Skip to main content
Erschienen in: Alzheimer's Research & Therapy 1/2023

Open Access 01.12.2023 | Research

Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning

verfasst von: Yuye Wang, Yu Sun, Yu Wang, Shuhong Jia, Yanan Qiao, Zhi Zhou, Wen Shao, Xiangfei Zhang, Jing Guo, Bin Zhang, Xiaoqian Niu, Yi Wang, Dantao Peng

Erschienen in: Alzheimer's Research & Therapy | Ausgabe 1/2023

Abstract

Background

Alzheimer’s disease is a prevalent disease with a heavy global burden. Proteomics is the systematic study of proteins and peptides to provide comprehensive descriptions. Aiming to obtain a more accurate and convenient clinical diagnosis, researchers are working for better biomarkers. Urine is more convenient which could reflect the change of disease at an earlier stage. Thus, we conducted a cross-sectional study to investigate novel diagnostic panels.

Methods

We firstly enrolled participants from China-Japan Friendship Hospital from April 2022 to November 2022, collected urine samples, and conducted an LC–MS/MS analysis. In parallel, clinical data were collected, and clinical examinations were performed. After statistical and bioinformatics analyses, significant risk factors and differential urinary proteins were determined. We attempt to investigate diagnostic panels based on machine learning including LASSO and SVM.

Results

Fifty-seven AD patients, 43 MCI patients, and 62 CN subjects were enrolled. A total of 3366 proteins were identified, and 608 urine proteins were finally included in the analysis. There were 33 significantly differential proteins between the AD and CN groups and 15 significantly differential proteins between the MCI and CN groups. AD diagnostic panel included DDC, CTSC, EHD4, GSTA3, SLC44A4, GNS, GSTA1, ANXA4, PLD3, CTSH, HP, RPS3, CPVL, age, and APOE ε4 with an AUC of 0.9989 in the training test and 0.8824 in the test set while MCI diagnostic panel included TUBB, SUCLG2, PROCR, TCP1, ACE, FLOT2, EHD4, PROZ, C9, SERPINA3, age, and APOE ε4 with an AUC of 0.9985 in the training test and 0.8143 in the test set. Besides, diagnostic proteins were weakly correlated with cognitive functions.

Conclusions

In conclusion, the procedure is convenient, non-invasive, and useful for diagnosis, which could assist physicians in differentiating AD and MCI from CN.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13195-023-01324-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AD
Alzheimer’s disease
MCI
Mild cognitive impairment
Amyloid-β
SPP1
Secreted phosphoprotein 1
GSN
Gelsolin
IFFBP7
Insulin-like growth factor binding protein 7
AD7c-NTP
Alzheimer-associated neuronal thread protein
ApoC3
Apolipoprotein C3
ELISA
Enzyme-linked immunosorbent assay
CN
Cognitive normal
APOE
Apolipoprotein E
qEEG
Quantitative electroencephalography
MRI
Magnetic resonance imaging
NIA-AA
National Institute on Aging-Alzheimer’s Association
FTD
Frontotemporal dementia
LBD
Lewy body dementia
VaD
Vascular dementia
MMSE
Mini-Mental State Examination
MoCA
Montreal Cognitive Assessment
ADL
Activity of Daily Living Scale
RAVLT-I
Rey Auditory Verbal Learning Test-Immediate
RAVLT-D
Rey Auditory Verbal Learning Test-Delay
DST
Digit Span Test
SCWT
Stroop Color and Word Test
TMT
Trail Making Test
SDMT
Symbol Digit Modalities Test
BNT
Boston Naming Test
VFT
Verbal Fluency Test
CDT
Clock Drawing Test
RCFT
Rey Complex Figure Test
DTT
Dithiothreitol
LC–MS/MS
Liquid chromatography coupled to tandem mass spectrometry
DDA
Data-dependent acquisition
AGC
Automatic gain control
iBAQ
Intensity-based absolute quantification
FOT
Fraction of total
KNN
k-Nearest neighbor
ANOVA
Analysis of variance
PPI
Protein-protein interaction
GSEA
Gene set enrichment analysis
GO
Gene Ontology
KEGG
Kyoto Encyclopedia of Genes and Genomes
LASSO
Least absolute shrinkage and selection operator
MSE
Mean square error
SVM
Support vector machine
AUC
Area under the curve
ROC
Receiver operating characteristic
MTA
Medial Temporal Lobe Atrophy Scale
DDC
Dopa decarboxylase
CTSC
Cathepsin C
EHD4
EH domain containing 4
GSTA3
Glutathione S-transferase alpha 3
SLC44A4
Solute carrier family 44 member 4
GNS
Glucosamine (N-acetyl)-6-sulfatase
GSTA1
Glutathione S-transferase alpha 1
ANXA4
Annexin A4
PLD3
Phospholipase D family member 3
CTSH
Cathepsin H
HP
Haptoglobin
RPS3
Ribosomal protein S3
CPVL
Carboxypeptidase vitellogenic like
TUBB
Tubulin beta class I
SUCLG2
Succinate-CoA ligase GDP-forming subunit beta
PROCR
Protein C receptor
TCP1
T-complex 1
ACE
Angiotensin I-converting enzyme
FLOT2
Flotillin 2
PROZ
Protein Z: vitamin K-dependent plasma glycoprotein
C9
Complement C9
SERPINA3
Serpin family A member 3
NC
Normal controls
APP
Amyloid precursor protein

