer: is routine follow-up after gastrectomy worthwhile? Hepatogastroenterology. 2000;47:1489–94.PubMed
27.
Zurück zum Zitat Kodera Y, Ito S, Yamamura Y, et al. Follow-up surveillance for recurrence after curative gastric cancer surgery lacks survival benefit. Ann Surg Oncol. 2003;10:898–902.CrossRef Kodera Y, Ito S, Yamamura Y, et al. Follow-up surveillance for recurrence after curative gastric cancer surgery lacks survival benefit. Ann Surg Oncol. 2003;10:898–902.CrossRef
28.
Zurück zum Zitat Eom BW, Ryu KW, Lee JH, et al. Oncologic effectiveness of regular follow-up to detect recurrence after curative resection of gastric cancer. Ann Surg Oncol. 2011;18:358–64.CrossRef Eom BW, Ryu KW, Lee JH, et al. Oncologic effectiveness of regular follow-up to detect recurrence after curative resection of gastric cancer. Ann Surg Oncol. 2011;18:358–64.CrossRef
29.
Zurück zum Zitat Laks S, Meyers MO, Kim HJ. Surveillance for gastric cancer. Surg Clin N Am. 2017;97:317–31.CrossRef Laks S, Meyers MO, Kim HJ. Surveillance for gastric cancer. Surg Clin N Am. 2017;97:317–31.CrossRef
30.
Zurück zum Zitat Zhou R, Wu Z, Zhang J, et al. Clinical significance of accurate identification of lymph node status in distant metastatic gastric cancer. Oncotarget. 2016;7:1029–41.PubMed Zhou R, Wu Z, Zhang J, et al. Clinical significance of accurate identification of lymph node status in distant metastatic gastric cancer. Oncotarget. 2016;7:1029–41.PubMed
Metadaten
Titel
Gastric Cancer Peritoneal Carcinomatosis Risk Score
verfasst von
Liang Ji, MBA, MPH
Matthew J. Selleck, DO
John W. Morgan, DrPH
Jane Xu, BA
Blake D. Babcock, MD
David Shavlik, PhD, MSPH
Nathan R. Wall, PhD
William H. Langridge, PhD
Sharon S. Lum, MD
Carlos A. Garberoglio, MD
Mark E. Reeves, MD, PhD
Naveenraj Solomon, MD
Jukes P. Namm, MD
Maheswari Senthil, MD
Publikationsdatum
25.07.2019
Verlag
Springer International Publishing
Erschienen in
Annals of Surgical Oncology / Ausgabe 1/2020
Print ISSN: 1068-9265
Elektronische ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-019-07624-0

Weitere Artikel der Ausgabe 1/2020

Annals of Surgical Oncology 1/2020 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.