Skip to main content
Erschienen in: Medical Gas Research 1/2011

Open Access 01.12.2011 | Commentary

Hyperbaric oxygen therapy promotes neurogenesis: where do we stand?

verfasst von: Jun Mu, Paul R Krafft, John H Zhang

Erschienen in: Medical Gas Research | Ausgabe 1/2011

Abstract

Neurogenesis in adults, initiated by injury to the central nervous system (CNS) presents an autologous repair mechanism. It has been suggested that hyperbaric oxygen therapy (HBOT) enhances neurogenesis which accordingly may improve functional outcome after CNS injury. In this present article we aim to review experimental as well as clinical studies on the subject of HBOT and neurogenesis. We demonstrate hypothetical mechanism of HBOT on cellular transcription factors including hypoxia-inducible factors (HIFs) and cAMP response element binding (CREB). We furthermore reveal the discrepancy between experimental findings and clinical trials in regards of HBOT. Further translational preclinical studies followed by improved clinical trials are needed to elucidate potential benefits of HBOT.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2045-9912-1-14) contains supplementary material, which is available to authorized users.

Introduction

Neurogenesis is defined as generation of neurons within the brain. In adults, neurogenesis occurs primarily in two brain regions: the subventricular (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Injury to the central nervous system (CNS) including trauma, cerebral ischemia and epileptic seizures have been reported to induce neurogenesis, and surviving cells may be functionally integrated into existing neural circuits [1]. Consequently, further endogenous promotion of neurogenesis may hold promise for restoration of cerebral functions after CNS injury.
Hyperbaric oxygen therapy (HBOT) refers to the medical use of oxygen at a level higher than atmospheric pressure. Initially, indicated for decompression illness it has been further applied to clinical conditions including crush injury, diabetic foot, skin grafts, thermal burns and to several neurological diseases [2]. Elevation of partial oxygen pressure in the body, leads to increased oxygen transport capacity of erythrocytes, facilitating peripheral regeneration processes (e.g. angiogenesis).
It has been suggested that HBOT exerts neuroprotective effects through a variety of mechanisms, including the activation of cellular transcription factors [3]. However, due to inconsistent results and few clinical trials, HBOT for neurologic disorders has not yet been approved by the FDA. Further preclinical studies are needed to clarify the effect of HBOT on neurogenesis and to ensure a successful translation to clinical trials.

