Skip to main content
Erschienen in: Digestive Diseases and Sciences 11/2010

01.11.2010 | Original Article

Genes Regulated by Nkx2-3 in Sporadic and Inflammatory Bowel Disease-Associated Colorectal Cancer Cell Lines

verfasst von: Wei Yu, Zhenwu Lin, Danielle M. Pastor, John P. Hegarty, Xi Chen, Ashley A. Kelly, Yunhua Wang, Lisa S. Poritz, Walter A. Koltun

Erschienen in: Digestive Diseases and Sciences | Ausgabe 11/2010

Einloggen, um Zugang zu erhalten

Abstract

Background

Nkx2-3 has been reported to be up-regulated in B cell lines and intestinal tissues from Crohn’s disease patients and down-regulated in colorectal cancer.

Aims

The purpose of the current study is to determine genes regulated by Nkx2-3 in sporadic (CRS61) and inflammatory bowel disease-associated (CRS4) colorectal cancer cell lines.

Methods

Small interfering RNA-mediated knockdown of Nkx2-3 in both cell lines was generated and high-density cDNA microarrays representing over 25,000 genes were performed. Microarray results were validated by RT-PCR and immunofluorescence. Pathway analysis was used to identify gene networks associated with Nkx2-3 knockdown in these cell lines.

Results

A total of 1,677 genes were regulated by Nkx2-3 in CRS4 cells; 1,375 genes were regulated by Nkx2-3 in CRS61 cells. Among those genes regulated by Nkx2-3, 254 genes were similarly regulated by Nkx2-3 knockdown in both cell lines; 159 genes were differentially regulated by Nkx2-3 knockdown between the two lines. Genes regulated by Nkx2-3 were grouped primarily within the following two functional categories: (1) immune and inflammatory response; and (2) cell proliferation, growth, and oncogenesis. Among the genes with similarly changed expression in the two cell lines, the top affected pathways included antigen presentation and cell–cell signaling. Among the genes with differentially changed expression between the two cell lines, ingenuity pathway analysis indicated that the top affected pathway included genes directly involved in Wnt signaling.