Background

Dementia is an international public health issue. In 2019, 57.4 million people were living with dementia globally. By 2050, the number of people is anticipated to increase to 152.8 million [1]. Alzheimer’s disease (AD) is the most common type of dementia, making up an estimated 60 to 80% of cases [2]. Estimates of the number of dementia and AD patients in China’s senior population aged 60 years and older were 15.07 and 9.83, respectively [3], indicating an unneglectable burden on China’s social and economic status. On the continuum of cognitive decline, mild cognitive impairment (MCI) is referred to as the symptomatic pre-dementia stage and is featured by an objective cognitive decline that is not serious enough to require assistance with daily activities. Early detection of MCI could suggest an elevated risk for AD, and early comprehensive interventions could stop or postpone the progression of MCI to dementia [4].
Based on core clinical criteria for AD dementia, the patients are classified into probable AD dementia and possible AD dementia in clinical practice [5]. Due to the lack of biomarkers, it is difficult to distinguish Alzheimer’s disease from other dementias [6]. Recently, both European and American associations highlighted the importance of biomarkers in AD which is featured by amyloid-β (Aβ) plaques (A), pathological tau (T), and neurodegeneration (N) [68]. A biomarker, aggregated Aβ or related pathologic state, could be evaluated by amyloid positron emission tomography (PET) or CSF Aβ42 or Aβ42/Aβ40 ratio [9]. T biomarker, aggregated tau (neurofibrillary tangles (NFTs)) or related pathologic state, could be reflected by tau PET or CSF phosphorylated tau. N biomarker, neurodegeneration or neuronal injury, could be evaluated by anatomic magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG) PET, or CST total tau [7]. In the MCI stage, CSF-based biomarkers could also predict prognosis [10]. The most accurate way to quantify pathological accumulation in a live brain is using PET imaging, but its expense and complexity prevent it from becoming widely used [11]. Similarly, most patients are unwilling to undergo a lumbar puncture to get CSF since it is invasive. In other words, existing pathological biomarkers are difficult to popularize due to expense, radiation, complexity, and invasiveness which results in low patient acceptance. This emphasizes the need for less expensive and invasive methods.
Proteomics is the comprehensive study of the varied properties of proteins and peptides to fully describe the structure, function, and regulation of biological systems in both health and disease status [12]. Establishing human disease proteomics could contribute to clinical diagnosis and therapy [13]. The study and validation of biomarkers as well as the discovery and development of new medications might both benefit from proteomics [14]. As for applications in AD, unprecedented proteome coverage of bio-fluids, including cerebrospinal fluid and serum [15], yields new potential biomarkers for AD.
Urine is less intrusive, more accessible, and is not subject to homeostatic systems which accommodates several variations that might represent the body’s condition [16]. Besides, it has been suggested that urine was applied in neurodegenerative diseases [17]. In AD, secreted phosphoprotein 1 (SPP1), gelsolin (GSN), and insulin-like growth factor-binding protein 7 (IGFBP7) were suggested to differ in expression in the urine of AD patients and behave as potential biomarkers [18]. Moreover, Alzheimer-associated neuronal thread protein (AD7c-NTP) [19, 20] was often detected in urine in the early stage of AD and MCI which was also suggested to be a biomarker, as well as apolipoprotein C3 (ApoC3) [21] which was validated by enzyme-linked immunosorbent assay (ELISA). Considering these backgrounds, the use of urine proteomics in the AD area is promising.
In this study, we firstly enrolled AD patients, MCI patients, and cognitive normal (CN) subjects. Then, we collected urine samples, and the urine samples were undergone an LC–MS/MS test. We aim to conduct an analysis based on urine proteomics and machine learning to identify novel diagnostic panels for early diagnosis of MCI and AD.

Methods

Subject enrollment

This study was a cross-sectional study that enrolled participants from China-Japan Friendship Hospital from April 2022 to November 2022. A total of 162 participants, over 50 years old, including 57 AD patients, 43 MCI patients, and 62 CN subjects were included in the final analysis. Risk factors were collected, and APOE genotypes were classified into ε4 carriers and non-carriers. Sex, living status, education, smoking status, and family histories matched among the groups. Besides, the distribution of hypertension, diabetes, hyperlipidemia, heart diseases, and cerebrovascular diseases among the three groups did not reach statistical significance. Age, the most important risk factor of AD, was more senior in the AD group compared to the CN group. APOE ε4, the main genetic risk factor for sporadic AD, was more prevalent in the AD and MCI groups compared with the CN group. The overall information is summarized in Table 1.
Table 1
Basic information and risk factors of included participants
 
AD (n = 57)
MCI (n = 43)
CN (n = 62)
p
Age (median, P25, P75)
79 (72.5, 82)
74 (68, 78)
70(63.75, 73.5)
< 0.001a
Gender (male/female)
27/30
14/29
22/40
0.253
Living alone (yes/no)
1/56
0/43
2/60
0.482
Education (median, P25, P75)
12 (9, 16)
12 (9, 15)
15 (11, 16)
0.054
Smoking (yes/no)
15/42
8/35
10/52
0.366
Hypertension (yes/no)
22/35
15/28
31/31
0.247
Diabetes (yes/no)
11/46
5/38
16/46
0.199
Hyperlipidemia (yes/no)
23/34
23/20
35/27
0.186
Heart diseases (yes/no)
16/41
10/33
10/52
0.288
Cerebrovascular diseases (yes/no)
14/43
8/35
11/51
0.618
Family history (yes/no)
10/47
7/36
13/49
0.808
APOE (ε4 carrier/non-carrier)
27/30
21/22
14/48
0.005ab
aSignificant differences between AD and CN (Bonferroni-corrected p < 0.05)
bSignificant differences between MCI and CN (Bonferroni-corrected p < 0.05)
All subjects underwent medical history collection, a battery of neuropsychological assessments and apolipoprotein E (APOE) genotype test. Most individuals underwent quantitative electroencephalography (qEEG) and magnetic resonance imaging (MRI). The study protocol was approved by the China-Japan Friendship Hospital ethics committee and institutions (Ethics ID: 2020–31-Y06-32). Consent forms were obtained from all participants.

