Skip to main content
Erschienen in: Pediatric Nephrology 7/2009

Open Access 01.07.2009 | Educational Review

Growth after renal transplantation

verfasst von: Jérôme Harambat, Pierre Cochat

Erschienen in: Pediatric Nephrology | Ausgabe 7/2009

Abstract

Growth may be severely impaired in children with chronic renal insufficiency. Since short stature can have major consequences on quality of life and self-esteem, achieving a ‘normal’ height is a crucial issue for renal transplant recipients. However, despite successful renal transplantation, the final height attained by most recipients is not the calculated target height. Catch-up growth spurts post-transplantation are usually insufficient to compensate for the retardation in growth that has occurred during the pre-transplant period. Longitudinal growth post-transplantation is therefore influenced by the age at transplantation but also by subsequent allograft function and steroid exposure, both of which interfere with the growth hormone/insulin-like growth factor axis. The management of growth retardation in renal transplant recipients includes adequate nutritional intake, correction of metabolic acidosis, prevention of bone disease, steroid-sparing strategies and a supraphysiological dose of recombinant human growth hormone in selected cases.
Hinweise

Answers:

1) c
2) b
3) b
4) e
5) d

Introduction

One of the goals of renal transplantation in children is to restore an optimal quality of life (QOL), including the optimization of final height. However, catch-up growth post-transplantation is generally not sufficient to compensate for the deficit that has been acquired during the pre-transplant period. Growth retardation post-transplantation is multifactorial and associated with impaired medical and psychosocial outcomes. Despite numerous recent developments in pediatric renal transplantation, achieving an adequate final height remains a challenging issue for such recipients.

Growth assessment

Growth assessment and management should be performed in any pediatric transplant recipient [1]. Anthropometric parameters, including height, body weight, body mass index (plus head circumference in children less than 3 years of age), should be monitored every 3 months in children less than 3 years of age, then every 6 months until final height is reached. Final height is reached as the growth velocity per year minus 1–2 cm after puberty has occurred. The target height (H, in cm) is based on mid-parental height (girls = [Hmother + Hfather–13]/2; boys = [Hmother + Hfather + 13]/2) according to Tanner method [2]. A more recent formula based on parental height standard deviation score (SDS) and independent of sex has been proposed [3]. Growth parameters should be plotted on growth charts using either SDS or centiles adapted to gender and local standard measurements.

Growth features post-transplantation

Magnitude of growth impairment post-transplantation

Data from the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2006 annual report reported that the mean height SDS was −1.4 in a cohort of over 1500 patients aged 19 years or more [4], with 25% of these patients having a height SDS of −2.3 or worse and 10% being below −3.3 SDS. During the last 10 years, single center reports have specifically addressed the issue of final height after renal transplantation in childhood [510]. The percentage of patients who achieved a normal final height (height SDS ≥ −1.88 , i.e. third centile) ranged from 42 to 75% (Table 1) which is higher than the that reported in previous studies in which 62–77% of patients exhibited growth failure at 18 years of age or more [11, 12].
Table 1
Summary of recent studies assessing final height in pediatric renal transplant recipients
Study
Tx period
Population (n)
rhGH post-Tx (n)
Age at Tx (years)
Follow-up (years)
Height SDSa
Growth determinants
At Tx
Final Height
Normal heightb
Andre et al. 2003 [5]
1975
19 (11 boys)
0
13.2
10.9
−3.1
−2.6
42%
Height at ESRD; duration and cause of ESRD
Englund et al. 2003 [6]
1981–1994
24 (8 boys)
6
9.5
7.6
−1.7
−1.1
75%
Height at Tx; bone age; graft function
Ninik et al. 2002 [7]
1985–1998
82 (53 boys)
0
10.3
> 5
−2.1 (n = 82)
−1.3 (n = 47)
-
Height at Tx; age at Tx; final GFR; steroid dose
Nissel et al. 2004 [8]
1983–2002
37 (18 boys)
0
10.2 (girls)
8.5
−2.9 (girls)
−1.9 (girls)
68%
Height at Tx; graft function
12.5 (boys)
−1.7 (boys)
−1.0 (boys)
Offner et al. 1999 [9]
1970–1993
100 (47 boys)
7
13.6
13.1
−2.2
−2.4c
47%c
-
Rodriguez-Soriano et al. 2000 [10]
1986–1999
32 (17 boys)
3
12.1
7.2 (median)
−1.6 (girls)
−1.2 (girls)
69%
Height at Tx and at start of dialysis; duration of dialysis
−1.4 (boys)
−1.6 (boys)
Tx Transplantation, ESRD end stage renal disease, GFR glomerular filtration rate, SDS standard deviation score, rhGH recombinant human growth hormone
aHeight values are expressed in SDS compared with local measurements
bNormal height is defined as a final height > − 2 SDS
cFinal height in 84 non-cystinotic patients: −1.8 SDS (56% achieved normal height)

Impact of growth failure post-transplantation

Growth delay post-transplantation may be associated with a worse medical outcome. Furth et al. [13] showed that children with end stage renal disease (ESRD) and moderate (−2 > SDS > −3) or severe (< −3 SDS) growth retardation had a significantly higher risk of death and hospitalization, even after adjustment for treatment modalities (dialysis or transplant). Such events were mainly attributed to infectious diseases, suggesting that growth failure might be a marker of poor nutritional status, a known risk factor for infectious complications.
Growth failure may also have an impact on psychological and social development, self-esteem and QOL. Behavioral and cognitive disorders, including immaturity, inhibition, anxiety, attention deficits and learning disability, have been reported in children with short stature [14, 15]. Such difficulties were attributed to family overprotection and negative social experience related to the child’s short stature, leading to impaired emotional and social development. Experience in patients with growth hormone deficiency or idiopathic short stature has shown that the use of recombinant human growth hormone (rhGH) improves behavior disturbances [16]. In adults who were transplanted during childhood, short stature has been associated with a lower marital status, a lower level of education and a lower level of employment [17]. Moreover, Rosenkranz et al. reported that more than one-third of adults with childhood-onset ESRD were dissatisfied with their body height [18]. Positive perception of QOL significantly correlated with satisfaction with adult height.

Factors influencing growth post-transplantation

Growth after transplantation is mainly affected by the degree of pre-transplantation growth deficit, age at transplantation, graft function and exposure to glucocorticoids.

Pre-transplantation growth

Growth failure is a common feature in children with chronic renal insufficiency (CRI). Growth determinants during the pre-transplant period may include age at diagnosis of CRI, nutritional intake, primary disease, tubular impairment, renal osteodystrophy, hormonal disorders and pre-transplantation use of steroids. Two periods are at particular risk of impaired growth velocity: infancy and puberty [19, 20]. Height velocity generally decreases when the glomerular filtration rate (GFR) is below 30 mL/min per 1.73 m2 [21]. However, there is evidence that growth impairment begins earlier. Indeed, in a subset of the NAPRTCS registry [4] that includes 1901 patients with moderate CRI (estimated GFR between 50 and 75 mL/min per 1.73 m2), 21.5% had standardized height measurement below the third centile (height SDS ≤−1.88) and in 2477 children with an estimated GFR of 25–50 mL/min per 1.73 m2, 36.8% had a height SDS of less than −1.88. Children enrolled in this registry are growth impaired at initiation of dialysis and exhibit a deceleration of growth during the following 6, 12 or 24 months—with the exception of children aged 0–1 years. At the time of transplantation, the mean height SDS measured in 8659 children was −1.86 for boys and −1.72 for girls [4].
Pre-transplantation growth impairment may be reduced by adequate conservative treatment of CRI, including aggressive nutritional support during infancy and early childhood [22] and treatment with rhGH when indicated [23]. This has resulted in a significant improvement of pre-transplantation growth; data from the NAPRTCS [4] has shown that height SDS at the time of initial transplant has improved from a mean of −2.4 in 1987 to −1.5 in the 2000 and 2003 cohorts.