Literature Review

Publications were identified by PubMed/Medline and Web of Science, using the following keywords: neurogenesis, hyperbaric oxygen, ischemia, proliferation and BrdU. All publications, languages and subsets were explored. Results from previous studies were summarized into the following four categories: hypoxic-ischemic encephalopathy (HIE) (Table 1), vascular dementia (Table 2), permanent middle cerebral artery occlusion (MCAo) (Table 3) and human mesencephalic neural progenitor cells (hmNPCs) (Table 4).
Table 1
Hypoxic-ischemic encephalopathy (HIE)
Animal model/Cell line
HBO therapy
Method/Duration
Neurogenesis
Infarct size
Neurobehavioral testing
Mechanism
Institute
Reference
HIE rats
Within 3 h 100%, 2 ATA 1 h/d × 7
BrdU 50 mg/Kg 2 days before sac Q8hX5T
SVZ ↑Brdu+/nestin+ D3, D7, D14 after ischemia
/
/
Wnt-3
Central South University, China
Wang, et al [4]
HIE rats
Within 3 h 100%, 2 ATA 1 h/d × 7
brdU 50 mg/Kg 1 days after surgery Q12hX6D
SVZ ↑Brdu+/nestin+ D3, D7, D14 after ischemia
/
/
MBP
Central South University, China
Yang, et al [11]
HIE rats
Within 3 h 2 ATA, 100% oxygen 1 h/d × 7
brdU 50 mg/Kg 1 days before HBO Q12hX6D
↑D7 SVZ brdu+/DCX+ ↑D14 cortex brdu+/DCX+ D28 cortex ↑BrdU/GFAP/tubulin
/
/
/
Central South University, China
Wang, et al [5]
neural stem cell from HIE rats
Within 2 h 2 ATA, 100% oxygen × 1 h
/
differentiate into ↑neurons ↑oligodendrocytes ↓astrocytes
/
/
β-catenin,
Central South University, China
Zhang, et al [6]
Table 2
Vascular dementia
Animal model/Cell line
HBO therapy
Method/Duration
Neurogenesis
Infarct size
Neurobehavioral
testing
Mechanism
Institute
Reference
vascular dementia (ligation of Bilateral CCA)
100%,2 ATA,
2 h/d × 10d
/
piriform cortex (Pir)
↑DCX+, Nestin+
/
Shuttle box testing
/
Third
Military Medical University
Zhang et al [12]
Table 3
Permanent MCAo
Animal model/Cell line
HBO therapy
Method/Duration
Neurogenesis
Infarct size
Neurobehavioral testing
Mechanism
Institute
Reference
Permanent MCAo
100%,2.5 ATA,
1.5 h
From 15 min, 1.5 h, 3 h after MCAo
/
D7
↑GFAP+
garcia
/
University of Leipzig, Germany
Gunther, et al [13]
Table 4
Human mesencephalic neural progenitor cell
Animal model/Cell line
HBO therapy
Method/Duration
Neurogenesis
Infarct size
Neurobehavioral testing
Mechanism
Institute
Reference
hmNPCs
100%,1.5 ATA
1 h/d × 5d
Ki67
↑Mature neurons (Tuji, NSE)
-GFAP
/
/
HIF-a Stabilizers
University of Leipzig, Germany
Milosevic, et al [7]
Regarding HBOT, most preclinical studies were performed using a rat model of HIE. Wang et al. initiated 7 days of HBOT (2.0 ATA, 100% oxygen, 1 hour daily) starting 3 hours after experimental HIE in rats. Results showed a significantly increased amount of BrdU+/nestin+ cells in the SVZ with a peak at 7 days after HIE [4]. 21 days later, more BrdU+/β-tubulin+ cells were observed in the cortex of treated rats, suggesting that HBOT promotes the proliferation, differentiation and migration of newly generated cells [5].
Our preliminary data shows that HBOT decreases the infarct size with a significantly increased number of BrdU(+) cells in the peri-infarct area 2 week after experimental HIE. We treated operated animals with 1.5 ATA HBO, 100% oxygen once a day for 3 consecutive days. BrdU, dissolved in saline, was injected intraperitoneally (50 mg/kg) 24 hours after HIE, once a day for a total of 7 days.
Furthermore in vitro studies suggest that HBOT promotes neural stem cells differentiation into neurons or oligodendrocytes, while inhibiting those stem cells from differentiating into astrocytes [6, 7]. HBOT also enhances the proliferation of other supporting cells, including glial cell line-derived neurotrophic nerve growth factor(GDNF) [8] and vascular endothelial growth factor (VEGF) positive cells [8] as well as epithelial cells [9] and human microvascular endothelial cells (HMEC-1) (Table 5) [10].
Table 5
effect of HBOT on other type of cells
Animal model/Cell line
HBO therapy
Method/Duration
Proliferation
Infarct size
Neurobehavioral
testing
Mechanism
Institute
Reference
experimental spinal cord injury
Right after injury
100%,2.5 ATA
2 h
D7
↑GDNF(+)cell ↑VEGF(+)cell
↓TTC
↑BBB locomotor scale
↓myeloperoxidase (MPO), tumor necrosis factor-a (TNFa) and
interleukin-1b (IL-1b)
Taipei Medical University
Tai, et al [8]
Normal rats
60%, 1 ATA
3 days
Brdu
Single injection
germinative zone
↑Epithelial Cells
/
/
Oxidative stress?
Washington University
Shui et al [9]
HMEC-1
100%, 2.4 ATA
1 h
/
↑HMEC-1 proliferation
/
/
antioxidant, cytoprotective genes upregulation
University of Connecticut, USA
Godman et al [10]

