Skip to main content
Erschienen in: Italian Journal of Pediatrics 1/2014

Open Access 01.12.2014 | Case report

Hydrocortisone malabsorption due to polyethylene glycols (Macrogol 3350) in a girl with congenital adrenal insufficiency

verfasst von: Stefano Stagi, Paolo Del Greco, Franco Ricci, Chiara Iurato, Giovanni Poggi, Salvatore Seminara, Maurizio de Martino

Erschienen in: Italian Journal of Pediatrics | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Primary adrenal insufficiency is relatively rare in children and, if unrecognized, may present with cardiovascular collapse, making it a potentially life-threatening entity.

Case presentation

The proposita, 11 months old of age, was admitted for lethargy and severe dehydration. Blood pressure was 62/38 mm Hg, and biochemical measurements showed hyponatraemia, hypochloraemia, hyperkalaemia, and metabolic acidaemia. Renin activity was 1484 μU/mL; cortisol, 1.03 μg/dL (normal, 5-25 μg/dL); and corticotropin (ACTH), 4832 ng/L (normal, 9-52 ng/L). Adrenal deficiency was diagnosed, and replacement therapy with glucocorticoids and mineralocorticoids was initiated. After 40 days, ACTH was 797 ng/L.
During follow-up, the patient started taking macrogol twice daily for constipation and experienced a significant increase in ACTH (3262 ng/L), which dropped to 648 ng/L when macrogol was stopped. After arbitrary reintroduction of macrogol, the child presented with hypoglycaemia, lethargy, weakness, and hypotonia; ACTH was 3145 ng/L. After again stopping macrogol, her ACTH was near normalized (323 ng/L).

Conclusion

Hydrocortisone malabsorption may be caused by macrogol use. Because chronic constipation is frequently reported in children, the possibility that macrogol contributes to adrenal crisis should be taken in account.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13052-014-0078-2) contains supplementary material, which is available to authorized users.

Competing interest

The authors declare that there are no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported.

Authors' contributions

SStagi: conception and design, endocrinological evaluation, manuscript writing and final approval of the manuscript. FR: data collection and analysis, manuscript writing and final approval of the manuscript. PDG: data collection and analysis, manuscript writing and final approval of the manuscript. CI: endocrinological evaluation, data collection and analysis, manuscript writing and final approval of the manuscript. GP: data collection and analysis, critical revision and final approval of the manuscript. SSeminara: endocrinological evaluation, critical revision and final approval of the manuscript. MdM: critical revision and final approval of the manuscript. All authors read and approved the final manuscript.

Introduction

Adrenal insufficiency is relatively rare in children and may be categorized as primary or secondary and congenital or acquired [1]. Primary adrenal insufficiency can be caused by a deficiency in steroid biosynthesis or abnormal adrenal gland development. It is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease resulting in impairment of the hypothalamic-pituitary axis. Prompt diagnosis and urgent mineralocorticoid and glucocorticoid replacement is mandatory [2]; however, correct management is also essential [3].
Chronic idiopathic constipation is frequently reported and reduces patient quality of life [4],[5]. In fact, chronic constipation is associated with long-term problems including megarectum, reduced sensitivity of the rectum to the presence of faeces, and abnormal gut motility [4]. In many children, constipation is triggered by painful bowel movements caused by factors such as toilet training, changes in routine or diet, stressful events, intercurrent illness, or delaying defecation [4]. Therefore, managing chronic constipation in children effectively and early in its course is important in preventing long-term defecation disorders [4].
Polyethylene glycols (PEGs, or macrogols) are hydrophilic polymers of ethylene oxide [6] used in many drugs such as bowel preparations, dispersing agents, and excipients, and in cosmetics [7]. Water makes up 75-80% (wt/wt) of the normal stool, and a difference of only 10% in hydration results in marked changes in stool consistency [8]. Because PEG is a large molecular weight water-soluble polymer, it has the capacity to form hydrogen bonds with 100 molecules of water per molecule of PEG [9]. When PEG is administered orally, the resulting hydration of the colonic content facilitates transit and painless defecation in a linear dose-dependent fashion [10]. Therefore, PEG-based laxatives, when used in escalating doses, can also be used to completely remove faecal loading in preference to rectally-administered treatments. Standard management of chronic constipation tends to begin with correction of dietary and lifestyle factors that predispose to the condition and focus on increasing dietary fibre and fluid intake [11]. Dietary manipulation alone, including the use of corn syrup, was successful in resolving all symptoms of constipation in 25% of children aged up to 2 years in one US study [5].
We describe a girl with adrenal insufficiency managed with hydrocortisone and fluorocortisone who showed an adrenal crisis after administration of macrogol 3350, and we discuss this aspect, focusing on the aetiology of adrenal insufficiency in childhood.