Inclusion and exclusion criteria

AD is clinically diagnosed using the 2011 National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria [5]. The contents are as follows: (1) meet the core clinical criteria including interference with the ability to complete daily activities and a decline from previous levels, (2) characterized by insidious onset and clear-cut history of decline of cognition, and (3) excluding dementia due to other etiologies.
MCI is defined with the 2011 NIA-AA diagnostic criteria [22], as the following shows: (1) concern about a cognition decline compared with the previous status, reported by the patient himself, the informant, or a skilled physician; (2) decline in at least one cognitive domain after age and education adjustment; (3) maintenance of independent function in daily life activities; and (4) not meeting the diagnostic criteria for dementia.
CN controls were those who performed normally on the standardized neuropsychological tests and with or without cognitive complaints or concerns during the structured interview.
Briefly, MMSE cutoff points for dementia/non-dementia were 16/17 for illiterate, 19/20 for individuals with 1–6 years of education, and 23/24 for individuals with 7 or more years of education [23]. The ADL cutoff was 26. The definition of cognitive decline in domains was a decrease of more than 1.5 standard deviations in at least one test. Besides, medical history and imaging evidence were taken into consideration. In summary, patients were diagnosed according to the clinical criteria based on comprehensive assessments.
The exclusion criteria are as follows: (1) cognitive decline caused by severe psychiatric disorders or mental retardation; (2) cognitive impairment caused by other neurological diseases, such as trauma, stroke, tumor, parkinsonism, encephalitis or epilepsy, or other types of dementia, such as frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VaD); (3) cognitive impairment caused by diseases of other systems such as severe anemia and thyroid disorders; (4) a history of urinary system disorders, malignant tumor, or other severe diseases; and (5) inability to cooperate in completing neuropsychological tests or incomplete clinical data.

Neuropsychological scale assessment

The neuropsychological test battery included measures of global cognition and cognitive performance in the domains of memory, executive function, attention, language, and visuospatial ability. Participants were administered the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) for global cognition. The Activity of Daily Living Scale (ADL) was used for accessing the function ability during daily life. The Rey Auditory Verbal Learning Test-immediate recall (RAVLT-I) and Rey Auditory Verbal Learning Test-delayed recall (RAVLT-D) were administered to assess memory; Digit Span Test (DST)-Backward and Stroop Color and Word Test (SCWT) were used for accessing executive function; DST-Forward and Symbol Digit Modalities Test (SDMT) were used for accessing attention; Boston Naming Test (BNT) and Verbal Fluency Test (VFT) were administered to assess language. In addition, the Clock Drawing Test (CDT) and Rey Complex Figure Test (RCFT) were utilized to assess visuospatial ability. The above scales have been applied in clinical practice and published in previous articles from our team [24].

Urine sample preparation

A midstream of random urine was collected and stored at − 80 °C. A biosafety level II lab was used to prepare samples. The pellet from the urine was obtained after being centrifuged at 176,000 g for 1 h and then was re-suspended using 40 μL of resuspension buffer containing 50 mmol L−1 Tris–HCl, 250 mmol L−1 sucrose, pH 8.5, and then reduced with 50 mmol L−1 dithiotheitol (DTT) at 65 °C for 30 min. After adding 160 μL wash buffer (10 mmol L−1 Tris–HCl, pH 7.4, 100 mmol L−1 NaCl), a second ultracentrifugation at 176,000 g was performed for 30 min. The pellet was re-suspended with 30 μL 50 mM NH4HCO3, heated for 3 min at 95 °C, cooled to room temperature, and then digested by trypsin at a protease-to-protein ratio of 1:100 (w/w), incubating overnight at 37 °C.

LC–MS/MS analysis

The digested peptides were vacuum-dried in a SpeedVac. Then, samples were stored at − 80 °C until further use. Peptide samples were re-dissolved in 0.1% formic acid (FA)-H2O. One-microgram peptide samples were loaded onto a trap column (100 μm × 2 cm, homemade; particle size, 3 μm; pore size, 120 Å; SunChrom, USA). Solvent A was 0.1% FA in H2O, and solvent B was 0.08% FA and 20% H2O in Acetonitrile (ACN). Peptides were separated by a homemade silica microcolumn (150 μm × 10 cm, particle size, 1.9 μm; pore size, 120 Å; SunChrom, USA) with a gradient of 5–35% solvent B at a flow rate of 800 nL/min for 30 min. Liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was performed on a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific, USA). The instrument was run in the data-dependent acquisition (DDA) mode. The whole scan was processed in the Orbitrap from m/z 300–1400 at a resolution of 60,000 with an automatic gain control (AGC) target of 3e6 and a 20-ms maximum injection time. With a normalized collision energy of 27%, the top 40 most intense ions in each scan cycle were chosen for high-energy collision dissociation (HCD) fragmentation. For the MS/MS scan, the fragment ions were identified in the Orbitrap with a resolution of 7500, an AGC target of 5e4, a maximum injection time of 12 ms, and a dynamic exclusion of 15 s. Trypsin digests of 293 T cells were used to prepare quality control samples which were then routinely evaluated to determine the sensitivity and reproducibility of LC–MS/MS. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://​proteomecentral.​proteomexchange.​org) via the iProX partner repository [25, 26] with the dataset identifier PXD044672.

Protein identification and label-free quantification (LFQ)

The Firmiana platform was used to process the mass spectrometry data [27]. The MASCOT search engine (Matrix Science, version 2.3.01) was used to identify proteins in the NCBI human RefSeq protein database (published on 04/07/2023, 33,118 entries). Precursor ion mass tolerance was set to 20 ppm, while product ion mass tolerance was set at 0.05 Da. Trypsin digestion may miss at most one cleavage. Dynamic modifications included methionine oxidation and N-terminal acetylation. For the following analyses, only ≥ 1 unique and strict peptide, ≥ 2 strict peptides (ion score > 20), or ≥ 3 strict peptides with protein levels equal to 1% FDR were employed. Protein quantification was carried out using the intensity-based absolute quantification (iBAQ) algorithm [28]. We converted the iBAQ to the fraction of total (FOT) to normalize the differences in sample amounts [29], which was calculated by the iBAQ value of each protein divided by the total iBAQ of the sample, multiplied by 105. All missing values were replaced with zeros. Proteins detected in more than 50% of the samples were included for further analysis. A total of 608 proteins were retained, and the imputation of missing values was based on the k-nearest neighbor (KNN) method using the “Wu Kong” platform (https://​www.​omicsolution.​org/​wkomics/​main/​).