Role of age at transplantation

In the NAPRTCS 2006 report [4], only infants and pre-school age children (2–5 years) exhibited catch-up growth post-transplantation (Fig. 1). However catch-up growth occurred mainly during the first 2 years post-transplantation, with no further improvement being observed thereafter; preschool-aged children who had the greatest deficit at transplant (−2.26 SDS) exhibited the best growth improvement of 0.5 SDS. Conversely, school age children (6–12 years), and adolescents demonstrated either no improvement or even a decrease in height SDS (Fig. 1). The prepubertal growth deceleration that occurs in the normal population is prolonged after transplantation, and puberty and bone age are usually delayed [8, 12]. This means that growth continues for longer than normal but height gain is rarely as much as expected due to loss of height potential [8, 24]. However, some authors have reported that significant catch-up growth can occur after transplantation even in children of pubertal age [25]; the authors speculated that catch-up growth may be related to the early use of a low-dose and alternate-day steroid regimen.

Effect of graft function

The effect of a reduced GFR on growth has been known for a long time [26]. A report from the NAPRTCS that assessed final adult height in 237 subjects who received a transplant before 11 (girls) or 12 (boys) years of age showed that a decreased GFR was an independent predictor of reduced final height [27]. Guest et al. reported that prepubertal children with a serum creatinine level above 120 μmol/L did not exhibit catch-up growth during the first year post-transplantation [28]. More recently, Nissel et al. showed that prepubertal catch-up growth and total pubertal height gain correlated positively with GFR [8].

Role of steroid therapy

Since the introduction of steroid therapy more than 50 years ago, it became clear that daily and prolonged steroid administration leads to growth impairment [29]. Steroid therapy inhibits growth by both interfering with the hypothalamus-pituitary/growth hormone/insulin-like growth factor axis and having a direct effect on bone formation (see below). Pharmacokinetic studies of methylprednisolone in pediatric liver and kidney transplant recipients have demonstrated that the area under the serum concentration–time curve (AUC) rather than dose was predictive for growth retardation [30, 31]. However, this correlation between AUC and growth was not unanimously found in transplanted children treated with prednisone or prednisolone [32].

Other factors

Many other factors may contribute to post-transplant growth retardation.
Donor type
Pape et al. identified 51 boys who received a renal transplant (30 deceased donors and 21 living related donors) before the rhGH era, who were followed for at least 5 years [33]. Children who received a living donor graft had a significantly greater height SDS and growth velocity during the first 5 years post-transplantation than those who received a graft from a deceased donor. Interestingly, this difference remained significant after adjustment for potential confounders, including GFR. In the latest NAPRTCS report, donor source seemed to predict height SDS changes 2 years post-transplantation, but the mean difference was less than 0.3 SDS [2].
Pre-emptive transplantation
As dialysis is associated with decreased growth velocity, pre-emptive renal transplantation may optimize final height. Some authors reported better height SDS in the first years post-transplantation in those children who received a pre-emptive renal transplant compared to those with dialysis prior to transplantation [6, 25].
Race
A previous NAPRTCS report suggested that race may also have an impact on growth following transplantation [34]. The change in height SDS was negative in African-American and Hispanic recipients but positive in Caucasians. However, race did not significantly influence growth in multivariate analysis.

Pathophysiology of growth impairment post-transplantation

Disturbances in the growth hormone/insulin-like growth factor axis

In humans, longitudinal bone growth is achieved primarily by endochondral ossification, and an intact function of the somatotropic hormone axis is essential for normal growth. In healthy individuals, growth hormone (GH) is secreted by the pituitary gland in a pulsatile pattern; such a mechanism is regulated by GH releasing hormone (GHRH), GH release inhibiting hormone (GHRIH) and other feedback regulator agents. Growth hormone acts on the liver and other tissues, where it stimulates the synthesis of insulin-like growth factor-1 (IGF-1) and its binding proteins (IGFBP). Circulating free IGF-1 stimulates the proliferation of chondrocytes in the growth plate [35]. The IGFBPs, in turn, modulate IGF-1 activity, mostly by an inhibitory action mediated by IGFBP-3. Growth impairment in renal transplant recipients is multifactorial, and the somatotropic axis may be disturbed by several complex mechanisms.
Glucocorticoids are known to interfere with the GH/IGF axis by inducing down-regulation of GH receptors and inhibition of IGF-1 synthesis [36] and by modifying the equilibrium among IGFBP subtypes [37]. However, exogenous GH may reverse the catabolic and growth-depressing effects of glucocorticoids [38, 39]. In addition, glucocorticoid treatment directly affects growth plate function by suppressing chondrocyte proliferation, reducing bone formation and altering endochondral ossification [40, 41].
Impaired renal function in transplant recipients per se also contributes to growth disturbance so that even a minimal graft dysfunction may be associated with growth retardation [42]. Due to both decreased metabolic clearance and altered release pattern, GH concentration is normal or elevated in any child with CRI [43, 44] so that such patients exhibit a resistance profile to GH action. Indeed, it has been shown that uremia results in reduced GH receptor density and in a defect of intracellular GH receptor signal transduction, so that IGF-1 transcription is decreased [45]. Furthermore, modifications in IGFBPs levels limit the bioavailability of free IGF-1 [46, 47].

Metabolic acidosis

The presence of metabolic acidosis may additionally affect growth through a reduction of GH and IGF-1 secretion [48] as well as by GH resistance [49]. This phenomenon is attributable to a down-regulation of hepatic IGF-1 and GH receptor expression and increased expression of IGFBP-2 and -4, both of which inhibit the effects of IGF-1 [50]. In addition, metabolic acidosis has been shown to have an inhibitory effect on cartilage cell progression and endochondral bone formation in experimental studies [51]. It also leads to reduced albumin synthesis, increased calcium efflux from bone and protein degradation. However, there is no evidence that a correction of metabolic acidosis will have a beneficial effect on growth post-transplantation.

Secondary hyperparathyroidism

Long-term secondary hyperparathyroidism may persist after renal transplantation [52] and have a negative impact on bone turnover and growth plate function [48]; this may be attributable to abnormal epiphyseal growth plate due to reduced PTH/PTHrP (PTH-related peptide) receptor and type X collagen expression. A potential benefit of treating for secondary hyperparathyroidism is an improvement in linear growth, although there is no strong evidence supporting this.

Nutrition

Independently of the above mechanisms, proteinocaloric deficit and subsequent malnutrition result in growth retardation, mainly in infants and young children. Indeed, protein restriction leads to a resistance to GH action at the hepatic level, an increase in IGF-1 clearance rate and, consequently, a reduction of IGF-1 levels [5355].

Sex hormones

Disturbances of the gonadotropic axis may contribute to altered growth patterns, with a delay and a shorter duration in the pubertal growth spurt [8, 12, 56].

Management of growth post-transplantation

Conservative strategies

Growth velocity can be improved by conservative approaches, including adequate nutritional intake, correction of metabolic disorders, prevention of renal osteodystrophy and steroid-sparing protocols (Table 2). The use of alternate-day steroids in kidney transplantation was first described in the 1970s [57], and several studies carried out subsequently have demonstrated an improvement in growth in patients on daily low or alternate-day steroid therapy [58, 59]. The use of deflazacort, a synthetic glucocorticoid derived from prednisolone, has led to improved growth velocity with a comparable immunosuppressive effect [60], but there are few data on this drug because of its limited availability. Encouraging results have been reported with steroid avoidance or early withdrawal protocols [6164], but additional evidence is expected from ongoing trials.
Table 2
Conservative methods to optimize growth velocity post-transplantation [1, 87]
Causes of growth impairment
Methods
Reduced GFR
Prevention and management of chronic allograft nephropathy
Treatment of acute rejection episodes
Drug compliance
Steroid therapy
Daily low or alternate day steroid therapy
Steroid avoidance/withdrawal under evaluation
Bone disease
Target PTH within normal range in CKD stage 2–3 and < 2× upper limit in CKD stage 4
Target plasma phosphate within age-appropriate normal range
Metabolic acidosis
Target plasma bicarbonate > 22 mmol/L
Malnutrition
Adequate nutritional intake
Comorbidities
Assessment and control of comorbidities which may impair growth (chronic inflammation, liver, lung or heart diseases)
PTH Parathyroid hormone; CKD chronic kidney disease