Case report

The proposita, 11 months old of age, was admitted to Anna Meyer Children's University Hospital for lethargy and severe dehydration without history of vomiting or diarrhoea. She was the first child of non-consanguineous, young, healthy Italian parents, born at term (39 wks of gestation) by natural childbirth. Birth weight was 3200 g (0.12 standard deviation score [SDS], 50th-75th centile), length, 51 cm (1.12 SDS, 75th-90th centile), and head circumference, 35 cm (1.04 SDS, 75th-90th centile). There were no perinatal problems or familial history of similar presentations or features of endocrine disease. Neuromotor development was normal; she was sitting at 5 months.
At 10 months, 20 days of age, she started showing weight loss, lethargy, weakness, hypotonia, and dark skin. She was mildly dehydrated. Her body weight, length, and head circumference were 10.850 kg (1.89 SDS, 97th centile), 73 cm (0.61 SDS, 50th-75th centile), and 46.5 cm (1.30 SDS, 90th centile), respectively. There were no dysmorphic features. External genitalia were normal female type with no ambiguity. There was no abdominal or inguinal mass discovered upon abdominal examination. Blood pressure was 62/38 mm Hg; respiration, 35/min; pulse, 121/min; and body temperature, 37.3°C.
Biochemical measurements indicated hyponatraemia (Na, 125 mEq/L), hypochloraemia (Cl, 86 mEq/L), hyperkalaemia (K, 5.7 mEq/L), metabolic acidaemia by arterial venous blood gas, elevated serum urea nitrogen (60 mg/dL), and normal creatinine (0.3 mg/dL). Glucose was 56 mg/dL (normal, 55-110 mg/dL). An extensive endocrine work-up, carried out at 8 am after an overnight fast, showed free thyroxin was 1.27 ng/dL (normal, 0.80-1.90 ng/dL); thyrotropin, 3.96 μIU/dL (normal, 0.4-4.0 μIU/dL); aldosterone, 0.19 nmol/L (normal, 0.96-8.31 nmol/L); renin activity, 1484 μU/mL per h (normal, 2-10.2 μU/mL per h); 17-OH-progesterone, < 0.5 nmol/L; dehydroepiandrosterone sulfate, < 15 μg/dL; cortisol, 1.03 μg/dL (normal, 5-25 μg/dL); ACTH, 4832 ng/L (normal, 9-52 ng/L; Figure 1), luteinizing hormone, 2.3 IU/L; and follicle stimulating hormone, 5.6 IU/L.
Serum cortisol and plasma ACTH levels were measured routinely using an Immulite 2000 chemiluminescence immunometric assay (Diagnostic Products Corporation, xLos Angeles, CA, USA). The cortisol inter-assay and intra-assay coefficients of variation were < 9.5% and 7.4%, respectively. The ACTH inter-assay and intra-assay coefficients of variation ranged from 6.1% to 10.0% and from 6.7% to 9.5%, respectively.
The patient was hydrated with normal saline and required vasopressors. Adrenal deficiency was diagnosed considering the hyponatraemia, hyperkalaemia, metabolic acidaemia, and cortisol and corticotropin levels.
The usual causes of primary adrenal insufficiency were ruled out (Table 1). Family history was negative for autoimmune diseases and endocrinological or genetic syndromes. Renal Doppler ultrasonography was performed and was normal. Autoimmune Addison, in the context of autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) or other autoimmune syndromes was ruled out by clinical and biochemical evaluation. Mantoux was negative and Veneral Disease Research Laboratory (VDRL) was non-reactive. Human immunodeficiency virus was seronegative. Plasma levels of very long chain fatty acids (VLCFAs) were normal. We performed a synthetic ACTH stimulation test intravenously at 8 am after an overnight fast, and the cortisol response, measured at 0, 30, and 60 minutes after infusion was blunted (0.98, 1.39, and 2.01 μg/dL, respectively). An MRI scan of the bilateral adrenal glands revealed agenesis of the right and hypoplasia of the left adrenal glands (Figures 1A and B).
Table 1
Typical causes of primary adrenal insufficiency
1) Genetic disorders
OMIM1(gene map)
Etiologic mechanisms
Other signs and symptoms
 Adrenoleukodystrophy
300100 (Xq28)
Mutations of ABCD1 2, ABCD2 3
Weakness, diminished visual acuity, deafness, cerebellar ataxia, hemiplegia, convulsions, dementia
 Congenital adrenal hyperplasia
   