Statistical analysis and bioinformatics analysis

SPSS 23.0 was used for statistical analysis. The Shapiro–Wilk test was used to examine the normality of quantitative data. The mean (x ± s) was used for the description of normal data while non-normal data used median (P25, P75). Analysis of variance (ANOVA) was used for normal data mean comparison while the Kruskal–Wallis H test was utilized for non-normal data distribution comparison. For post hoc comparisons, p-values were Bonferroni-corrected. Besides, Pearson’s chi-square test or Fisher’s exact probability was used for the comparison of the proportions of categorical variables. Statistical significance was defined as a two-tailed p-value < 0.05. To construct a protein–protein interaction (PPI) network, we used the stringApp in cytoscape, and BiNGo in cytoscape was used for Gene Ontology (GO) enrichment with Benjamini–Hochberg corrected p-value < 0.05. In parallel, R (4.1.0) was used for bioinformatics analysis. Differential urinary proteins were filtered utilizing limma package [30] with a threshold of p < 0.05 and the absolute value of log2 fold change (log2FC) > 0.58 after log2 transformation and normalization. Heatmap was presented using pHeatmap [31], and the volcano plot was presented using EnhancedVolcano [32]. The expression levels of selected proteins were shown in the boxplot by ggpubr [33] package. Gene set enrichment analysis (GSEA) was used to investigate various GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that might be related with AD or MCI when compared to CN in all proteins. clusterProfiler package [34, 35] was utilized for enrichment analysis while enrichplot package [36] was utilized for visualization. Moreover, the corrplot [37] package was used for the visualization of the correlation relationship.

Machine learning

In order to distinguish AD from CN and MCI from CN, machine learning was utilized to determine the best multivariate signatures, which included both proteins and demographic information (age and APOE 4 status) as input parameters. The classifier consisted of feature selection and classifiers [38]. Briefly, the dataset was separated into a training set (0.7) and a test set (0.3). The least absolute shrinkage and selection operator (LASSO) was utilized to select the “n” top input variables that best differentiated AD or MCI diagnostic groups with minimum mean square error (MSE). On top of these “n” characteristics, support vector machine (SVM) classifiers were built to forecast the result under tenfold cross-validation. Linear, polynomial, radial, and sigmoid kernel functions were compared. Accuracy and area under the curve (AUC) (receiver operating characteristic (ROC) curve) were used for the diagnostic value evaluation when testing the model in the test set.

Results

Clinical characteristics of enrolled participants

Table 2 presented the cognitive assessment results, percentage of abnormal qEEG, and medial temporal lobe atrophy (MTA) scales of each group. As for neuropsychological assessments, the results showed that there were significant differences among the three groups using the Kruskal–Wallis H test (p < 0.001). For post hoc comparisons, there were differences between the AD and CN groups as well as the MCI and CN groups in global cognition as indicated by MMSE and MoCA, memory domain as indicated by RAVLT-I and RAVLT-D, executive function as indicated by DST-Backward and SCWT, attention domain when indicated by SDMT, language as indicated by VFT and BNT, and visuospatial processing as indicated by CDT and RCFT. There were only differences between the AD and CN groups in ADL and DST-Forward. The individual basic information and results of neuropsychological tests for each participant were uploaded as Additional file 6: Table S1. Besides, the percentage of abnormal qEEG was higher in the AD group than in the CN group (p < 0.05). In parallel, there were differences between AD and CN in MTA scales (p < 0.001) in which the left-sided hippocampus atrophy of patients was more severe.
Table 2
Neuropsychological assessment and other clinical indicators of included participants
 
AD
MCI
CN
p
Global cognition
 MMSE
15 (9.5, 19)
24 (22, 26)
27 (26, 28)
< 0.001ab
 MoCA
7 (4, 12)
18 (13.75, 21)
23 (21, 26)
< 0.001ab
 ADL
36.5 (29, 49.75)
20 (20, 23)
20 (20, 20)
< 0.001a
Memory
 RAVLT-I
8.5 (2, 16.25)
20.5 (14.75, 24.25)
32.5 (26.75, 41.5)
< 0.001ab
 RAVLT-D
0 (0, 0)
0 (0, 0)
6 (4, 8)
< 0.001ab
Executive function
 DST-Backward
3 (1.5, 3)
3 (3, 4)
4 (3, 4)
< 0.001ab
 SCWT
24 (7, 41)
46 (38, 49)
50 (46.25, 50)
< 0.001ab
Attention
 DST-Forward
7 (6, 8)
8 (6.75, 9)
8.5 (8, 9)
< 0.001a
 SDMT
0 (0, 7.75)
20 (13.5, 29)
28 (20, 39.25)
< 0.001ab
Language
 BNT
10 (7, 16.25)
19 (15, 23)
26 (23, 27.25)
< 0.001ab
 VFT
15 (8.75, 21)
26 (23, 34)
40 (34, 49)
< 0.001ab
Visuospatial ability
 CDT
5 (1, 17)
22 (15, 28)
26 (24, 30)
< 0.001ab
 RCFT
0 (0, 0)
2 (0, 8.5)
11 (5, 17)
< 0.001ab
 qEEG (abnormal%)
64.6
51.5
35.9
0.041a
 MTA-Left
3 (2, 3)
1.5 (1, 2)
0 (0, 1)
< 0.001a
 MTA-Right
2 (2, 3)
1 (1, 1.75)
0 (0, 1)
< 0.001a
MMSE Mini-Mental Status Examination, MoCA Montreal Cognitive Assessment, ADL Activity of Daily Living Scale, RAVLT-I Rey Auditory Verbal Learning Test-Immediate, RAVLT-D Rey Auditory Verbal Learning Test-Delay, DST Digit Span Test, SCWT Stroop Color and Word Test, TMT Trail Making Test, SDMT Symbol Digit Modalities Test, BNT Boston Naming Test, VFT Verbal Fluency Test, CDT Clock Drawing Test, RCFT Rey Complex Figure Test, qEEG quantitative electroencephalography, MTA Medial Temporal Lobe Atrophy Scale
aSignificant differences between AD and CN (Bonferroni-corrected p < 0.05)
bSignificant differences between MCI and CN (Bonferroni-corrected p < 0.05)