Hypothetical mechanisms

Numerous in vivo and in vitro studies confirm that HBOT induces neurogenesis [57, 1013] however, underlying mechanisms remain unknown. Activation of several signaling pathways and transcription factors have been suggested to play an important role in HBOT induced neurogenesis, including Wnt, hypoxia-inducible factors (HIFs) and cAMP response element-binding (CREB).
HIF-1 is a heterodimeric transcriptional complex composed of an inducible HIF-1α subunit and a constitutive HIF-1β subunit. HIF-1α is the principal mediator of cellular hypoxia adaptations [14]. Therefore activated by hypoxia, HIF-1α causes the transcription of its regulated downstream genes, including erythropoietin (EPO) and VEGF which are known to promote neurogenesis [15]. However accumulation of HIF-1α induces expression of p53 [16] and BNIP3 [17], leading to neuronal cell death. Thus neuroprotection may occur shortly after cerebral ischemia at balanced levels of HIF-1α. In the presence of oxygen and iron, HIF-1α is rapidly degraded via the prolyl hydroxylase pathway. Javorina et al. discovered that HBOT exposure stabilizes HIF-1α levels in hmNPCs and furthermore induces neurogenesis in vitro [7]. We suggest that HBOT prevents the accumulation of HIF-1α and therefore exerts its neuroprotective effect (Figure 1).
Wnt signaling has been suggested to play an important role in the regulation of cell proliferation and differentiation during the stage of CNS development. Wnt-3 is the starting protein of this pathway. Wang et al. confirmed increased level of Wnt-3 in HBOT rats 3 days after HIE induction, which was positively correlated with the proliferation of stem cells [4]. The authors suggest that cell proliferation via Wnt pathway is regulated through β-catenin. Furthermore, in vitro studies demonstrated that β-catenin siRNA decreases the amount of newly generated neurons by repressing the Neurogenin1 (NGN1) gene, which can be reversed by HBOT [6]. It has been recently reported that HIF-1α modulates Wnt/β-catenin signaling in hypoxic embryonic stem cells (ESC) by enhancing β-catenin activation, and expression of the downstream effectors lymphocyte enhancer factor-1 (LEF-1) and T-cell factor-1 (TCF-1) [18].
It has been implicated that Hif-1α deletion reduces Wnt/β-catenin signaling in the SGZ, causing impaired Wnt-dependent processes, including neural stem cell proliferation, differentiation and neuronal maturation [18]. We conclude that activation of the Wnt pathway may occur via HBOT induced control of HIF-1α (Figure 1).
CREB plays a well-documented role in neuronal plasticity and formation of long-term memory, mainly through up-regulation of its downstream genes including brain derived neurophic factor (BDNF), Bcl-2, c-fos and VGF. Activation of CREB increases neurogenesis in the DG after focal cerebral ischemia in rats, and protects against hypoxic brain injury [19]. Application of 100% oxygen increased CREB expression in striatum and hippocampus in a neonatal piglet model of intermittent apnea [20]. HBO preconditioning furthermore increased the ratio of Bcl-2 and Bax expression in a MCAo/reperfusion model [21]. CREB activates its downstream genes when phosphorylated, while protein phosphatase-1 (PP1) catalyzes the dephosphorylation of CREB. PP1γ modulates the localization and/or activity of PP1. Suppressed in hypoxic conditions, PP1 leads to over-phosphorylation of CREB, followed by CREB ubiquitination and degradation by 26s proteasome [22]. Although the exact role of CREB in HBOT induced neurogenesis is still not clear, we suggested that HBOT could reverse this process by reactivating PP1γ and by blocking the degradation of CREB (Figure 2).