  21-hydroxylase deficiency
201910 (6p21.33)
Mutations of CYP21A2 4
Hyperandrogenism, ambiguous genitalia in females
  11β-hydroxylase deficiency
202010 (8q24.3)
Mutations of CYP11B1 5
Hyperandrogenism, hypertension
  -hydroxysteroid dehydrogenase type 2 deficiency
201810 (1p12)
Mutations of HSD3B2 6
Ambiguous genitalia in boys, postnatal virilisation in girls
  17α-hydroxylase deficiency
202110 (10q24.32)
Mutations of CYP17A1 7
Pubertal delay in both sexes, primary amenorrhea, lack of secondary sexual characteristics, hypertension
  P450 oxidoreductase deficiency
201750 (7q11.23)
Mutations of POR 8
Skeletal malformations, especially craniofacial; severe abnormal genitalia
  P450 side-chain cleavage deficiency
613743 (15q24.1)
Mutations of CYP11A1 9
XY sex reversal
  Congenital lipoid adrenal hyperplasia
201710 (8p11.23)
Mutations of STAR 10
XY sex reversal
 Smith-Lemli-Opitz syndrome
270400 (11q13.4)
Mutations of DHCR7 11
Mental retardation, craniofacial malformations, growth failure, cholesterol deficiency
 Adrenal hypoplasia congenita
   
  X-linked
300200 (Xp21.2)
Mutations of NR0B1 12
Hypogonadotropic hypogonadism in boys (occasionally in carrier females for skewed X-chromosome inactivation)
  Xp21 deletion syndrome
300679 (Xp21)
Deletion of GK 13, DMD 14, and NR0B1
Duchenne muscular dystrophy, glycerol kinase deficiency psychomotor retardation
  SF1-linked
612965 (9q33.3)
Mutations of NR5A1 15
XY sex reversal
 IMAGe syndrome
614732 (11p15.4)
Mutations of CDKN1C 16
Intrauterine growth retardation, metaphyseal dysplasia, genital abnormalities
 Kearns-Sayre syndrome
 
Deletions of mitochondrial DNA
Deafness; heart, ocular and cerebral involvement; skeletal muscle myopathy; intestinal disorders; hormonal deficits
 Wolman disease
278000 (10q23.31)
Mutations of LIPA 17
Bilateral adrenal calcification, hepatosplenomegaly
 Sitosterolaemia
 
Mutations of ABCG5 18 and ABCG8 19
Xanthomata, arthritis, premature coronary artery disease, short stature, gonadal failure
 Familial glucocorticoid deficiency or corticotropin insensitivity syndromes
   
  Type 1
202200 (18p11.21)
Mutations of MC2R 20
Hyperpigmentation, tall stature, typical facial features, lethargy and muscle weakness with normal blood pressure
  Type 2
607398 (21q22.11)
Mutations of MRAP 21
Hyperpigmentation, normal height, hypoglycaemia, lethargy, and muscle weakness with normal blood pressure
  Variant of familial glucocorticoid deficiency
609981 (8q11.21)
Mutations of MCM4 22
Growth failure, increased chromosomal breakage, natural killer cell deficiency
 Primary generalised glucocorticoid resistance
(5q31.3)
Mutations of GCCR 23
Fatigue, hypoglycaemia, hypertension, hyperandrogenism
 Triple A syndrome (Allgrove's syndrome)
231550 (12q13.13)
Mutations of AAAS 24
Achalasia, alacrima, deafness, mental retardation, hyperkeratosis
2) Acquired diseases
   