Identified proteins and differential urinary proteins

The proteomics analysis performed was a LFQ quantitative analysis in DDA mode. In total, 3366 proteins were identified. Only the protein that could be detected in the majority (more than 50%) of the samples was included, and at last, a total of 608 proteins were included for further analysis (Additional file 7: Table S2). After imputing missing values using the KNN method, a complete expression matrix was constructed. GSEA results of all proteins were shown in Additional file 1: Fig. S1. In AD samples, a number of biological pathways and processes related to the immune system were enriched, whereas in MCI samples, a number of biological pathways and processes related to metabolism were enriched.
The protein expression levels of the samples were log2 transformed and normalized. Differential urinary proteins were filtered with a threshold of p < 0.05 and the absolute value of log2 fold change (log2FC) > 0.58. Compared to the CN group, significantly differential proteins were filtered in the AD group and MCI group by setting the threshold above. A table with the log2FC, p-values, and Benjamini–Hochberg corrected p-values of the 608 proteins included in the analysis was uploaded as Additional file 8: Table S3. The expression of the differential proteins in the AD group was displayed as a heatmap and a volcano plot (Fig. 1A, B) while the expression of the differential proteins in the MCI group was shown in Fig. 1C, D. There were 33 significantly differential proteins between the AD and CN groups among the 608 proteins included in the analysis, including 21 upregulated ones and 12 downregulated ones. In parallel, there were 15 significantly differential proteins between the MCI and CN groups among the 608 proteins included in the analysis, including 7 upregulated ones and 8 downregulated ones. These differential proteins were respectively inputted in LASSO for diagnostic panel selection. GSTA1 was downregulated in both AD and MCI while EHD4 and C9 were both upregulated in AD and MCI urine samples. The differential proteins between the AD and MCI groups were shown in Additional file 2: Fig. S2. A Venn diagram showing the intersection between the groups was shown in Additional file 3: Fig. S3.

Protein–protein interaction network construction

With the help of stringApp in cytoscape, differential proteins were inputted, and the PPI network was constructed (Fig. 2). While proteins with an unknown 3D structure were represented by empty nodes, those with a known or predicted 3D structure were represented by filled nodes. The red nodes indicated upregulated proteins, and the blue nodes indicated downregulated proteins. The size reflected relative fold change when compared to CN. Besides, 33 biological processes in the AD-CN group and 67 biological processes in the MCI-CN group mainly related to the immune system and metabolism were enriched (Benjamini–Hochberg corrected p-value < 0.05). The enrichment networks are shown in Additional file 4: Fig. S4, and relative details are shown in Additional file 9: Table S4.

Identification of a novel diagnostic panel based on the LASSO model

Based on previous analysis, we extracted all differential proteins (33 in the AD-CN group and 15 in the MCI-CN group) plus age and APOE ε4 status to construct the LASSO model. For the AD-CN model, 13 proteins, age, and APOE ε4 status were identified when MSE reached minimum with the value of lambda (min) equaling 0.03225 (Fig. 3A). DDC, CTSC, EHD4, GSTA3, SLC44A4, GNS, GSTA1, ANXA4, PLD3, CTSH, HP, RPS3, CPVL, age, and APOE ε4 status were included in AD diagnostic panel. The boxplots showed the expression value of these proteins (Fig. 3B). Similarly, for the MCI-CN model, 10 proteins, age, and APOE ε4 status were identified when MSE reached minimum with the value of lambda (min) equaling 0.0191 (Fig. 3C). TUBB, SUCLG2, PROCR, TCP1, ACE, FLOT2, EHD4, PROZ, C9, SERPINA3, age, and APOE ε4 status were included in the MCI diagnostic panel. The boxplots showed the expression value of these proteins (Fig. 3D). EHD4 was considered valuable for both AD and MCI diagnosis.

Evaluation of diagnostic value based on the SVM model

Based on LASSO results, we built SVM classifiers with tenfold cross-validation to investigate the ideal multivariate signatures that distinguished AD or MCI from CN. After training in training sets, we compared the relative indicators using different kernel functions in SVM. Radial achieved the highest predictive value with an accuracy of 0.9881, an F1 measure of 0.9876, and an AUC of 0.9739 in the AD-CN group and an accuracy of 0.973, an F1 measure of 0.9688, and an AUC of 0.9985 in the MCI-CN group in the training set. The model achieved a high predictive value with an accuracy of 0.7714, an F1 measure of 0.6923, and an AUC of 0.8824 in the AD-CN group and an accuracy of 0.8387, an F1 measure of 0.7386, and an AUC of 0.8143 in the MCI-CN group in the test set. Figure 4 shows the ROC curve in the training sets and test sets either in the AD-CN group (Fig. 4A, B) or in the MCI-CN group (Fig. 4C, D).