Clinical applications

Stroke

Neurons are highly energy demanding, a characteristic which makes them vulnerable to decreased cerebral blood supply during stroke. Experimental transient ischemia induces neurogenesis in the DG, with a peak between 7-10 days [23]. In confirmation to these results Shin et al. found the highest number of Brdu+ cells in the SVZ, subependymal zone, cortex and striatum 1 week after MCAo [24]. Thus endogenous neurogenesis after ischemic stroke occurs early and is short-lived.
HBOT appears to be a potent method of oxygen delivery [25]. It increases the oxygen partial pressure within the blood and enhances restoration of oxygen supply after ischemic stroke [26]. Previous studies provide evidence that HBOT promotes neurogenesis [46, 11], reduces infarct size [27, 28] as well as hemorrhagic transformation [29] and improves neurological function, in animal models of ischemic stroke [28].
In contrast to these preclinical results no benefit of HBOT was found in stroke patients [30] and HBOT did not improve the clinical outcome in patients 6 months after acute stroke [31]. However, Singhal concluded that HBOT might extend the time window and increase the efficiency of FDA approved r-tPA thrombolysis after acute ischemic stroke [25].
Most clinical trials presented small sample sizes, undifferentiated stroke types, diverse time windows and varying application of HBOT. To bridge the gap between basic science and clinical studies, large scale, well designed, randomized controlled clinical trials are needed to examine the effects on HBOT in terms of acute sensorimotor and chronic cognitive function in patients.

Traumatic brain injury (TBI)

It has been established that injury-induced neurogenesis contributes greatly to post-injury recovery. After TBI, hippocampal progenitors are activated and result in increased amount of newly generated neurons within the DG [32]. Although there is no literature available on the HBOT induced neurogenesis in preclinical TBI models, HBOT has been applied to TBI patients. The use of HBOT for TBI remains controversial. McDonagh et al., concluded that there was insufficient evidence to establish the effectiveness of HBOT in the treatment of TBI [33]. Rockswold et al., on the other hand, found that HBOT might be potentially beneficial for severe TBI patients [34]. The safety of HBOT was also evaluated and it was pointed out that, if given at proper paradigms, like 1.5 ATA for 60 minutes, HBOT will not cause oxygen toxicity [34]. In a review of available treatments for acquired brain injury (ABI), including TBI, HBOT was suggested with strong level of evidence among non-pharmacological interventions of ABI. Furthermore, HBOT positively improved mortality with level 1 evidence [35]. Laboratory experiments on HBOT induced neurogenesis are needed to investigate the efficiency of HBOT on TBI.

Autism

Autism is a neuro-developmental disorder associated with hypoperfusion to several areas of the brain, defects of neurogenesis and neuronal migration [36]. The first multicenter, randomized, double-blind, controlled trial in 2009 found that 40-hour HBOT of 24% oxygen at 1.3 ATM produced significant improvement in children's overall functioning, receptive language, social interaction, eye contact, and sensory/cognitive awareness compared to those received slightly pressurized room air [37]. Another study in 2010 on 16 autism patients, adopting a similar treatment paradigm, showed no effect on a wide array of behavioral evaluations [38]. Basic research is needed regarding neuroprotective effects of HBOT and neurogenesis.

Special concerns

HBOT and malignancy

It has been previously suggested that neurogenesis occurs within an angiogenic niche, where neurogenesis is closely associated with vascular recruitment and subsequent remodeling [39]. Therefore HBOT may also stimulate angiogenesis by enhancing the proliferation of fibroblasts, epithelial cells and blood vessels [40].
Concerns have been raised whether HBOT promotes the proliferation of cancer cells. To date, there is little evidence that HBOT causes malignant growth or metastasis. A history of malignancy should therefore not be considered as a contraindication for HBOT [40].

HBOT and oxidative stress

HBOT enhances the production of reactive oxygen species (ROS) and causes oxidative stress in body tissues [10]. Excessive accumulation of oxidative stress may contribute to neurodegenerative processes and cell death in the brain, as seen in diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) [41]. Since HBOT-induced oxidative stress is directly proportional to both exposure pressure and duration, the benefits of HBOT, may outweigh the side effects due to the phenomenon of hormesis. Hormesis is a process that results in a functional improvement of cellular stress resistance, survival, and longevity in response to sub-lethal levels of stress. We suggest that this process might be beneficial in the treatment of oxidative stress associated neurodegenerative diseases like AD and PD.