 Bilateral adrenal haemorrhage
-
Meningococcal sepsis, antiphospholipid syndrome
Symptoms and signs of underlying disease
 Bilateral adrenal metastases
-
Lung, stomach, breast, and colon cancers
Disease-associated clinical manifestations
 Bilateral adrenalectomy
-
Adrenal masses, phaeochromocytoma unresolved Cushing's syndrome
Symptoms and signs of underlying disease
 Bilateral adrenal infiltration
-
Adrenal lymphoma, amyloidosis, haemochromatosis
Disease-associated clinical manifestations
 Drug-induced adrenal insufficiency
-
Anticoagulants, ketoconazole, fluconazole, etomidate, phenobarbital, phenytoin, rifampicin, troglitazone
None, unless related to drug
 Infectious adrenalitis
-
Tuberculosis, HIV-1, histoplasmosis, cryptococcosis, coccidioidomycosis, syphilis, trypanosomiasis
Disease-associated manifestations in other organs
 Autoimmune adrenalitis
-
  
  Isolated
  
None
  APS type 1 (APECED)
240300 (21q22.3)
Mutations of AIRE 25
Chronic mucocutaneous candidosis, hypoparathyroidism, other autoimmune diseases
  APS type 2
269200
 
Thyroid autoimmune disease, type 1 diabetes, other autoimmune diseases
  APS type 4
  
Autoimmune gastritis, vitiligo, coeliac disease, alopecia, excluding thyroid disease and type 1 diabetes
Modified by Charmandari et al., 2014 [16]: 1OMIM: Online Mendelian Inheritance in Man database; 2 ABCD1: atp-binding cassette subfamily D, member 1; 3 ABCD2: atp-binding cassette, subfamily D, member 2; 4 CYP21A2: cytochrome P450, family 21, subfamily A, polypeptide 2; 5 CYP11B1: cytochrome P450, subfamily XIB, polypeptide 1; 6 HSD3B2: 3-beta-hydroxysteroid dehydrogenase 2; 7 CYP17A1: cytochrome P450, family 17, subfamily A, polypeptide 1; 8 POR: cytochrome P450 oxidoreductase; 9 CYP11A1: cytochrome P450, subfamily XIA, polypeptide 1; 10 STAR: steroidogenic acute regulatory protein; 11 DHCR7: 7-dehydrocholesterol reductase; 12 NR0B1: nuclear receptor subfamily 0, group B, member 1; 13 GK: glycerol kinase; 14 DMD: dystrophin; 15 NR5A1: nuclear receptor subfamily 5, group A, member 1; 16 CDKN1C: cyclin-dependent kinase inhibitor 1C; 17 LIPA: lipase A, lysosomal acid; 20 MC2R: melanocortin 2 receptor; 21 MRAP: melanocortin 2 receptor accessory protein; 22 MCM4: minichromosome maintenance, Saccharomyces Cerevisiae, homolog of, 4; 23 GCCR: glucocorticoid receptor; 24 AAAS: AAAS GENE; 25 AIRE: autoimmune regulator.
Replacement therapy with standard doses of glucocorticoid (hydrocortisone, 15 mg/m2/day), mineralocorticoid (fluorocortisone, 0.2 mg/day), and sodium chloride (NaCl, 1 g/day) was initiated.
Routine cytogenetic investigations revealed an apparently normal female karyotype (46, XX). Molecular karyotyping was performed using an array comparative genomic hybridization analysis using proband's DNA and a 44 K array platform (Agilent Technologies) with a resolution of approximately 100 kilobase. This examination yielded normal results.
After replacement therapy, electrolyte abnormalities were corrected during the first week, and the patient was discharged in good clinical condition. During follow-up, she maintained good condition, good appetite, weight gain, and normal laboratory results with reduced ACTH (Figure 2). After 10 days, ACTH was 3214 ng/L; renin activity, 165.3 μU/mL; Na, 139 mEq/L; K, 4.4 mEq/L; and Cl, 96 mEq/L, and after 40 days ACTH was 797 ng/L.
At 14 months of age, the patient started taking macrogol twice daily for constipation, about 30 to 60 minutes after taking hydrocortisone and fluorocortisone. Testing revealed that ACTH was 300 ng/L, and renin activity was 24.2 μU/mL. Analysis of the SF1 gene was normal with the exception of a c.437G > C polymorphism.
After 3 months of macrogol therapy, Na was 135 mEq/L; Cl, 106 mEq/L; K, 5.3 mEq/L; renin activity, 124.2 μU/mL; aldosterone, 0.13 nmol/L; cortisol, 1.78 μg/dL; and ACTH, 3262 ng/L. The macrogol was stopped, resulting in a rapid reduction of corticotropin; after 28 days it was 648 ng/L. At this time, faecal elastase was 548 μg/g (normal, > 200 μg/g), and steatocrit was 0% (normal, < 3%). Screening for celiac disease was negative (IgA, 38 mg/dL; tTG, 1.0 U/mL).
Unfortunately, the family arbitrarily reintroduced macrogol (once daily, more than 2 hours after taking hydrocortisone and fluorocortisone) for chronic constipation. After 1 month, during a respiratory tract infection, the child presented with hypoglycaemia, lethargy, weakness, and hypotonia. Vitals were measured: pulse, 134/min; blood pressure, 65/42 mm Hg; and respiration, 38/min. Glucose was 36 mg/dL; Na, 132 nEq/L; Cl, 92 mEq/L; K, 5.4 mEq/L; and ACTH, 3145 ng/L. During recovery, we treated the adrenal deficiency and stopped the macrogol with near normalization of corticotropin (323 ng/L) after 23 days (Figure 2). Neuro-metabolic tests (plasma aminoacidogram, urine aminoacidogram, acylcarnitine profile analysis, and redox state) were again normal.