Conclusions

Nkx2-3 may contribute to the pathogenesis of IBD-associated CRC and sporadic CRC by regulating the Wnt signaling pathway.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Fu Y, Yan W, Mohun TJ, et al. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development. 1998;125:4439–4449.PubMed Fu Y, Yan W, Mohun TJ, et al. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development. 1998;125:4439–4449.PubMed
3.
Zurück zum Zitat Pabst O, Schneider A, Brand T, et al. The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev Dyn. 1997;209:29–35.CrossRefPubMed Pabst O, Schneider A, Brand T, et al. The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev Dyn. 1997;209:29–35.CrossRefPubMed
4.
Zurück zum Zitat Wang CC, Biben C, Robb L, et al. Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Developmental Biology. 2000;224:152–167.CrossRefPubMed Wang CC, Biben C, Robb L, et al. Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Developmental Biology. 2000;224:152–167.CrossRefPubMed
5.
Zurück zum Zitat Pabst O, Forster R, Lipp M, et al. NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EMBO Journal. 2000;19:2015–2023.CrossRefPubMed Pabst O, Forster R, Lipp M, et al. NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EMBO Journal. 2000;19:2015–2023.CrossRefPubMed
6.
Zurück zum Zitat Tarlinton D, Light A, Metcalf D, et al. Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J Immunol. 2003;170:4002–4010.PubMed Tarlinton D, Light A, Metcalf D, et al. Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J Immunol. 2003;170:4002–4010.PubMed
7.
Zurück zum Zitat Franke A, Balschun T, Karlsen TH, et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nature Genetics. 2008;40:713–715.CrossRefPubMed Franke A, Balschun T, Karlsen TH, et al. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nature Genetics. 2008;40:713–715.CrossRefPubMed
8.
Zurück zum Zitat Yamazaki K, Takahashi A, Takazoe M, et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut. 2009;58:228–232.CrossRefPubMed Yamazaki K, Takahashi A, Takazoe M, et al. Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut. 2009;58:228–232.CrossRefPubMed
9.
Zurück zum Zitat Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Reviews Immunology. 2008;8:458–466.CrossRefPubMed Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Reviews Immunology. 2008;8:458–466.CrossRefPubMed
10.
Zurück zum Zitat Yu W, Lin Z, Kelly AA, Hegarty JP, et al. Association of a Nkx2-3 polymorphism with Crohn’s disease and expression of Nkx2-3 is up-regulated in B cell lines and intestinal tissues with Crohn’s disease. Journal of Crohn’s and Colitis. 2009;3:189–195.CrossRef Yu W, Lin Z, Kelly AA, Hegarty JP, et al. Association of a Nkx2-3 polymorphism with Crohn’s disease and expression of Nkx2-3 is up-regulated in B cell lines and intestinal tissues with Crohn’s disease. Journal of Crohn’s and Colitis. 2009;3:189–195.CrossRef
11.
Zurück zum Zitat Wang X, Zbou C, Qiu G, et al. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepato-Gastroenterology. 2008;55:2039–2044.PubMed Wang X, Zbou C, Qiu G, et al. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepato-Gastroenterology. 2008;55:2039–2044.PubMed
12.
Zurück zum Zitat Ekbom A, Helmick C, Zack M, et al. Ulcerative colitis and colorectal cancer. A population-based study. The New England Journal of Medicine. 1990;323:1228–1233.CrossRefPubMed Ekbom A, Helmick C, Zack M, et al. Ulcerative colitis and colorectal cancer. A population-based study. The New England Journal of Medicine. 1990;323:1228–1233.CrossRefPubMed
13.
Zurück zum Zitat Xie J, Itzkowitz SH. Cancer in inflammatory bowel disease. World J Gastroenterol. 2008;14:378–389.CrossRefPubMed Xie J, Itzkowitz SH. Cancer in inflammatory bowel disease. World J Gastroenterol. 2008;14:378–389.CrossRefPubMed
14.
Zurück zum Zitat Pastor D, Olson T, Koltun W, et al. Comparison between human colon tumors and coordinately established primary cell lines. Dis Colon Rectum. 2008;51:628. Pastor D, Olson T, Koltun W, et al. Comparison between human colon tumors and coordinately established primary cell lines. Dis Colon Rectum. 2008;51:628.
15.
Zurück zum Zitat Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.CrossRefPubMed Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.CrossRefPubMed
16.
Zurück zum Zitat Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067–2075.CrossRefPubMed Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067–2075.CrossRefPubMed
17.
Zurück zum Zitat Suzuki H, Harpaz N, Tarmin L, et al. Microsatellite instability in ulcerative colitis-associated colorectal dysplasias and cancers. Cancer Res. 1994;54:4841–4844.PubMed Suzuki H, Harpaz N, Tarmin L, et al. Microsatellite instability in ulcerative colitis-associated colorectal dysplasias and cancers. Cancer Res. 1994;54:4841–4844.PubMed
18.
Zurück zum Zitat Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory bowel disease. Cancer Res. 2000;60:3333–3337.PubMed Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory bowel disease. Cancer Res. 2000;60:3333–3337.PubMed
19.
Zurück zum Zitat Jang JY, Kim HJ, Chi SG, et al. Frequent epigenetic inactivation of XAF1 by promotor hypermethylation in human colon cancers. The Korean Journal of Gastroenterology. 2005;45:285–293.PubMed Jang JY, Kim HJ, Chi SG, et al. Frequent epigenetic inactivation of XAF1 by promotor hypermethylation in human colon cancers. The Korean Journal of Gastroenterology. 2005;45:285–293.PubMed
20.