Conclusions and future directions

Abounding evidence has shown that HBOT promotes neurogenesis. Future investigations need to be extended to models of neurological diseases, including subarachnoid hemorrhage (SAH), cerebral hemorrhage, AD, PD, surgical brain injury (SBI) and autism for cell proliferation, survival and differentiation. Furthermore, studies need to be conducted to explore whether HBOT induced neurogenesis leads to a functional improvement followed by large scale, strictly controlled clinical trials to establish HBOT as a prevention and/or treatment modality for neurological diseases.

Conflicts of Interest/Disclosures

The authors declare that they have no competing interests.

Acknowledgements

We thank Robert P. Ostrowski for his valuable contributions. This work is supported by a grant from National Nature Science Foundation of China (No.30570657) and 973 project (2009CB918300).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41 (5): 683-6. 10.1016/S0896-6273(04)00111-4.CrossRefPubMed Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41 (5): 683-6. 10.1016/S0896-6273(04)00111-4.CrossRefPubMed
2.
Zurück zum Zitat Mychaskiw G: Hyperbaric oxygen therapy and neurologic disease: the time has come. Undersea Hyperb Med. 2010, 37 (2): xi-xiii.PubMed Mychaskiw G: Hyperbaric oxygen therapy and neurologic disease: the time has come. Undersea Hyperb Med. 2010, 37 (2): xi-xiii.PubMed
3.
Zurück zum Zitat Matchett GA, Martin RD, Zhang JH: Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009, 31 (2): 114-21. 10.1179/174313209X389857.CrossRefPubMed Matchett GA, Martin RD, Zhang JH: Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009, 31 (2): 114-21. 10.1179/174313209X389857.CrossRefPubMed
4.
Zurück zum Zitat Wang XL, et al: Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. Neuroreport. 2007, 18 (16): 1753-6. 10.1097/WNR.0b013e3282f0ec09.CrossRefPubMed Wang XL, et al: Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. Neuroreport. 2007, 18 (16): 1753-6. 10.1097/WNR.0b013e3282f0ec09.CrossRefPubMed
5.
Zurück zum Zitat Wang XL, et al: [Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage]. Zhongguo Dang Dai Er Ke Za Zhi. 2009, 11 (9): 749-52.PubMed Wang XL, et al: [Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage]. Zhongguo Dang Dai Er Ke Za Zhi. 2009, 11 (9): 749-52.PubMed
6.
Zurück zum Zitat Zhang XY, et al: The role of beta-catenin signaling pathway on proliferation of rats neural stem cells after hyperbaric oxygen therapy in vitro. Cell Mol Neurobiol. 2011, 31 (1): 101-9. 10.1007/s10571-010-9559-z.CrossRefPubMed Zhang XY, et al: The role of beta-catenin signaling pathway on proliferation of rats neural stem cells after hyperbaric oxygen therapy in vitro. Cell Mol Neurobiol. 2011, 31 (1): 101-9. 10.1007/s10571-010-9559-z.CrossRefPubMed
7.
Zurück zum Zitat Milosevic J, et al: Non-hypoxic stabilization of hypoxia-inducible factor alpha (HIF-alpha): relevance in neural progenitor/stem cells. Neurotox Res. 2009, 15 (4): 367-80. 10.1007/s12640-009-9043-z.CrossRefPubMed Milosevic J, et al: Non-hypoxic stabilization of hypoxia-inducible factor alpha (HIF-alpha): relevance in neural progenitor/stem cells. Neurotox Res. 2009, 15 (4): 367-80. 10.1007/s12640-009-9043-z.CrossRefPubMed
8.
Zurück zum Zitat Tai PA, et al: Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10. J Neurotrauma. 2010, 27 (6): 1121-7. 10.1089/neu.2009.1162.CrossRefPubMed Tai PA, et al: Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10. J Neurotrauma. 2010, 27 (6): 1121-7. 10.1089/neu.2009.1162.CrossRefPubMed
9.
10.