Discussion

A variety of laxatives are available for treating constipation: bulk forming, osmotic, and stimulant laxatives. Osmotic laxatives, particularly PEG preparations, are popular because they are relatively safe, inexpensive, and better than lactulose in improving stool frequency and consistency [12]-[14]. Hydrocortisone is a hydrophilic drug used to treat many conditions, such as primary or secondary adrenal insufficiency, hypopituitarism, and adrenogenital syndrome.
Nevertheless, treatment of children suffering from adrenal insufficiency is frequently problematic for a number of reasons. For example, it requires use of pharmaceutical formulations that do not fully address the pharmacokinetic and pharmacodynamic problems of dosing infants. Therefore, children require careful monitoring of dose and dosage regimen. In fact, patients with adrenal insufficiency continue to have increased mortality and morbidity despite treatment and monitoring [15]. However, many drugs, for example, anticonvulsants such as phenytoin, phenobarbital, and carbamazepine, stimulate cytochrome P450 3A4, induce hepatic enzymes, and lead to accelerated glucocorticoid metabolism and reduced glucocorticoid effect, possibly causing acute adrenal insufficiency [16].
Hydrocortisone preparations are commonly combined with pharmaceutically acceptable carriers, typically inert, to facilitate their administration. Polyethylene glycol contains a mixture of inert water-soluble molecules of different sizes, whose absorption is independent of dosage, displaying decreasing mucosal transport with increasing molecular size. Macrogol solutions are commonly used for their efficacy and low rate of absorption (0.2%) after oral administration [17] and typically have a safe profile with minimal reported side effects.
A drug's solubility in water is an important factor influencing its release into the body. In addition, macrogol softens the faecal mass by osmotically drawing water into the GI tract. As our case showed, it is possible that macrogol reduces the absorption of hydrocortisone, facilitating the appearance of adrenal insufficiency. The case seems to support our hypothesis, considering the significant changes in corticotropin after starting and stopping macrogol. Furthermore, we could also speculate that the introduction of macrogol close to that of hydrocortisone or fluorocortisone could cause or contribute to the reduced absorption of these drugs, triggering the adrenal crisis. In fact, it is recognised that many physiological gastrointestinal factors may strongly influence the plasma concentration-time profile of hydrocortisone [18]. However, hydrocortisone has a high permeability in both the small and large intestines, and the short elimination half-life (near 1.5 h) requires two or more dose administrations per day [18].
This aspect is of great concern because patients with primary or secondary adrenal insufficiency have more than twofold increased mortality than the general population. However, recent data have demonstrated that the metabolic cardiovascular risk in hypopituitarism is related to the daily dose of hydrocortisone [15].
Our case report, while not demonstrating a genetic aetiology (polymorphism of SF1 was the only abnormality), gives evidence of a possible genetic primary cause of adrenal insufficiency, based on clinical and laboratory examinations and the age of onset. In children, congenital primary adrenal insufficiency is very rare, accounting for about 1% of all cases. The importance of elucidating a genetic basis is emphasised by the ever-increasing number of genetic causes of adrenal insufficiency (Table 1) [16]. In fact, in a series of 103 children with Addison's disease, genetic forms were very frequent, accounting for 72% of congenital adrenal hyperplasia; other genetic causes accounted for 6%, whereas autoimmune disease was diagnosed in only 13% [19].
As stressed by this case, prompt diagnosis is also important because acute adrenal insufficiency is a life threatening disease. Typically, patients with this disease present with severe hypotension to hypovolaemic shock, vomiting, acute abdominal pain, and often fever. However, children often present with hypoglycaemia and hypoglycaemic seizures. On the other hand, the primary non-specific symptoms of chronic adrenal insufficiency in children are fatigue, reduced muscle strength, weight loss, anorexia, or failure to thrive [20].