Diagnostic proteins were correlated with cognitive functions

Diagnostic proteins were found to be correlated with cognitive tests, although most weakly (Fig. 5). Significant labels were shown on the dots. Among 22 diagnostic proteins, DDC, CTSC, EHD4, GNS, GSTA1, RPS3, PROCR, and SERPINA3 were significantly correlated with more than half of cognitive tests while GSTA3, SLC44A4, ANXA4, PLD3, CTSH, CPVL, SUCLG2, TCP1, ACE, PROZ, and C9 were significantly correlated with less than half cognitive tests. Nevertheless, none of the correlations between HP, TUBB, or FLOT2 and cognitive domains reach significance. The relative ρ and p were shown in Additional file 10: Table S5, and scatter dot plots were shown in Additional file 5: Fig. S5.

Discussion

In this research, we firstly enrolled 57 AD patients, 43 MCI patients, and 62 CN subjects from China-Japan Friendship Hospital from April 2022 to November 2022, collected urine samples, and conducted an LC–MS/MS analysis. Consistent with previous results, age and APOE ε4 status were remarkable risk factors. Most cognitive tests differed in three groups, and qEEG and MTA scales differed between the AD and CN groups. Then, we reported the identified urine proteins, constructed a PPI network, and conducted differential analysis. There was a total of 608 proteins included in the analysis with which 33 significantly differential proteins between the AD and CN groups, including 21 upregulated ones and 12 downregulated ones. In parallel, there were 15 significantly differential proteins between the MCI and CN groups, including 7 upregulated ones and 8 downregulated ones. Next, we attempted to figure out the novel diagnostic panels based on the LASSO and SVM models. AD diagnostic panel achieved an AUC of 0.8824 in the test set while MCI diagnostic panel achieved an AUC of 0.8143 in the test set. Finally, we conducted a correlation analysis and found that diagnostic proteins were weakly correlated with cognitive functions.
As for basic information collection, different from previous research [3], only the distribution of age and APOE ε4 status varied among the three groups. The difference might be caused by the sample size and the representativeness of samples, such as sources of the patients, in which our research was based on a general hospital in Beijing. As for clinical characteristics, the results of cognitive tests, qEEG, and MRI significantly differed in the three groups which indicated the reliability of our clinical diagnosis.
There were few studies investigating the role of urine proteins in AD. Watanabe et al. [39] identified a total of 1705 unique proteins in 18 AD and 18 controls while only 578 proteins were identified in at least half samples of either group. The number of proteins appearing in half of the samples was similar to our result. Besides, Chen et al. [40] identified 4157 proteins in 9 AD patients and 3977 proteins in 21 normal controls (NC). However, they focused on VaD which compared the results of VaD to AD and NC.
In our study, we identified 2 diagnostic panels. As for AD diagnosis, DDC was reported to elevate in the CSF of Aβ- and p-tau-positive patients compared to controls [41]. CTSC was defined as a risk factor for AD by GWAS which was significantly upregulated in the AppNL−G−F/NL−G−F cortex [42, 43]. GSTA3 was significantly elevated in AD rats’ hippocampus by using label-free nano-LC–MS/MS which further speculated the role of diagnosis mechanism and drug discovery [44]. Besides, PLD3 was suggested to be the gene that increases AD risk [4547] and was downregulated in AD brains which might participate in AD pathogenesis through amyloid precursor protein (APP) processing [48, 49]. PLD3 affected axonal spheroids and network defects in AD [50]. Moreover, in another bioinformatics research, HP was also identified as playing a significant role [51]. In human samples, higher serum levels of HP were observed in AD [52, 53] and MCI [52] patients than controls. Findings from Philbert et al. [54] indicated a pervasive underlying mechanism in which micro-vasculopathy promoted erythrocyte leakage, elevating tissue-free hemoglobin and causing the observed increases in HP in the brains of sporadic AD while Cigliano et al. found that HP interacted with APOE and Aβ and influenced their crosstalk [55]. In rat hippocampus, HP increased with age while further in the U-87 MG cell line, HP was proved to influence Aβ peptide aggregation or clearance [56]. Nevertheless, we failed to search the articles reporting the relationship between EHD4, SLC44A4, GNS, GSTA1, CSTH, RPS3 or CPVL, and AD.
As for MCI diagnosis, there was little research reporting the direct relationship between diagnostic proteins and MCI except for ACE. ACE D-allele may be a genetic risk factor for cognition which increased serum ACE levels [57, 58], and ACE inhibitor is a protective factor against cognitive decline [59]. However, in the continuum of MCI progression, several proteins were suggested to be involved in AD which shares similar alterations. TUBB was identified as a hub gene in AD [60] while according to covalent protein painting, the accessibility of lysine residues for covalent modification in TUBB was altered in human postmortem brain samples of AD patients [61]. By integrating human cortex, CSF, and serum proteomic datasets, SUCLG2 was prioritized as one of the most promising AD signature proteins [62]. Our results provide additional data to the above conclusion. Besides, SUCLG2 (rs62256378) was found to be associated with Aβ1–42 level, and functional microglia experiments showed that SUCLG2 participated in Aβ1–42 clearance [63]. Serum-soluble PROCR levels were higher in AD patients compared with controls while the difference between MCI patients and healthy controls or AD did not reach statistical significance [64]. Moreover, SERPINA3 was identified as a marker gene in AD [65].
In general, some diagnostic proteins were measured in other samples, and some diagnostic proteins were studied in functional studies while the relationship between some diagnostic proteins with AD and MCI remained relatively unexplored. The expression levels of diagnostic proteins in other samples may be consistent or inconsistent with the status in urine, which may be due to gene regulation of expression or to imbalance in urinary excretion. Also, the result may indicate that changes in urine are more sensitive in the early stages of the disease. This suggests that more research is required to determine the mechanisms.
As for the weak correlations among diagnostic proteins and different cognitive domains, generally speaking, compared to laboratory tests, the results of the neuropsychological scales are subjective. There may be situations where patients did not cooperate, or there may be deviations due to the tester’s different judgment. In this case, urine protein results can be used for auxiliary diagnosis, and the results will be more objective, making the diagnostic basis more sufficient.
Due to some limitations, our findings should be reported with caution. First, the patients came from a single site. We lacked real-world research from multiple hospitals and communities. Whether the findings can be applicable to other populations, more research is required. Second, the proteins identified in more than 50% of the samples were relatively few. Detection methods and data processing methods should be improved. Third, no in vivo or in vitro experiments were conducted to investigate the mechanisms of the diagnostic proteins described in this study that participate in AD pathophysiological processes. Besides, one thing to note is that machine learning steps used differential proteins derived from the whole dataset, and therefore, the performance estimation on the test set might be optimistic. Thus, some of these results may be coincidental.