Growth hormone therapy

Efficacy and safety

The rationales for the use of rhGH in short children with renal transplants are: (1) exogenous GH can be considered to be a substitutive therapy in children with glucocorticoid-induced GH hyposecretion and (2) rhGH may restore IGF bioactivity in those with normal GH secretion but decreased IGF bioavailability [65, 66]. Four randomized controlled trials have been conducted to evaluate the safety and efficacy of rhGH after renal transplantation [6770]. All four studies have shown a significant improvement in growth velocity in the treated group compared to the controls (Table 3), but none of these trials has remained controlled for more than 1 year. Although previous observations have suggested an increased risk of acute rejection [71] and controversial effects on GFR [72, 73], none of the randomized controlled trials have demonstrated an increased incidence of acute rejection or a change in GFR. However, two of them found that a history of two or more acute rejection episodes before the initiation of rhGH was predictive of a subsequent rejection episode following the initiation of rhGH therapy [69, 70]. More recently, a non-randomized study from the NAPRTCS compared 513 rhGH-treated transplant recipients to 2263 untreated children over a 5-year period [74]. The authors concluded that children younger than 10 years of age grew better than older ones; the final height was superior in the rhGH-treated group (mean cumulative increase of 3.6 cm), without any significant change in allograft function and graft failure rate, and the incidence of adverse events was similar in both groups.
Table 3
Summary of randomized controlled trials of rhGH therapy in children after renal transplantation
Study
Design
Population
Growth velocity (cm/year)
Safety
rhGH group
Controls
Rejections
GFR
Hokken-Koleaga et al. 1996 [67]
6-months crossover
n = 11
  
No episode
No change
5 prepubertal
3.9 (6 months)
1.0
6 pubertal
5.3
1.5
Maxwell et al. 1998 [68]
1-year randomized
n = 22
  
8/13 in rhGH group vs. 5/9 in controlsa
No change
15 prepubertal
8.1
3.7
7 pubertal
10.1
3.9
Guest et al. 1998 [69]
1-year randomized
n = 90
7.7
4.6
9/44 in rhGH group vs. 4/46 in controlsa
No change
55 prepubertal
35 pubertal
Fine et al. 2002 [70]
1-year randomized
n = 63
9.0
4.2
None in rhGH group vs. 3 in controls
No change in SCrb
40 prepubertal
23 pubertal
aNot significant
bSCr, Serum creatinine
The immune system may be adversely affected by the GH-induced stimulation of cytotoxic T cells in vitro [75]. However, data in pediatric renal transplant recipients suggest either a transient or a moderate impact of rhGH on the immune system [76, 77].
A major concern with the use of rhGH is the potential risk of malignancy. There is no evidence of increased risk of lymphoproliferative disease with the use of rhGH post-transplant only. However, a significant association has been found between the use of rhGH during the pre-transplant period and the development of post-transplant lymphoproliferative disease [78]. Tydén et al. reported the development of renal cancer in the transplant kidneys of two adolescents treated with rhGH [79]. However, an analysis of data from companies commercializing rhGH was unable to identify rhGH as a risk factor for post-transplant renal cancer [80].
Other side effects have been reported under rhGH therapy, but they do not represent a significant risk and should not limit the current use of rhGH in growth-retarded transplanted children. Several studies have shown a transient elevation of glucose and insulin secretion in rhGH-treated patients with CRI or after renal transplantation [81]. There has been no report of diabetes mellitus development under rhGH, but one patient with cystinosis has been reported. Recombinant human growth hormone has also been found to induce an increase in lipoprotein(a) serum concentration without a significant change in cholesterol or triglycerides serum concentrations [82]. This increase did not persist over time after a long-lasting treatment with rhGH in patients with Turner syndrome [83]. Transient increases in alkaline phosphatase activity, serum phosphate concentration [70] or even PTH concentration [68] have been observed in randomized controlled trials, but rhGH did not induce an increased incidence of renal osteodystrophy; however, overt renal osteodystrophy may blunt the response to rhGH [84].
In a retrospective survey, benign intracranial hypertension was detected in about 1% of 1670 children with CRI [85]. This complication may be exacerbated by the presence of fluid overload and arterial hypertension associated with CRI.

Current recommendations

The use of rhGH in growth-retarded renal transplant recipients has not been approved by North American or European drug regulatory agencies, so that there are no clear guidelines for its use in such patients. In addition, the American Association of Clinical Endocrinologists does not recommend the use of rhGH after renal transplantation, unless it is given as a part of a research study [86]. However, based on published trials and registries, a recent report from the Kidney Foundation on Kidney Disease Improving Global Outcomes (KDIGO) has provided recommendations for its use after pediatric renal transplantation [1]. All growth parameters should be assessed and corrected before rhGH is initiated. Therapy with RhGH can be started when height falls below the third centile for age and sex. It remains uncertain whether GH therapy should be considered in children with still-normal relative height but low growth velocity. The recommended dose is 0.05 mg/kg per day (1.4 mg/m2 per day) in prepubertal children. In pediatric transplant patients with chronic kidney disease stages 2–4, bone disease should be managed according to K/DOQI guidelines [87]. A practical approach for the use of rhGH after transplantation is proposed in Table 4.
Table 4
Proposed recommendations for the use of rhGH in children with a renal transplant
Recombinant human growth hormone therapy
Factors to take into consideration
Target population for rhGH therapy
Prepubertal children
Pubertal children?
−2 SDS for height
Poor growth velocity?
Growth potential documented by open epiphyses
Correction of other factors contributing to growth failure
Contra-indication
Active malignancy
Baseline evaluation
Pubertal stage
Anthropometric assessment
Target height
Hip X-ray and bone age
Fundoscopic examination
Serum phosphate, calcium and PTH
Optimal dose of rhGH
0.05 mg/kg per day (4 IU/m2 per day)
Mode of administration
Daily subcutaneous injection
Follow-up evaluation
Height, weight, growth velocity every 3 months
Close monitoring of graft function in children with a history of acute rejection
Serum calcium, phosphate and PTH every 3 months
Bone age every year according to growth profile
rhGH discontinuation
Achieved height endpoint
Closed epiphyses
Slipped femoral epiphyses
Severe hyperparathyroidism
Active malignancy
Documented benign intracranial hypertension
Non compliance
In summary, steroid-sparing/avoidance may be the first-line management of short transplant children with a good GFR (i.e. > 60 mL/min per 1.73 m2), whereas rhGH treatment may be proposed to those short patients with either impaired GFR (i.e. <60 mL/min per 1.73 m2) or the failure of steroid-sparing/avoidance despite a good GFR.

Conclusion

Optimal growth is a major issue regarding post-transplantation quality of life and self esteem in children. The current final height of transplant patients has remained suboptimal, but recent strategies, including steroid-sparing/avoidance regimes, could further improve longitudinal growth in renal transplant children.