Zurück zum Zitat Godman CA, et al: Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci. 2010, 1197: 178-83. 10.1111/j.1749-6632.2009.05393.x.CrossRefPubMed Godman CA, et al: Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci. 2010, 1197: 178-83. 10.1111/j.1749-6632.2009.05393.x.CrossRefPubMed
11.
Zurück zum Zitat Yang YJ, et al: Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea Hyperb Med. 2008, 35 (2): 113-29.PubMed Yang YJ, et al: Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea Hyperb Med. 2008, 35 (2): 113-29.PubMed
12.
Zurück zum Zitat Zhang T, et al: Hyperbaric oxygen therapy improves neurogenesis and brain blood supply in piriform cortex in rats with vascular dementia. Brain Inj. 2010, 24 (11): 1350-7. 10.3109/02699052.2010.504525.CrossRefPubMed Zhang T, et al: Hyperbaric oxygen therapy improves neurogenesis and brain blood supply in piriform cortex in rats with vascular dementia. Brain Inj. 2010, 24 (11): 1350-7. 10.3109/02699052.2010.504525.CrossRefPubMed
13.
Zurück zum Zitat Gunther A, et al: Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci. 2005, 21 (11): 3189-94. 10.1111/j.1460-9568.2005.04151.x.CrossRefPubMed Gunther A, et al: Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci. 2005, 21 (11): 3189-94. 10.1111/j.1460-9568.2005.04151.x.CrossRefPubMed
14.
Zurück zum Zitat Chen W, et al: HIF-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis. 2008, 31 (3): 433-41. 10.1016/j.nbd.2008.05.020.PubMedCentralCrossRefPubMed Chen W, et al: HIF-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis. 2008, 31 (3): 433-41. 10.1016/j.nbd.2008.05.020.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Lanfranconi S, et al: Growth factors in ischemic stroke. J Cell Mol Med. 2009, Lanfranconi S, et al: Growth factors in ischemic stroke. J Cell Mol Med. 2009,
16.
Zurück zum Zitat Halterman MW, Federoff HJ: HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol. 1999, 159 (1): 65-72. 10.1006/exnr.1999.7160.CrossRefPubMed Halterman MW, Federoff HJ: HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol. 1999, 159 (1): 65-72. 10.1006/exnr.1999.7160.CrossRefPubMed
17.
Zurück zum Zitat Mellor HR, Harris AL: The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev. 2007, 26 (3-4): 553-66. 10.1007/s10555-007-9080-0.CrossRefPubMed Mellor HR, Harris AL: The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev. 2007, 26 (3-4): 553-66. 10.1007/s10555-007-9080-0.CrossRefPubMed
18.
19.
Zurück zum Zitat Zhu DY, et al: Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA. 2004, 101 (25): 9453-7. 10.1073/pnas.0401063101.PubMedCentralCrossRefPubMed Zhu DY, et al: Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA. 2004, 101 (25): 9453-7. 10.1073/pnas.0401063101.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Mendoza-Paredes A, et al: Resuscitation with 100%, compared with 21%, oxygen following brief, repeated periods of apnea can protect vulnerable neonatal brain regions from apoptotic injury. Resuscitation. 2008, 76 (2): 261-70. 10.1016/j.resuscitation.2007.07.022.PubMedCentralCrossRefPubMed Mendoza-Paredes A, et al: Resuscitation with 100%, compared with 21%, oxygen following brief, repeated periods of apnea can protect vulnerable neonatal brain regions from apoptotic injury. Resuscitation. 2008, 76 (2): 261-70. 10.1016/j.resuscitation.2007.07.022.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Li JS, et al: Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience. 2009, 159 (4): 1309-15. 10.1016/j.neuroscience.2009.01.011.CrossRefPubMed Li JS, et al: Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience. 2009, 159 (4): 1309-15. 10.1016/j.neuroscience.2009.01.011.CrossRefPubMed