Conclusions

In conclusion, we performed proteomics analysis based on LC–MS/MS using urine samples from 57 AD patients, 43 MCI patients, and 62 CN subjects. After multiple traditional statistical analyses and bioinformatics analyses, we identified a novel AD diagnostic panel that included DDC, CTSC, EHD4, GSTA3, SLC44A4, GNS, GSTA1, ANXA4, PLD3, CTSH, HP, RPS3, CPVL, age, and APOE ε4 and an MCI diagnostic panel which included TUBB, SUCLG2, PROCR, TCP1, ACE, FLOT2, EHD4, PROZ, C9, SERPINA3, age, and APOE ε4. The urine diagnostic panel could help clinicians differentiate AD and MCI from CN, the method of which is convenient, non-invasive, and valuable for diagnosis.

Acknowledgements

We thank Dr. Jianming Zeng (University of Macau) and all the members of his bioinformatics team, biotrainee, for generously sharing their experience and codes. We thank Dr. Shisheng Wang (West China Hospital, Sichuan University) and Dr. Chengpin Shen (Omicsolution Co., Ltd.) for giving some advice about data analysis and “Wu Kong” platform (https://​www.​omicsolution.​com/​wkomics/​main/​) for relative KNN analysis.

Declarations

The study protocol was approved by the China-Japan Friendship Hospital ethics committee and institutions (Ethics ID: 2020–31-Y06-32). Consent forms were obtained from all participants. The research was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
1.
3.
Zurück zum Zitat Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. The Lancet Public Health. 2020;5(12):e661–71.PubMedCrossRef Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. The Lancet Public Health. 2020;5(12):e661–71.PubMedCrossRef
5.
Zurück zum Zitat McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.PubMedCrossRef Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.PubMedCrossRef
7.
Zurück zum Zitat Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62.CrossRef Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62.CrossRef
8.
9.
Zurück zum Zitat Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral
10.
Zurück zum Zitat van Maurik IS, Vos SJ, Bos I, Bouwman FH, Teunissen CE, Scheltens P, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034–44.PubMedCrossRef van Maurik IS, Vos SJ, Bos I, Bouwman FH, Teunissen CE, Scheltens P, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034–44.PubMedCrossRef
11.
Zurück zum Zitat Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014;10(1):109–14.PubMedPubMedCentralCrossRef Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014;10(1):109–14.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33(Suppl):311–23.PubMedCrossRef Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33(Suppl):311–23.PubMedCrossRef
13.
Zurück zum Zitat Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–113.PubMedCrossRef Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–113.PubMedCrossRef
14.
Zurück zum Zitat Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22(1):19–37.PubMedCrossRef Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22(1):19–37.PubMedCrossRef
15.
Zurück zum Zitat Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, et al. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16(1):55.PubMedPubMedCentralCrossRef Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, et al. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16(1):55.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat An M, Gao Y. Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics. 2015;13(6):345–54.PubMedCrossRef An M, Gao Y. Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics. 2015;13(6):345–54.PubMedCrossRef
18.
Zurück zum Zitat Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, et al. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J Alzheimers Dis. 2018;65(2):421–31.PubMedCrossRef Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, et al. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J Alzheimers Dis. 2018;65(2):421–31.PubMedCrossRef
19.
Zurück zum Zitat Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, et al. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 2015;22(4):649–52.PubMedCrossRef Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, et al. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 2015;22(4):649–52.PubMedCrossRef
20.
Zurück zum Zitat Youn YC, Park KW, Han SH, Kim S. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12(5):372–6.PubMedCrossRef Youn YC, Park KW, Han SH, Kim S. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12(5):372–6.PubMedCrossRef
21.
Zurück zum Zitat Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Kitamura K, Niida S, et al. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2020;10(3):94–104.PubMedPubMedCentralCrossRef Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Kitamura K, Niida S, et al. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2020;10(3):94–104.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedPubMedCentralCrossRef Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Li H, Jia J, Yang Z. Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis. 2016;53(2):487–96.PubMedCrossRef Li H, Jia J, Yang Z. Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis. 2016;53(2):487–96.PubMedCrossRef
24.
Zurück zum Zitat Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, et al. Disrupted white matter integrity and cognitive functions in amyloid-β positive Alzheimer’s disease with concomitant lobar cerebral microbleeds. J Alzheimers Dis. 2022;85(1):369–80.PubMedCrossRef Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, et al. Disrupted white matter integrity and cognitive functions in amyloid-β positive Alzheimer’s disease with concomitant lobar cerebral microbleeds. J Alzheimers Dis. 2022;85(1):369–80.PubMedCrossRef
27.
Zurück zum Zitat Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, et al. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol. 2017;35(5):409–12.PubMedCrossRef Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, et al. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol. 2017;35(5):409–12.PubMedCrossRef
28.
Zurück zum Zitat Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.PubMedCrossRef Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.PubMedCrossRef