Questions

(Answers appear following the reference list)
1)
What has been learned from epidemiological data about post-transplant growth?
a.
Most renal transplant children attain target height
 
b.
Growth velocity increases after 3 years post-transplantation
 
c.
Height SDS at transplantation has improved over time
 
d.
Catch-up growth is primarily exhibited by adolescents
 
e.
Quality of life of transplant recipients is not influenced by height
 
 
2)
Which factor positively influences growth post-transplantation?
a.
Male gender
 
b.
Young age at transplantation
 
c.
Primary tubular disorder
 
d.
Prolonged steroid therapy
 
e.
Dialysis prior to transplantation
 
 
3)
Which mechanism contributes to glucocorticoids-induced growth retardation?
a.
Decreased serum IGF-1 concentration
 
b.
Reduced sensitivity to endogenous GH and IGF-1
 
c.
Direct stimulation of chondrocytes proliferation
 
d.
Decreased production of all IGFBPs
 
e.
Disturbances in the gonadotropic hormone axis
 
 
4)
How can growth potential be optimized?
a.
Correction of metabolic acidosis
 
b.
Adequate nutritional intake
 
c.
Prevention of bone disease
 
d.
Supraphysiological dose of rhGH when indicated
 
e.
All of the above
 
 
5)
Which of the following statements about the use of rhGH is correct?
a.
The optimal dosage of rhGH is 0.02 mg/kg per day
 
b.
There is evidence that rhGH improves final height
 
c.
Randomized controlled trials with rhGH have shown an increased risk of acute rejection
 
d.
rhGH may induce an elevation of serum insulin concentration
 
e.
rhGH has been identified as a risk factor for post transplantation malignancy
 
 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Answers:

1) c
2) b
3) b
4) e
5) d

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat Abbud-Filho M, Adams PL, Alberu J, Cardella C, Chapman J, Cochat P, Cosio F, Danovitch G, Davis C, Gaston RS, Humar A, Hunsicker LG, Josephson MA, Kasiske B, Kirste G, Leichtman A, Munn S, Obrador GT, Tibell A, Wadström J, Zeier M, Delmonico FL (2007) A report of the Lisbon Conference on the care of the kidney transplant recipient. Transplantation 83:S1–22PubMed Abbud-Filho M, Adams PL, Alberu J, Cardella C, Chapman J, Cochat P, Cosio F, Danovitch G, Davis C, Gaston RS, Humar A, Hunsicker LG, Josephson MA, Kasiske B, Kirste G, Leichtman A, Munn S, Obrador GT, Tibell A, Wadström J, Zeier M, Delmonico FL (2007) A report of the Lisbon Conference on the care of the kidney transplant recipient. Transplantation 83:S1–22PubMed
2.
Zurück zum Zitat Tanner JM, Goldstein H, Whitehouse RH (1970) Standards for children’s height at ages 2–9 years allowing for heights of parents. Arch Dis Child 45:755–762PubMedPubMedCentral Tanner JM, Goldstein H, Whitehouse RH (1970) Standards for children’s height at ages 2–9 years allowing for heights of parents. Arch Dis Child 45:755–762PubMedPubMedCentral
3.
Zurück zum Zitat Hermanussen M, Cole J (2003) The calculation of target height reconsidered. Horm Res 59:180–183PubMed Hermanussen M, Cole J (2003) The calculation of target height reconsidered. Horm Res 59:180–183PubMed
5.
Zurück zum Zitat André JL, Bourquard R, Guillemin F, Krier MJ, Briançon S (2003) Final height in children with chronic renal failure who have not received growth hormone. Pediatr Nephrol 18:685–691PubMed André JL, Bourquard R, Guillemin F, Krier MJ, Briançon S (2003) Final height in children with chronic renal failure who have not received growth hormone. Pediatr Nephrol 18:685–691PubMed
6.
Zurück zum Zitat Englund MS, Tydén G, Wikstad I, Berg UB (2003) Growth impairment at renal transplantation: a determinant of growth and final height. Pediatr Transplant 7:192–199PubMed Englund MS, Tydén G, Wikstad I, Berg UB (2003) Growth impairment at renal transplantation: a determinant of growth and final height. Pediatr Transplant 7:192–199PubMed
7.
Zurück zum Zitat Ninik A, McTaggart SJ, Gulati S, Powell HR, Jones CL, Walker RG (2002) Factors influencing growth and final height after renal transplantation. Pediatr Transplant 6:219–223PubMed Ninik A, McTaggart SJ, Gulati S, Powell HR, Jones CL, Walker RG (2002) Factors influencing growth and final height after renal transplantation. Pediatr Transplant 6:219–223PubMed
8.
Zurück zum Zitat Nissel R, Brazda I, Feneberg R, Wigger M, Greiner C, Querfeld U, Haffner D (2004) Effect of renal transplantation in childhood on longitudinal growth and adult height. Kidney Int 66:792–800PubMed Nissel R, Brazda I, Feneberg R, Wigger M, Greiner C, Querfeld U, Haffner D (2004) Effect of renal transplantation in childhood on longitudinal growth and adult height. Kidney Int 66:792–800PubMed
9.
Zurück zum Zitat Offner G, Latta K, Hoyer PF, Baum HJ, Ehrich JH, Pichlmayr R, Brodehl J (1999) Kidney transplanted children come of age. Kidney Int 55:1509–1517PubMed Offner G, Latta K, Hoyer PF, Baum HJ, Ehrich JH, Pichlmayr R, Brodehl J (1999) Kidney transplanted children come of age. Kidney Int 55:1509–1517PubMed
10.
Zurück zum Zitat Rodriguez-Soriano J, Vallo A, Quintela MJ, Malaga S, Loris C (2000) Predictors of final adult height after renal transplantation during childhood: a single-center study. Nephron 86:266–273PubMed Rodriguez-Soriano J, Vallo A, Quintela MJ, Malaga S, Loris C (2000) Predictors of final adult height after renal transplantation during childhood: a single-center study. Nephron 86:266–273PubMed
11.
Zurück zum Zitat Potter D, Feduska N, Melzer J, Garovoy M, Hopper S, Duca R, Salvatierra O Jr (1986) Twenty years of renal transplantation in children. Pediatrics 77:465–470PubMed Potter D, Feduska N, Melzer J, Garovoy M, Hopper S, Duca R, Salvatierra O Jr (1986) Twenty years of renal transplantation in children. Pediatrics 77:465–470PubMed
12.
Zurück zum Zitat Hokken-Koelega AC, van Zaal MA, van Bergen W, de Ridder MA, Stijnen T, Wolff ED, de Jong RC, Donckerwolcke RA, de Muinck Keizer-Schrama SM, Drop SL (1994) Final height and its predictive factors after renal transplantation in childhood. Pediatr Res 36:323–328PubMed Hokken-Koelega AC, van Zaal MA, van Bergen W, de Ridder MA, Stijnen T, Wolff ED, de Jong RC, Donckerwolcke RA, de Muinck Keizer-Schrama SM, Drop SL (1994) Final height and its predictive factors after renal transplantation in childhood. Pediatr Res 36:323–328PubMed
13.
Zurück zum Zitat Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR (2002) Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol 17:450–455PubMed Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR (2002) Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol 17:450–455PubMed
14.
Zurück zum Zitat Stabler B, Clopper RR, Siegel PT, Stoppani C, Compton PG, Underwood LE (1994) Academic achievement and psychological adjustment in short children. The National Cooperative Growth Study. J Dev Behav Pediatr 15:1–6PubMed Stabler B, Clopper RR, Siegel PT, Stoppani C, Compton PG, Underwood LE (1994) Academic achievement and psychological adjustment in short children. The National Cooperative Growth Study. J Dev Behav Pediatr 15:1–6PubMed
15.
Zurück zum Zitat Qvist E, Jalanko H, Holmberg C (2003) Psychosocial adaptation after solid organ transplantation in children. Pediatr Clin North Am 50:1505–1519PubMed Qvist E, Jalanko H, Holmberg C (2003) Psychosocial adaptation after solid organ transplantation in children. Pediatr Clin North Am 50:1505–1519PubMed
16.
Zurück zum Zitat Stabler B, Siegel PT, Clopper RR, Stoppani CE, Compton PG, Underwood LE (1998) Behavior change after growth hormone treatment of children with short stature. J Pediatr 133:366–373PubMed Stabler B, Siegel PT, Clopper RR, Stoppani CE, Compton PG, Underwood LE (1998) Behavior change after growth hormone treatment of children with short stature. J Pediatr 133:366–373PubMed
17.
Zurück zum Zitat Broyer M, Le Bihan C, Charbit M, Guest G, Tête MJ, Gagnadoux MF, Niaudet P (2004) Long-term social outcome of children after kidney transplantation. Transplantation 77:1033–1037PubMed Broyer M, Le Bihan C, Charbit M, Guest G, Tête MJ, Gagnadoux MF, Niaudet P (2004) Long-term social outcome of children after kidney transplantation. Transplantation 77:1033–1037PubMed
18.
Zurück zum Zitat Rosenkranz J, Reichwald-Klugger E, Oh J, Turzer M, Mehls O, Schaefer F (2005) Psychosocial rehabilitation and satisfaction with life in adults with childhood-onset of end-stage renal disease. Pediatr Nephrol 20:1288–1294PubMed Rosenkranz J, Reichwald-Klugger E, Oh J, Turzer M, Mehls O, Schaefer F (2005) Psychosocial rehabilitation and satisfaction with life in adults with childhood-onset of end-stage renal disease. Pediatr Nephrol 20:1288–1294PubMed
20.
Zurück zum Zitat Schaefer F, Seidel C, Binding A, Gasser T, Largo RH, Prader A, Schärer K (1990) Pubertal growth in chronic renal failure. Pediatr Res 28:5–10PubMed Schaefer F, Seidel C, Binding A, Gasser T, Largo RH, Prader A, Schärer K (1990) Pubertal growth in chronic renal failure. Pediatr Res 28:5–10PubMed
21.
Zurück zum Zitat Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L (2000) Outcome and growth of infants with severe chronic renal failure. Kidney Int 57:1681–1687PubMed Kari JA, Gonzalez C, Ledermann SE, Shaw V, Rees L (2000) Outcome and growth of infants with severe chronic renal failure. Kidney Int 57:1681–1687PubMed
22.
Zurück zum Zitat Schaefer F, Wingen AM, Hennicke M, Rigden S, Mehls O (1996) Growth charts for prepubertal children with chronic renal failure due to congenital renal disorders. European study group for nutritional treatment of chronic renal failure in childhood. Pediatr Nephrol 10:288–293PubMed Schaefer F, Wingen AM, Hennicke M, Rigden S, Mehls O (1996) Growth charts for prepubertal children with chronic renal failure due to congenital renal disorders. European study group for nutritional treatment of chronic renal failure in childhood. Pediatr Nephrol 10:288–293PubMed
23.
Zurück zum Zitat Haffner D, Schaefer F, Nissel R, Wühl E, Tönshoff B, Mehls O (2000) Effect of growth hormone treatment on the adult height of children with chronic renal failure. German study group for growth hormone treatment in chronic renal failure. N Engl J Med 343:923–930PubMed Haffner D, Schaefer F, Nissel R, Wühl E, Tönshoff B, Mehls O (2000) Effect of growth hormone treatment on the adult height of children with chronic renal failure. German study group for growth hormone treatment in chronic renal failure. N Engl J Med 343:923–930PubMed
24.