22.
Zurück zum Zitat Taylor CT, et al: Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci USA. 2000, 97 (22): 12091-6. 10.1073/pnas.220211797.PubMedCentralCrossRefPubMed Taylor CT, et al: Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci USA. 2000, 97 (22): 12091-6. 10.1073/pnas.220211797.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Lichtenwalner RJ, Parent JM: Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab. 2006, 26 (1): 1-20. 10.1038/sj.jcbfm.9600170.CrossRefPubMed Lichtenwalner RJ, Parent JM: Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab. 2006, 26 (1): 1-20. 10.1038/sj.jcbfm.9600170.CrossRefPubMed
24.
Zurück zum Zitat Shin HY, et al: Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia. J Neurosci Res. 2008, 86 (2): 356-67. 10.1002/jnr.21494.CrossRefPubMed Shin HY, et al: Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia. J Neurosci Res. 2008, 86 (2): 356-67. 10.1002/jnr.21494.CrossRefPubMed
25.
Zurück zum Zitat Singhal AB: A review of oxygen therapy in ischemic stroke. Neurol Res. 2007, 29 (2): 173-83. 10.1179/016164107X181815.CrossRefPubMed Singhal AB: A review of oxygen therapy in ischemic stroke. Neurol Res. 2007, 29 (2): 173-83. 10.1179/016164107X181815.CrossRefPubMed
26.
Zurück zum Zitat Poli S, Veltkamp R: Oxygen therapy in acute ischemic stroke-experimental efficacy and molecular mechanisms. Curr Mol Med. 2009, 9 (2): 227-41. 10.2174/156652409787581619.CrossRefPubMed Poli S, Veltkamp R: Oxygen therapy in acute ischemic stroke-experimental efficacy and molecular mechanisms. Curr Mol Med. 2009, 9 (2): 227-41. 10.2174/156652409787581619.CrossRefPubMed
27.
Zurück zum Zitat Yin D, et al: Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab. 2003, 23 (7): 855-64.CrossRefPubMed Yin D, et al: Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab. 2003, 23 (7): 855-64.CrossRefPubMed
28.
Zurück zum Zitat Yin D, Zhang JH: Delayed and multiple hyperbaric oxygen treatments expand therapeutic window in rat focal cerebral ischemic model. Neurocrit Care. 2005, 2 (2): 206-11. 10.1385/NCC:2:2:206.CrossRefPubMed Yin D, Zhang JH: Delayed and multiple hyperbaric oxygen treatments expand therapeutic window in rat focal cerebral ischemic model. Neurocrit Care. 2005, 2 (2): 206-11. 10.1385/NCC:2:2:206.CrossRefPubMed
29.
Zurück zum Zitat Sun L, et al: Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010, 30 (9): 1651-60. 10.1038/jcbfm.2010.50.PubMedCentralCrossRefPubMed Sun L, et al: Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010, 30 (9): 1651-60. 10.1038/jcbfm.2010.50.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Carson S, et al: Hyperbaric oxygen therapy for stroke: a systematic review of the evidence. Clin Rehabil. 2005, 19 (8): 819-33. 10.1191/0269215505cr907oa.CrossRefPubMed Carson S, et al: Hyperbaric oxygen therapy for stroke: a systematic review of the evidence. Clin Rehabil. 2005, 19 (8): 819-33. 10.1191/0269215505cr907oa.CrossRefPubMed
31.
Zurück zum Zitat Bennett MH, et al: Hyperbaric oxygen therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2005, CD004954-3 Bennett MH, et al: Hyperbaric oxygen therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2005, CD004954-3
32.