Conclusions

This case report suggests that macrogol 3350 could interfere with the absorption of hydrocortisone. It is of particular importance considering the risk of adrenal insufficiency in these patients, and careful attention should be paid to the concomitant use of macrogol and hydrocortisone in subjects with primary or secondary glucocorticoid deficiencies.
Written informed consent was obtained from the parents of the patient for publication of this Case Report and any accompanying images.

Acknowledgment

We thank Prof. Paolo Lionetti for an invaluable help in revising our manuscript.
Funding
This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sectors.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interest

The authors declare that there are no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported.

Authors' contributions

SStagi: conception and design, endocrinological evaluation, manuscript writing and final approval of the manuscript. FR: data collection and analysis, manuscript writing and final approval of the manuscript. PDG: data collection and analysis, manuscript writing and final approval of the manuscript. CI: endocrinological evaluation, data collection and analysis, manuscript writing and final approval of the manuscript. GP: data collection and analysis, critical revision and final approval of the manuscript. SSeminara: endocrinological evaluation, critical revision and final approval of the manuscript. MdM: critical revision and final approval of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Shulman DI, Palmert MR, Kemp SF: Adrenal insufficiency: still a cause of morbidity and death in childhood. Pediatrics. 2007, 119: e484-e494. 10.1542/peds.2006-1612.CrossRefPubMed Shulman DI, Palmert MR, Kemp SF: Adrenal insufficiency: still a cause of morbidity and death in childhood. Pediatrics. 2007, 119: e484-e494. 10.1542/peds.2006-1612.CrossRefPubMed
2.
Zurück zum Zitat Evliyaoğlu O, Dokurel İ, Bucak F, Özcabı B, Ercan Ö, Ceylaner S: Primary adrenal insufficiency caused by a novel mutation in DAX1 gene. J Clin Res Pediatr Endocrinol. 2013, 5: 55-57. 10.4274/Jcrpe.895.PubMedCentralCrossRefPubMed Evliyaoğlu O, Dokurel İ, Bucak F, Özcabı B, Ercan Ö, Ceylaner S: Primary adrenal insufficiency caused by a novel mutation in DAX1 gene. J Clin Res Pediatr Endocrinol. 2013, 5: 55-57. 10.4274/Jcrpe.895.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Charmandari E, Nicolaides NC, Chrousos GP: Adrenal insufficiency. Lancet. 2014, pii: S0140-S6736. Charmandari E, Nicolaides NC, Chrousos GP: Adrenal insufficiency. Lancet. 2014, pii: S0140-S6736.
4.
Zurück zum Zitat Candy D, Belsey J: Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review. Arch Dis Child. 2009, 94: 156-160. 10.1136/adc.2007.128769.PubMedCentralCrossRefPubMed Candy D, Belsey J: Macrogol (polyethylene glycol) laxatives in children with functional constipation and faecal impaction: a systematic review. Arch Dis Child. 2009, 94: 156-160. 10.1136/adc.2007.128769.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Loening-Baucke V: Prevalence, symptoms and outcome of constipation in infants and toddlers. J Pediatr. 2005, 146: 359-363. 10.1016/j.jpeds.2004.10.046.CrossRefPubMed Loening-Baucke V: Prevalence, symptoms and outcome of constipation in infants and toddlers. J Pediatr. 2005, 146: 359-363. 10.1016/j.jpeds.2004.10.046.CrossRefPubMed