Zurück zum Zitat Tejani A, Fine R, Alexander S, Harmon W, Stablein D (1993) Factors predictive of sustained growth in children after renal transplantation. The North American pediatric renal transplant cooperative study. J Pediatr 122:397–402PubMed Tejani A, Fine R, Alexander S, Harmon W, Stablein D (1993) Factors predictive of sustained growth in children after renal transplantation. The North American pediatric renal transplant cooperative study. J Pediatr 122:397–402PubMed
25.
Zurück zum Zitat Maxwell H, Haffner D, Rees L (1998) Catch-up growth occurs after renal transplantation in children of pubertal age. J Pediatr 133:435–440PubMed Maxwell H, Haffner D, Rees L (1998) Catch-up growth occurs after renal transplantation in children of pubertal age. J Pediatr 133:435–440PubMed
26.
Zurück zum Zitat Pennisi AJ, Costin G, Phillips LS, Uittenbogaart C, Ettenger RB, Malekzadeh MH, Fine RN (1977) Linear growth in long-term renal allograft recipients. Clin Nephrol 8:415–421PubMed Pennisi AJ, Costin G, Phillips LS, Uittenbogaart C, Ettenger RB, Malekzadeh MH, Fine RN (1977) Linear growth in long-term renal allograft recipients. Clin Nephrol 8:415–421PubMed
27.
Zurück zum Zitat Fine RN, Ho M, Tejani A, North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) (2001) The contribution of renal transplantation to final adult height: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol 16:951–956PubMed Fine RN, Ho M, Tejani A, North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) (2001) The contribution of renal transplantation to final adult height: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol 16:951–956PubMed
28.
Zurück zum Zitat Guest G, Broyer M (1991) Growth after renal transplantation: correlation with immunosuppressive therapy. Pediatr Nephrol 5:143–146PubMed Guest G, Broyer M (1991) Growth after renal transplantation: correlation with immunosuppressive therapy. Pediatr Nephrol 5:143–146PubMed
29.
Zurück zum Zitat Blodgett FM, Burgin L, Iezzoni D, Gribetz D, Talbot NB (1956) Effects of prolonged cortisone therapy on the statural growth, skeletal maturation and metabolic status of children. N Engl J Med 254:636–641PubMed Blodgett FM, Burgin L, Iezzoni D, Gribetz D, Talbot NB (1956) Effects of prolonged cortisone therapy on the statural growth, skeletal maturation and metabolic status of children. N Engl J Med 254:636–641PubMed
30.
Zurück zum Zitat Sarna S, Hoppu K, Neuvonen PJ, Laine J, Holmberg C (1997) Methylprednisolone exposure, rather than dose, predicts adrenal suppression and growth inhibition in children with liver and renal transplants. J Clin Endocrinol Metab 82:75–77PubMed Sarna S, Hoppu K, Neuvonen PJ, Laine J, Holmberg C (1997) Methylprednisolone exposure, rather than dose, predicts adrenal suppression and growth inhibition in children with liver and renal transplants. J Clin Endocrinol Metab 82:75–77PubMed
31.
Zurück zum Zitat Seikku P, Raivio T, Janne OA, Neuvonen PJ, Holmberg C (2006) Methylprednisolone exposure in pediatric renal transplant patients. Am J Transplant 6:1451–1458PubMed Seikku P, Raivio T, Janne OA, Neuvonen PJ, Holmberg C (2006) Methylprednisolone exposure in pediatric renal transplant patients. Am J Transplant 6:1451–1458PubMed
32.
Zurück zum Zitat Chavatte C, Guest G, Proust V, Le Bihan C, Gimenez F, Maisin A, Loirat C, Mogenet A, Bresson JL, Hankard R, Broyer M, Niaudet P, Singlas E (2004) Glucocorticoid pharmacokinetics and growth retardation in children with renal transplants. Pediatr Nephrol 19:898–904PubMed Chavatte C, Guest G, Proust V, Le Bihan C, Gimenez F, Maisin A, Loirat C, Mogenet A, Bresson JL, Hankard R, Broyer M, Niaudet P, Singlas E (2004) Glucocorticoid pharmacokinetics and growth retardation in children with renal transplants. Pediatr Nephrol 19:898–904PubMed
33.
Zurück zum Zitat Pape L, Ehrich JH, Zivicnjak M, Offner G (2005) Growth in children after kidney transplantation with living related donor graft or cadaveric graft. Lancet 366:151–153PubMed Pape L, Ehrich JH, Zivicnjak M, Offner G (2005) Growth in children after kidney transplantation with living related donor graft or cadaveric graft. Lancet 366:151–153PubMed
34.
Zurück zum Zitat Tejani A, Cortes L, Sullivan EK (1996) A longitudinal study of the natural history of growth post-transplantation. Kidney Int 53:S103–108 Tejani A, Cortes L, Sullivan EK (1996) A longitudinal study of the natural history of growth post-transplantation. Kidney Int 53:S103–108
35.
Zurück zum Zitat Daughaday WH (2000) Growth hormone axis overview—somatomedin hypothesis. Pediatr Nephrol 14:537–540PubMed Daughaday WH (2000) Growth hormone axis overview—somatomedin hypothesis. Pediatr Nephrol 14:537–540PubMed
36.
Zurück zum Zitat Jux C, Leiber K, Hugel U, Blum W, Ohlsson C, Klaus G, Mehls O (1998) Dexamethasone impairs growth hormone (GH)-stimulated growth by suppression of local insulin-like growth factor (IGF)-I production and expression of GH- and IGF-I-receptor in cultured rat chondrocytes. Endocrinology 139:3296–3305PubMed Jux C, Leiber K, Hugel U, Blum W, Ohlsson C, Klaus G, Mehls O (1998) Dexamethasone impairs growth hormone (GH)-stimulated growth by suppression of local insulin-like growth factor (IGF)-I production and expression of GH- and IGF-I-receptor in cultured rat chondrocytes. Endocrinology 139:3296–3305PubMed
37.
Zurück zum Zitat Koedam JA, Hoogerbrugge CM, Van Buul-Offers SC (2000) Differential regulation of IGF-binding proteins in rabbit costal chondrocytes by IGF-I and dexamethasone. J Endocrinol 165:557–567PubMed Koedam JA, Hoogerbrugge CM, Van Buul-Offers SC (2000) Differential regulation of IGF-binding proteins in rabbit costal chondrocytes by IGF-I and dexamethasone. J Endocrinol 165:557–567PubMed
38.
Zurück zum Zitat Jonsson KB, Ljunghall S, Karlström O, Johansson AG, Mallmin H, Ljunggren O (1993) Insulin-like growth factor I enhances the formation of type I collagen in hydrocortisone-treated human osteoblasts. Biosci Rep 13:297–302PubMed Jonsson KB, Ljunghall S, Karlström O, Johansson AG, Mallmin H, Ljunggren O (1993) Insulin-like growth factor I enhances the formation of type I collagen in hydrocortisone-treated human osteoblasts. Biosci Rep 13:297–302PubMed
39.
Zurück zum Zitat Clark RG (2005) Recombinant insulin-like growth factor-1 as a therapy for IGF-1 deficiency in renal failure. Pediatr Nephrol 20:290–294PubMed Clark RG (2005) Recombinant insulin-like growth factor-1 as a therapy for IGF-1 deficiency in renal failure. Pediatr Nephrol 20:290–294PubMed
40.
Zurück zum Zitat Smink JJ, Buchholz IM, Hamers N, van Tilburg CM, Christis C, Sakkers RJ, de Meer K, van Buul-Offers SC, Koedam JA (2003) Short-term glucocorticoid treatment of piglets causes changes in growth plate morphology and angiogenesis. Osteoarthritis Cartilage 11:864–871PubMed Smink JJ, Buchholz IM, Hamers N, van Tilburg CM, Christis C, Sakkers RJ, de Meer K, van Buul-Offers SC, Koedam JA (2003) Short-term glucocorticoid treatment of piglets causes changes in growth plate morphology and angiogenesis. Osteoarthritis Cartilage 11:864–871PubMed
41.
Zurück zum Zitat Chrysis D, Ritzen EM, Savendahl L (2003) Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 176:331–337PubMed Chrysis D, Ritzen EM, Savendahl L (2003) Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 176:331–337PubMed
42.
Zurück zum Zitat Harmon WE, Jabs K (1992) Factors affecting growth after renal transplantation. J Am Soc Nephrol 2:S295–303PubMed Harmon WE, Jabs K (1992) Factors affecting growth after renal transplantation. J Am Soc Nephrol 2:S295–303PubMed
43.
Zurück zum Zitat Schaefer F, Hamill G, Stanhope R, Preece MA, Schärer K (1991) Pulsatile growth hormone secretion in peripubertal patients with chronic renal failure. Cooperative study group on pubertal development in chronic renal failure. J Pediatr 119:568–577PubMed Schaefer F, Hamill G, Stanhope R, Preece MA, Schärer K (1991) Pulsatile growth hormone secretion in peripubertal patients with chronic renal failure. Cooperative study group on pubertal development in chronic renal failure. J Pediatr 119:568–577PubMed
44.
Zurück zum Zitat Haffner D, Schaefer F, Girard J, Ritz E, Mehls O (1994) Metabolic clearance of recombinant human growth hormone in health and chronic renal failure. J Clin Invest 93:1163–1171PubMedPubMedCentral Haffner D, Schaefer F, Girard J, Ritz E, Mehls O (1994) Metabolic clearance of recombinant human growth hormone in health and chronic renal failure. J Clin Invest 93:1163–1171PubMedPubMedCentral
45.
Zurück zum Zitat Rabkin R, Sun DF, Chen Y, Tan J, Schaefer F (2005) Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol 20:313–318PubMed Rabkin R, Sun DF, Chen Y, Tan J, Schaefer F (2005) Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol 20:313–318PubMed
46.