Zurück zum Zitat Sivarajasingham NS, Baker R, Tilsed JV, et al. Identifying a region of interest in site- and stage-specific colon cancer on chromosome 13. Annals of Surgical Oncology. 2003;10:1095–1099.CrossRefPubMed Sivarajasingham NS, Baker R, Tilsed JV, et al. Identifying a region of interest in site- and stage-specific colon cancer on chromosome 13. Annals of Surgical Oncology. 2003;10:1095–1099.CrossRefPubMed
21.
Zurück zum Zitat Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1:229–233.CrossRefPubMed Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1:229–233.CrossRefPubMed
22.
Zurück zum Zitat Tarmin L, Yin J, Harpaz N, et al. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res. 1995;55:2035–2038.PubMed Tarmin L, Yin J, Harpaz N, et al. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res. 1995;55:2035–2038.PubMed
23.
Zurück zum Zitat Dhir M, Montgomery EA, Glöckner SC, et al. Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg. 2008;12:1745–1753.CrossRefPubMed Dhir M, Montgomery EA, Glöckner SC, et al. Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg. 2008;12:1745–1753.CrossRefPubMed
24.
Zurück zum Zitat You Z, Saims D, Chen S, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. The Journal of Cell Biology. 2002;157:429–440.CrossRefPubMed You Z, Saims D, Chen S, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. The Journal of Cell Biology. 2002;157:429–440.CrossRefPubMed
25.
Zurück zum Zitat Macpherson AJ, Chester KA, Robson L, et al. Increased expression of c-myc proto-oncogene in biopsies of ulcerative colitis and Crohn’s colitis. Gut. 1992;33:651–656.CrossRefPubMed Macpherson AJ, Chester KA, Robson L, et al. Increased expression of c-myc proto-oncogene in biopsies of ulcerative colitis and Crohn’s colitis. Gut. 1992;33:651–656.CrossRefPubMed
26.
Zurück zum Zitat Tezuka N, Brown AM, Yanagawa S. GRB10 binds to LRP6, the Wnt co-receptor and inhibits canonical Wnt signaling pathway. Biochemical and Biophysical Research Communications. 2007;356:648–654.CrossRefPubMed Tezuka N, Brown AM, Yanagawa S. GRB10 binds to LRP6, the Wnt co-receptor and inhibits canonical Wnt signaling pathway. Biochemical and Biophysical Research Communications. 2007;356:648–654.CrossRefPubMed
27.
Zurück zum Zitat Roeb E, Dietrich CG, Winograd R, et al. Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma differential activity of matrix metalloproteinase-9. Cancer. 2001;92:2680–2691.CrossRefPubMed Roeb E, Dietrich CG, Winograd R, et al. Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma differential activity of matrix metalloproteinase-9. Cancer. 2001;92:2680–2691.CrossRefPubMed
28.
Zurück zum Zitat Rath T, Roderfeld M, Graf J, et al. Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential? Inflammatory Bowel Diseases. 2006;12:1025–1035.CrossRefPubMed Rath T, Roderfeld M, Graf J, et al. Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential? Inflammatory Bowel Diseases. 2006;12:1025–1035.CrossRefPubMed
29.
Zurück zum Zitat Zheng S, Chen P, McMillan A, et al. Correlations of partial and extensive methylation at the p14 ARF locus with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in primary tumors. Carcinogenesis. 2000;21:2057–2064.CrossRefPubMed Zheng S, Chen P, McMillan A, et al. Correlations of partial and extensive methylation at the p14 ARF locus with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in primary tumors. Carcinogenesis. 2000;21:2057–2064.CrossRefPubMed
30.
Zurück zum Zitat Wiencke JK, Zheng S, Lafuente A, et al. Aberrant methylation of p16 INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer. Cancer Epidemiology, Biomarkers & Prevention. 1999;8:501–506. Wiencke JK, Zheng S, Lafuente A, et al. Aberrant methylation of p16 INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer. Cancer Epidemiology, Biomarkers & Prevention. 1999;8:501–506.
31.
Zurück zum Zitat Balcerczak M, Balcerczak E, Pasz-Walczak G, et al. Expression of the p65 gene in patients with colorectal cancer: comparison with some histological typing, grading and clinical staging. European Journal of Surgical Oncology. 2004;30:266–270.CrossRefPubMed Balcerczak M, Balcerczak E, Pasz-Walczak G, et al. Expression of the p65 gene in patients with colorectal cancer: comparison with some histological typing, grading and clinical staging. European Journal of Surgical Oncology. 2004;30:266–270.CrossRefPubMed
32.
Zurück zum Zitat Herath NI, Doecke J, Spanevello MD, et al. Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. British Journal of Cancer. 2009;100:1095–1102.CrossRefPubMed Herath NI, Doecke J, Spanevello MD, et al. Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. British Journal of Cancer. 2009;100:1095–1102.CrossRefPubMed
33.
Zurück zum Zitat Chambers WM, Warren BF, Jewell DP, et al. Cancer surveillance in ulcerative colitis. Br J Surg. 2005;92:928–936.CrossRefPubMed Chambers WM, Warren BF, Jewell DP, et al. Cancer surveillance in ulcerative colitis. Br J Surg. 2005;92:928–936.CrossRefPubMed
34.
Zurück zum Zitat Axon AT. Colonic cancer surveillance in ulcerative colitis is not essential for every patient. Eur J Cancer. 1995;31:1183–1186.CrossRef Axon AT. Colonic cancer surveillance in ulcerative colitis is not essential for every patient. Eur J Cancer. 1995;31:1183–1186.CrossRef
Metadaten
Titel
Genes Regulated by Nkx2-3 in Sporadic and Inflammatory Bowel Disease-Associated Colorectal Cancer Cell Lines
verfasst von
Wei Yu
Zhenwu Lin
Danielle M. Pastor
John P. Hegarty
Xi Chen
Ashley A. Kelly
Yunhua Wang
Lisa S. Poritz
Walter A. Koltun
Publikationsdatum
01.11.2010
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 11/2010
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-010-1138-0

Weitere Artikel der Ausgabe 11/2010

Digestive Diseases and Sciences 11/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.