Zurück zum Zitat Kernie SG, Parent JM: Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis. 2010, 37 (2): 267-74. 10.1016/j.nbd.2009.11.002.PubMedCentralCrossRefPubMed Kernie SG, Parent JM: Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis. 2010, 37 (2): 267-74. 10.1016/j.nbd.2009.11.002.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat McDonagh M, et al: Hyperbaric oxygen therapy for traumatic brain injury: a systematic review of the evidence. Arch Phys Med Rehabil. 2004, 85 (7): 1198-204. 10.1016/j.apmr.2003.12.026.CrossRefPubMed McDonagh M, et al: Hyperbaric oxygen therapy for traumatic brain injury: a systematic review of the evidence. Arch Phys Med Rehabil. 2004, 85 (7): 1198-204. 10.1016/j.apmr.2003.12.026.CrossRefPubMed
34.
Zurück zum Zitat Rockswold SB, Rockswold GL, Defillo A: Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007, 29 (2): 162-72. 10.1179/016164107X181798.CrossRefPubMed Rockswold SB, Rockswold GL, Defillo A: Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007, 29 (2): 162-72. 10.1179/016164107X181798.CrossRefPubMed
35.
Zurück zum Zitat Meyer MJ, et al: Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj. 2010, 24 (5): 694-705. 10.3109/02699051003692118.CrossRefPubMed Meyer MJ, et al: Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj. 2010, 24 (5): 694-705. 10.3109/02699051003692118.CrossRefPubMed
36.
Zurück zum Zitat Wegiel J, et al: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119 (6): 755-70. 10.1007/s00401-010-0655-4.PubMedCentralCrossRefPubMed Wegiel J, et al: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119 (6): 755-70. 10.1007/s00401-010-0655-4.PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Rossignol DA, et al: Hyperbaric treatment for children with autism: a multicenter, randomized, double-blind, controlled trial. BMC Pediatr. 2009, 9: 21-10.1186/1471-2431-9-21.PubMedCentralCrossRefPubMed Rossignol DA, et al: Hyperbaric treatment for children with autism: a multicenter, randomized, double-blind, controlled trial. BMC Pediatr. 2009, 9: 21-10.1186/1471-2431-9-21.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Jepson B, et al: Controlled Evaluation of the Effects of Hyperbaric Oxygen Therapy on the Behavior of 16 Children with Autism Spectrum Disorders. J Autism Dev Disord. 2011, 41 (5): 575-88. 10.1007/s10803-010-1075-y.CrossRefPubMed Jepson B, et al: Controlled Evaluation of the Effects of Hyperbaric Oxygen Therapy on the Behavior of 16 Children with Autism Spectrum Disorders. J Autism Dev Disord. 2011, 41 (5): 575-88. 10.1007/s10803-010-1075-y.CrossRefPubMed
39.
Zurück zum Zitat Palmer TD, Willhoite AR, Gage FH: Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000, 425 (4): 479-94. 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3.CrossRefPubMed Palmer TD, Willhoite AR, Gage FH: Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000, 425 (4): 479-94. 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3.CrossRefPubMed
40.
Zurück zum Zitat Feldmeier J, et al: Hyperbaric oxygen: does it promote growth or recurrence of malignancy?. Undersea Hyperb Med. 2003, 30 (1): 1-18.PubMed Feldmeier J, et al: Hyperbaric oxygen: does it promote growth or recurrence of malignancy?. Undersea Hyperb Med. 2003, 30 (1): 1-18.PubMed
41.
Zurück zum Zitat Taupin P: A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer's disease. Cent Nerv Syst Agents Med Chem. 2010, 10 (1): 16-21.CrossRefPubMed Taupin P: A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer's disease. Cent Nerv Syst Agents Med Chem. 2010, 10 (1): 16-21.CrossRefPubMed
Metadaten
Titel
Hyperbaric oxygen therapy promotes neurogenesis: where do we stand?
verfasst von
Jun Mu
Paul R Krafft
John H Zhang
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Medical Gas Research / Ausgabe 1/2011
Elektronische ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-1-14

Weitere Artikel der Ausgabe 1/2011

Medical Gas Research 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.