Zurück zum Zitat Ulinski T, Mohan S, Kiepe D, Blum WF, Wingen AM, Mehls O, Tönshoff B (2000) Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 in children with chronic renal failure: relationship to growth and glomerular filtration rate. The European study group for nutritional treatment of chronic renal failure in childhood. German study group for growth hormone treatment in chronic renal failure. Pediatr Nephrol 14:589–597PubMed Ulinski T, Mohan S, Kiepe D, Blum WF, Wingen AM, Mehls O, Tönshoff B (2000) Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 in children with chronic renal failure: relationship to growth and glomerular filtration rate. The European study group for nutritional treatment of chronic renal failure in childhood. German study group for growth hormone treatment in chronic renal failure. Pediatr Nephrol 14:589–597PubMed
47.
Zurück zum Zitat Tönshoff B, Kiepe D, Ciarmatori S (2005) Growth hormone/insulin-like growth factor system in children with chronic renal failure. Pediatr Nephrol 20:279–289PubMed Tönshoff B, Kiepe D, Ciarmatori S (2005) Growth hormone/insulin-like growth factor system in children with chronic renal failure. Pediatr Nephrol 20:279–289PubMed
48.
Zurück zum Zitat Kuizon BD, Salusky IB (1999) Growth retardation in children with chronic renal failure. J Bone Miner Res 14:1680–1690PubMed Kuizon BD, Salusky IB (1999) Growth retardation in children with chronic renal failure. J Bone Miner Res 14:1680–1690PubMed
49.
Zurück zum Zitat Maniar S, Kleinknecht C, Zhou X, Motel V, Yvert JP, Dechaux M (1996) Growth hormone action is blunted by acidosis in experimental uremia or acid load. Clin Nephrol 46:72–76PubMed Maniar S, Kleinknecht C, Zhou X, Motel V, Yvert JP, Dechaux M (1996) Growth hormone action is blunted by acidosis in experimental uremia or acid load. Clin Nephrol 46:72–76PubMed
50.
Zurück zum Zitat Green J, Maor G (2000) Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int 57:2258–2267PubMed Green J, Maor G (2000) Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int 57:2258–2267PubMed
51.
Zurück zum Zitat Carbajo E, Lopez JM, Santos F, Ordonez FA, Nino P, Rodriguez J (2001) Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol 12:1228–1234PubMed Carbajo E, Lopez JM, Santos F, Ordonez FA, Nino P, Rodriguez J (2001) Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol 12:1228–1234PubMed
52.
Zurück zum Zitat Koch Nogueira PC, David L, Cochat P (2000) Evolution of secondary hyperparathyroidism after renal transplantation. Pediatr Nephrol 14:342–346PubMed Koch Nogueira PC, David L, Cochat P (2000) Evolution of secondary hyperparathyroidism after renal transplantation. Pediatr Nephrol 14:342–346PubMed
53.
Zurück zum Zitat Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15:80–101PubMed Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15:80–101PubMed
54.
Zurück zum Zitat VandeHaar MJ, Moats-Staats BM, Davenport ML, Walker JL, Ketelslegers JM, Sharma BK, Tönshoff B (1991) Reduced serum concentrations of insulin-like growth factor-I (IGF-I) in protein-restricted growing rats are accompanied by reduced IGF-I mRNA levels in liver and skeletal muscle. J Endocrinol 130:305–312PubMed VandeHaar MJ, Moats-Staats BM, Davenport ML, Walker JL, Ketelslegers JM, Sharma BK, Tönshoff B (1991) Reduced serum concentrations of insulin-like growth factor-I (IGF-I) in protein-restricted growing rats are accompanied by reduced IGF-I mRNA levels in liver and skeletal muscle. J Endocrinol 130:305–312PubMed
55.
Zurück zum Zitat Thissen JP, Davenport ML, Pucilowska JB, Miles MV, Underwood LE (1992) Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am J Physiol 262:E406–411PubMed Thissen JP, Davenport ML, Pucilowska JB, Miles MV, Underwood LE (1992) Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am J Physiol 262:E406–411PubMed
56.
Zurück zum Zitat Schaefer F, Veldhuis JD, Robertson WR, Dunger D, Schërer K (1994) Immunoreactive and bioactive luteinizing hormone in pubertal patients with chronic renal failure. Cooperative Study Group on Pubertal Development in Chronic Renal Failure. Kidney Int 45:1465–1476PubMed Schaefer F, Veldhuis JD, Robertson WR, Dunger D, Schërer K (1994) Immunoreactive and bioactive luteinizing hormone in pubertal patients with chronic renal failure. Cooperative Study Group on Pubertal Development in Chronic Renal Failure. Kidney Int 45:1465–1476PubMed
57.
Zurück zum Zitat McEnery PT, Gonzalez LL, Martin LW, West CD (1973) Growth and development of children with renal transplants. Use of alternate-day steroid therapy. J Pediatr 83:806–814PubMed McEnery PT, Gonzalez LL, Martin LW, West CD (1973) Growth and development of children with renal transplants. Use of alternate-day steroid therapy. J Pediatr 83:806–814PubMed
58.
Zurück zum Zitat Broyer M, Guest G, Gagnadoux MF (1992) Growth rate in children receiving alternate-day corticosteroid treatment after kidney transplantation. J Pediatr 120:721–725PubMed Broyer M, Guest G, Gagnadoux MF (1992) Growth rate in children receiving alternate-day corticosteroid treatment after kidney transplantation. J Pediatr 120:721–725PubMed
59.
Zurück zum Zitat Jabs K, Sullivan EK, Avner ED, Harmon WE (1996) Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function. A report of the North American pediatric renal transplant cooperative study. Transplantation 61:31–36PubMed Jabs K, Sullivan EK, Avner ED, Harmon WE (1996) Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function. A report of the North American pediatric renal transplant cooperative study. Transplantation 61:31–36PubMed
60.
Zurück zum Zitat Ferraris JR, Pasqualini T, Legal S, Sorroche P, Galich AM, Pennisi P, Domene H, Jasper H (2000) Effect of deflazacort versus methylprednisone on growth, body composition, lipid profile, and bone mass after renal transplantation. The deflazacort study group. Pediatr Nephrol 14:682–688PubMed Ferraris JR, Pasqualini T, Legal S, Sorroche P, Galich AM, Pennisi P, Domene H, Jasper H (2000) Effect of deflazacort versus methylprednisone on growth, body composition, lipid profile, and bone mass after renal transplantation. The deflazacort study group. Pediatr Nephrol 14:682–688PubMed
61.
Zurück zum Zitat Klare B, Strom TM, Hahn H, Engelsberger I, Meusel E, Illner WD, Abendroth D, Land W (1991) Remarkable long-term prognosis and excellent growth in kidney-transplant children under cyclosporine monotherapy. Transplant Proc 23:1013–1017PubMed Klare B, Strom TM, Hahn H, Engelsberger I, Meusel E, Illner WD, Abendroth D, Land W (1991) Remarkable long-term prognosis and excellent growth in kidney-transplant children under cyclosporine monotherapy. Transplant Proc 23:1013–1017PubMed
62.
Zurück zum Zitat Ellis D (2000) Growth and renal function after steroid-free tacrolimus-based immunosuppression in children with renal transplants. Pediatr Nephrol 14:689–694PubMed Ellis D (2000) Growth and renal function after steroid-free tacrolimus-based immunosuppression in children with renal transplants. Pediatr Nephrol 14:689–694PubMed
63.
Zurück zum Zitat Hocker B, John U, Plank C, Wuhl E, Weber LT, Misselwitz J, Rascher W, Mehls O, Tönshoff B (2004) Successful withdrawal of steroids in pediatric renal transplant recipients receiving cyclosporine A and mycophenolate mofetil treatment: results after four years. Transplantation 78:228–234PubMed Hocker B, John U, Plank C, Wuhl E, Weber LT, Misselwitz J, Rascher W, Mehls O, Tönshoff B (2004) Successful withdrawal of steroids in pediatric renal transplant recipients receiving cyclosporine A and mycophenolate mofetil treatment: results after four years. Transplantation 78:228–234PubMed
64.
Zurück zum Zitat Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O Jr (2003) Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation 76:1331–1339PubMed Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O Jr (2003) Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation 76:1331–1339PubMed
65.
Zurück zum Zitat Kovàcs G, Fine RN, Worgall S, Schaefer F, Hunziker EB, Mehls O (1991) Recombinant human growth hormone overcomes the growth-suppressive effect ofmethylprednisolone in uraemic rats. Pediatr Nephrol 5:552–555PubMed Kovàcs G, Fine RN, Worgall S, Schaefer F, Hunziker EB, Mehls O (1991) Recombinant human growth hormone overcomes the growth-suppressive effect ofmethylprednisolone in uraemic rats. Pediatr Nephrol 5:552–555PubMed
66.
Zurück zum Zitat Tönshoff B, Mehls O (1997) Factors affecting growth and strategies for treatment in children after renal transplantation. Pediatr Transplant 1:176–182PubMed Tönshoff B, Mehls O (1997) Factors affecting growth and strategies for treatment in children after renal transplantation. Pediatr Transplant 1:176–182PubMed
67.