6.
Zurück zum Zitat Sohy C, Vandenplus O, Sibille Y: Usefulness of oral macrogol challenge in anaphylaxis after intra-articular injection of corticosteroid preparation. Allergy. 2008, 63: 478-479. 10.1111/j.1398-9995.2007.01610.x.CrossRefPubMed Sohy C, Vandenplus O, Sibille Y: Usefulness of oral macrogol challenge in anaphylaxis after intra-articular injection of corticosteroid preparation. Allergy. 2008, 63: 478-479. 10.1111/j.1398-9995.2007.01610.x.CrossRefPubMed
7.
Zurück zum Zitat Napke E, Stevens DGH: Excipients and additives: hidden hazards in drug products and in product substitution. CMAJ. 1984, 131: 1449-1452. Napke E, Stevens DGH: Excipients and additives: hidden hazards in drug products and in product substitution. CMAJ. 1984, 131: 1449-1452.
8.
Zurück zum Zitat Bernier JJ, Donazzolo Y: Effect of low-dose polyethylene glycol 4000 on fecal consistency and dilution water in healthy subjects. Gastroentérol Clin Biol. 1997, 21: 7-11.PubMed Bernier JJ, Donazzolo Y: Effect of low-dose polyethylene glycol 4000 on fecal consistency and dilution water in healthy subjects. Gastroentérol Clin Biol. 1997, 21: 7-11.PubMed
9.
Zurück zum Zitat Schiller LR, Emmett M, Santa Ana CA, Fordtran JS: Osmotic effects of polyethylene glycol. Gastroenterology. 1998, 94: 933-941. Schiller LR, Emmett M, Santa Ana CA, Fordtran JS: Osmotic effects of polyethylene glycol. Gastroenterology. 1998, 94: 933-941.
10.
Zurück zum Zitat Hammer HF, Santa Ana CA, Schiller LR, Fordtran JS: Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J Clin Invest. 1989, 84: 1056-1062. 10.1172/JCI114267.PubMedCentralCrossRefPubMed Hammer HF, Santa Ana CA, Schiller LR, Fordtran JS: Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J Clin Invest. 1989, 84: 1056-1062. 10.1172/JCI114267.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Corazziari E: Need of the ideal drug for the treatment of chronic constipation. Ital J Gastroenterol Hepatol. 1999, 31 (Suppl 3): S232-S233.PubMed Corazziari E: Need of the ideal drug for the treatment of chronic constipation. Ital J Gastroenterol Hepatol. 1999, 31 (Suppl 3): S232-S233.PubMed
12.
Zurück zum Zitat Belsey JD, Geraint M, Dixon TA: Systematic review and meta analysis: polyethylene glycol in adults with non-organic constipation. Int J Clin Pract. 2010, 64: 944-955. 10.1111/j.1742-1241.2010.02397.x.CrossRefPubMed Belsey JD, Geraint M, Dixon TA: Systematic review and meta analysis: polyethylene glycol in adults with non-organic constipation. Int J Clin Pract. 2010, 64: 944-955. 10.1111/j.1742-1241.2010.02397.x.CrossRefPubMed
13.
Zurück zum Zitat Taylor RR, Guest JF: The cost-effectiveness of macrogol 3350 compared to lactulose in the treatment of adults suffering from chronic constipation in the UK. Aliment Pharmacol Ther. 2010, 31: 302-312.CrossRefPubMed Taylor RR, Guest JF: The cost-effectiveness of macrogol 3350 compared to lactulose in the treatment of adults suffering from chronic constipation in the UK. Aliment Pharmacol Ther. 2010, 31: 302-312.CrossRefPubMed
14.
Zurück zum Zitat Lee-Robichaud H, Thomas K, Morgan J, Nelson RL: Lactulose versus polyethylene glycol for chronic constipation. Cochrane Database Syst Rev. 2010, 7: Lee-Robichaud H, Thomas K, Morgan J, Nelson RL: Lactulose versus polyethylene glycol for chronic constipation. Cochrane Database Syst Rev. 2010, 7:
15.
Zurück zum Zitat Grossman A, Johannsson G, Quinkler M, Zelissen P: Therapy of endocrine disease: Perspectives on the management of adrenal insufficiency: clinical insights from across Europe. Eur J Endocrinol. 2013, 169: T165-T175. 10.1530/EJE-13-0450.CrossRef Grossman A, Johannsson G, Quinkler M, Zelissen P: Therapy of endocrine disease: Perspectives on the management of adrenal insufficiency: clinical insights from across Europe. Eur J Endocrinol. 2013, 169: T165-T175. 10.1530/EJE-13-0450.CrossRef
16.
Zurück zum Zitat Charmandari E, Nicolaides NC, Chrousos GP: Adrenal insufficiency. The Lancet. 2014, 383: 2152-2167. 10.1016/S0140-6736(13)61684-0.CrossRef Charmandari E, Nicolaides NC, Chrousos GP: Adrenal insufficiency. The Lancet. 2014, 383: 2152-2167. 10.1016/S0140-6736(13)61684-0.CrossRef
17.
Zurück zum Zitat Tooson JD, Gates LK: Bowel preparation before colonoscopy. Choosing the best lavage regimen. Postgrad Med. 1996, 100: 203-214.PubMed Tooson JD, Gates LK: Bowel preparation before colonoscopy. Choosing the best lavage regimen. Postgrad Med. 1996, 100: 203-214.PubMed
18.
Zurück zum Zitat Lennernäs H, Skrtic S, Johannsson G: Replacement therapy of oral hydrocortisone in adrenal insufficiency: the influence of gastrointestinal factors. Expert Opin Drug Metab Toxicol. 2008, 4: 749-758. 10.1517/17425255.4.6.749.CrossRefPubMed Lennernäs H, Skrtic S, Johannsson G: Replacement therapy of oral hydrocortisone in adrenal insufficiency: the influence of gastrointestinal factors. Expert Opin Drug Metab Toxicol. 2008, 4: 749-758. 10.1517/17425255.4.6.749.CrossRefPubMed
19.
Zurück zum Zitat Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C: Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005, 90: 3243-3250. 10.1210/jc.2004-0016.CrossRefPubMed Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C: Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005, 90: 3243-3250. 10.1210/jc.2004-0016.CrossRefPubMed
20.
Zurück zum Zitat Avgerinos PC, Cutler GB, Tsokos GC, Gold PW, Feuillan P, Gallucci WT, Pillemer SR, Loriaux DL, Chrousos GP: Dissociation between cortisol and adrenal androgen secretion in patients receiving alternate day prednisone therapy. J Clin Endocrinol Metab. 1987, 65: 24-29. 10.1210/jcem-65-1-24.CrossRefPubMed Avgerinos PC, Cutler GB, Tsokos GC, Gold PW, Feuillan P, Gallucci WT, Pillemer SR, Loriaux DL, Chrousos GP: Dissociation between cortisol and adrenal androgen secretion in patients receiving alternate day prednisone therapy. J Clin Endocrinol Metab. 1987, 65: 24-29. 10.1210/jcem-65-1-24.CrossRefPubMed
Metadaten
Titel
Hydrocortisone malabsorption due to polyethylene glycols (Macrogol 3350) in a girl with congenital adrenal insufficiency
verfasst von
Stefano Stagi
Paolo Del Greco
Franco Ricci
Chiara Iurato
Giovanni Poggi
Salvatore Seminara
Maurizio de Martino
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Italian Journal of Pediatrics / Ausgabe 1/2014
Elektronische ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-014-0078-2

Weitere Artikel der Ausgabe 1/2014

Italian Journal of Pediatrics 1/2014 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.