Zurück zum Zitat Hokken-Koelega AC, Stijnen T, de Jong RC, Donckerwolcke RA, Groothoff JW, Wolff ED, Blum WF, de Muinck Keizer-Schrama SM, Drop SL (1996) A placebo-controlled, double-blind trial of growth hormone treatment in prepubertal children after renal transplant. Kidney Int 53:S128–134 Hokken-Koelega AC, Stijnen T, de Jong RC, Donckerwolcke RA, Groothoff JW, Wolff ED, Blum WF, de Muinck Keizer-Schrama SM, Drop SL (1996) A placebo-controlled, double-blind trial of growth hormone treatment in prepubertal children after renal transplant. Kidney Int 53:S128–134
68.
Zurück zum Zitat Maxwell H, Rees L (1998) Randomised controlled trial of recombinant human growth hormone in prepubertal and pubertal renal transplant recipients. British association for pediatric nephrology. Arch Dis Child 79:481–487PubMedPubMedCentral Maxwell H, Rees L (1998) Randomised controlled trial of recombinant human growth hormone in prepubertal and pubertal renal transplant recipients. British association for pediatric nephrology. Arch Dis Child 79:481–487PubMedPubMedCentral
69.
Zurück zum Zitat Guest G, Bérard E, Crosnier H, Chevallier T, Rappaport R, Broyer M (1998) Effects of growth hormone in short children after renal transplantation. French society of pediatric nephrology. Pediatr Nephrol 12:437–446PubMed Guest G, Bérard E, Crosnier H, Chevallier T, Rappaport R, Broyer M (1998) Effects of growth hormone in short children after renal transplantation. French society of pediatric nephrology. Pediatr Nephrol 12:437–446PubMed
70.
Zurück zum Zitat Fine RN, Stablein D, Cohen AH, Tejani A, Kohaut E (2002) Recombinant human growth hormone post-renal transplantation in children: a randomized controlled study of the NAPRTCS. Kidney Int 62:688–696PubMed Fine RN, Stablein D, Cohen AH, Tejani A, Kohaut E (2002) Recombinant human growth hormone post-renal transplantation in children: a randomized controlled study of the NAPRTCS. Kidney Int 62:688–696PubMed
71.
Zurück zum Zitat Tydén G, Berg U, Reinholt F (1990) Acute renal graft rejection after treatment with human growth hormone. Lancet 336:1455–1456PubMed Tydén G, Berg U, Reinholt F (1990) Acute renal graft rejection after treatment with human growth hormone. Lancet 336:1455–1456PubMed
72.
Zurück zum Zitat Maxwell H, Nair DR, Dalton RN, Rigden SP, Rees L (1995) Differential effects of recombinant human growth hormone on glomerular filtration rate and renal plasma flow in chronic renal failure. Pediatr Nephrol 9:458–463PubMed Maxwell H, Nair DR, Dalton RN, Rigden SP, Rees L (1995) Differential effects of recombinant human growth hormone on glomerular filtration rate and renal plasma flow in chronic renal failure. Pediatr Nephrol 9:458–463PubMed
73.
Zurück zum Zitat Chavers BM, Doherty L, Nevins TE, Cook M, Sane K (1995) Effects of growth hormone on kidney function in pediatric transplant recipients. Pediatr Nephrol 9:176–181PubMed Chavers BM, Doherty L, Nevins TE, Cook M, Sane K (1995) Effects of growth hormone on kidney function in pediatric transplant recipients. Pediatr Nephrol 9:176–181PubMed
74.
Zurück zum Zitat Fine RN, Stablein D (2005) Long-term use of recombinant human growth hormone in pediatric allograft recipients: a report of the NAPRTCS Transplant Registry. Pediatr Nephrol 20:404–408PubMed Fine RN, Stablein D (2005) Long-term use of recombinant human growth hormone in pediatric allograft recipients: a report of the NAPRTCS Transplant Registry. Pediatr Nephrol 20:404–408PubMed
75.
Zurück zum Zitat Snow EC, Felldbush TL, Oaks JA (1981) The effect of growth hormone and insulin upon MLC responses and the generation of cytotoxic lymphocytes. J Immunol 126:161–164PubMed Snow EC, Felldbush TL, Oaks JA (1981) The effect of growth hormone and insulin upon MLC responses and the generation of cytotoxic lymphocytes. J Immunol 126:161–164PubMed
76.
Zurück zum Zitat Benfield MR, Kohaut EC (1997) Growth hormone is safe in children after renal transplantation. J Pediatr 131:S28–31PubMed Benfield MR, Kohaut EC (1997) Growth hormone is safe in children after renal transplantation. J Pediatr 131:S28–31PubMed
77.
Zurück zum Zitat Maxwell H, Amlot P, Rees L (2000) Growth hormone and markers of immune function in children with renal transplants. Pediatr Nephrol 14:473–475PubMed Maxwell H, Amlot P, Rees L (2000) Growth hormone and markers of immune function in children with renal transplants. Pediatr Nephrol 14:473–475PubMed
78.
Zurück zum Zitat Dharnidharka V, Talley L, Stablein D, Fine RN (2007) Recombinant human growth hormone (rhGH) use pretransplant and risk of lymphoproliferative disease (LPD) post transplant (abstract no. 35). Pediatr Transplant 11[Suppl1]:43 Dharnidharka V, Talley L, Stablein D, Fine RN (2007) Recombinant human growth hormone (rhGH) use pretransplant and risk of lymphoproliferative disease (LPD) post transplant (abstract no. 35). Pediatr Transplant 11[Suppl1]:43
79.
Zurück zum Zitat Tydén G, Wernersson A, Sandberg J, Berg U (2000) Development of renal cell carcinoma in living donor kidney grafts. Transplantation 70:1650–1656PubMed Tydén G, Wernersson A, Sandberg J, Berg U (2000) Development of renal cell carcinoma in living donor kidney grafts. Transplantation 70:1650–1656PubMed
80.
Zurück zum Zitat Mehls O, Wilton P, Lilien M, Berg U, Broyer M, Rizzoni G, Waldherr R, Opelz G (2002) Does growth hormone treatment affect the risk of post-transplant renal cancer? Pediatr Nephrol 17:984–989PubMed Mehls O, Wilton P, Lilien M, Berg U, Broyer M, Rizzoni G, Waldherr R, Opelz G (2002) Does growth hormone treatment affect the risk of post-transplant renal cancer? Pediatr Nephrol 17:984–989PubMed
81.
Zurück zum Zitat Filler G, Amendt P, Kohnert KD, Devaux S, Ehrich JH (1998) Glucose tolerance and insulin secretion in children before and during recombinant growth hormone treatment. Horm Res 50:32–37PubMed Filler G, Amendt P, Kohnert KD, Devaux S, Ehrich JH (1998) Glucose tolerance and insulin secretion in children before and during recombinant growth hormone treatment. Horm Res 50:32–37PubMed
82.
Zurück zum Zitat Ghio L, Damiani B, Garavaglia R, Oppizzi G, Taioli E, Edefonti A (2002) Lipid profile during rhGH therapy in pediatric renal transplant patients. Pediatr Transplant 6:127–131PubMed Ghio L, Damiani B, Garavaglia R, Oppizzi G, Taioli E, Edefonti A (2002) Lipid profile during rhGH therapy in pediatric renal transplant patients. Pediatr Transplant 6:127–131PubMed
83.
Zurück zum Zitat Querfeld U, Dopper S, Gradehand A, Kiencke P, Wahn F, Zeisel HJ (1999) Long-term treatment with growth hormone has no persisting effect on lipoprotein (a) in patients with Turner’s syndrome. J Clin Endocrinol Metab 84:967–970PubMed Querfeld U, Dopper S, Gradehand A, Kiencke P, Wahn F, Zeisel HJ (1999) Long-term treatment with growth hormone has no persisting effect on lipoprotein (a) in patients with Turner’s syndrome. J Clin Endocrinol Metab 84:967–970PubMed
84.
Zurück zum Zitat Sanchez CP, He YZ (2005) Daily or intermittent calcitriol administration during growth hormone therapy in rats with renal failure and advanced secondary hyperparathyroidism. J Am Soc Nephrol 16:929–938PubMed Sanchez CP, He YZ (2005) Daily or intermittent calcitriol administration during growth hormone therapy in rats with renal failure and advanced secondary hyperparathyroidism. J Am Soc Nephrol 16:929–938PubMed
85.
Zurück zum Zitat Koller EA, Stadel BV, Malozowski SN (1997) Papilledema in 15 renally compromised patients treated with growth hormone. Pediatr Nephrol 11:451–454PubMed Koller EA, Stadel BV, Malozowski SN (1997) Papilledema in 15 renally compromised patients treated with growth hormone. Pediatr Nephrol 11:451–454PubMed
86.
Zurück zum Zitat Gharib H, Cook DM, Saenger PH, Bengtsson BA, Feld S, Nippoldt TB, Rodbard HW, Seibel JA, Vance ML, Zimmerman D, Palumbo PJ, Bergman DA, Garber JR, Hamilton CR Jr, Petak SM, Rettinger HI, Service FJ, Shankar TP, Stoffer SS, Tourletot JB, American Association of Clinical Endocrinologists Growth Hormone Task Force (2003) American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in adults and children-2003 update. Endocr Pract 9:64–76PubMed Gharib H, Cook DM, Saenger PH, Bengtsson BA, Feld S, Nippoldt TB, Rodbard HW, Seibel JA, Vance ML, Zimmerman D, Palumbo PJ, Bergman DA, Garber JR, Hamilton CR Jr, Petak SM, Rettinger HI, Service FJ, Shankar TP, Stoffer SS, Tourletot JB, American Association of Clinical Endocrinologists Growth Hormone Task Force (2003) American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in adults and children-2003 update. Endocr Pract 9:64–76PubMed
Metadaten
Titel
Growth after renal transplantation
verfasst von
Jérôme Harambat
Pierre Cochat
Publikationsdatum
01.07.2009
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 7/2009
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-008-0787-0

Weitere Artikel der Ausgabe 7/2009

Pediatric Nephrology 7/2009 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.