29.
Zurück zum Zitat Leng W, Ni X, Sun C, Lu T, Malovannaya A, Jung SY, et al. Proof-of-concept workflow for establishing reference intervals of human urine proteome for monitoring physiological and pathological changes. EBioMedicine. 2017;18:300–10.PubMedPubMedCentralCrossRef Leng W, Ni X, Sun C, Lu T, Malovannaya A, Jung SY, et al. Proof-of-concept workflow for establishing reference intervals of human urine proteome for monitoring physiological and pathological changes. EBioMedicine. 2017;18:300–10.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef
34.
35.
Zurück zum Zitat Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (New York, NY). 2021;2(3):100141. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (New York, NY). 2021;2(3):100141.
38.
Zurück zum Zitat Shi L, Westwood S, Baird AL, Winchester L, Dobricic V, Kilpert F, et al. Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimers Dement. 2019;15(11):1478–88.PubMedPubMedCentralCrossRef Shi L, Westwood S, Baird AL, Winchester L, Dobricic V, Kilpert F, et al. Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimers Dement. 2019;15(11):1478–88.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, et al. Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra. 2019;9(1):53–65.PubMedPubMedCentralCrossRef Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, et al. Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra. 2019;9(1):53–65.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Chen R, Yi Y, Xiao W, Zhong B, Zhang L, Zeng Y. Urinary protein biomarkers based on LC-MS/MS analysis to discriminate vascular dementia from Alzheimer’s disease in Han Chinese population. Front Aging Neurosci. 2023;15:1070854.PubMedPubMedCentralCrossRef Chen R, Yi Y, Xiao W, Zhong B, Zhang L, Zeng Y. Urinary protein biomarkers based on LC-MS/MS analysis to discriminate vascular dementia from Alzheimer’s disease in Han Chinese population. Front Aging Neurosci. 2023;15:1070854.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Motta C, Assogna M, Bonomi CG, Di Lorenzo F, Nuccetelli M, Mercuri NB, et al. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer’s disease continuum. Eur J Neurol. 2023;30(4):839–48.PubMedCrossRef Motta C, Assogna M, Bonomi CG, Di Lorenzo F, Nuccetelli M, Mercuri NB, et al. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer’s disease continuum. Eur J Neurol. 2023;30(4):839–48.PubMedCrossRef
42.
Zurück zum Zitat Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep. 2017;7(1):17762.PubMedPubMedCentralCrossRef Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep. 2017;7(1):17762.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–20.PubMedPubMedCentralCrossRef Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–20.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, et al. Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci. 2017;105:119–26.PubMedCrossRef Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, et al. Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci. 2017;105:119–26.PubMedCrossRef
45.
Zurück zum Zitat Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef
46.
Zurück zum Zitat Zhang DF, Fan Y, Wang D, Bi R, Zhang C, Fang Y, et al. PLD3 in Alzheimer’s disease: a modest effect as revealed by updated association and expression analyses. Mol Neurobiol. 2016;53(6):4034–45.PubMedCrossRef Zhang DF, Fan Y, Wang D, Bi R, Zhang C, Fang Y, et al. PLD3 in Alzheimer’s disease: a modest effect as revealed by updated association and expression analyses. Mol Neurobiol. 2016;53(6):4034–45.PubMedCrossRef
47.
Zurück zum Zitat Tan MS, Zhu JX, Cao XP, Yu JT, Tan L. Rare variants in PLD3 increase risk for Alzheimer’s disease in Han Chinese. J Alzheimers Dis. 2018;64(1):55–9.PubMedCrossRef Tan MS, Zhu JX, Cao XP, Yu JT, Tan L. Rare variants in PLD3 increase risk for Alzheimer’s disease in Han Chinese. J Alzheimers Dis. 2018;64(1):55–9.PubMedCrossRef
48.
Zurück zum Zitat Blanco-Luquin I, Altuna M, Sanchez-Ruiz de Gordoa J, Urdanoz-Casado A, Roldan M, Camara M, et al. PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease. Clin Epigenetics. 2018;10(1):116.PubMedPubMedCentralCrossRef Blanco-Luquin I, Altuna M, Sanchez-Ruiz de Gordoa J, Urdanoz-Casado A, Roldan M, Camara M, et al. PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease. Clin Epigenetics. 2018;10(1):116.PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612(7939):328–37.PubMedPubMedCentralCrossRef Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612(7939):328–37.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Andujar-Vera F, Garcia-Fontana C, Sanabria-de la Torre R, Gonzalez-Salvatierra S, Martinez-Heredia L, Iglesias-Baena I, et al. Identification of potential targets linked to the cardiovascular/Alzheimer’s axis through bioinformatics approaches. Biomedicines. 2022;10(2):389.PubMedPubMedCentralCrossRef Andujar-Vera F, Garcia-Fontana C, Sanabria-de la Torre R, Gonzalez-Salvatierra S, Martinez-Heredia L, Iglesias-Baena I, et al. Identification of potential targets linked to the cardiovascular/Alzheimer’s axis through bioinformatics approaches. Biomedicines. 2022;10(2):389.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhu CJ, Jiang GX, Chen JM, Zhou ZM, Cheng Q. Serum haptoglobin in Chinese patients with Alzheimer’s disease and mild cognitive impairment: a case-control study. Brain Res Bull. 2018;137:301–5.PubMedCrossRef Zhu CJ, Jiang GX, Chen JM, Zhou ZM, Cheng Q. Serum haptoglobin in Chinese patients with Alzheimer’s disease and mild cognitive impairment: a case-control study. Brain Res Bull. 2018;137:301–5.PubMedCrossRef
53.
Zurück zum Zitat Song IU, Kim YD, Chung SW, Cho HJ. Association between serum haptoglobin and the pathogenesis of Alzheimer’s disease. Intern Med. 2015;54(5):453–7.PubMedCrossRef Song IU, Kim YD, Chung SW, Cho HJ. Association between serum haptoglobin and the pathogenesis of Alzheimer’s disease. Intern Med. 2015;54(5):453–7.PubMedCrossRef
54.
Zurück zum Zitat Philbert SA, Xu J, Unwin RD, Dowsey AW, Cooper GJS. Widespread severe cerebral elevations of haptoglobin and haemopexin in sporadic Alzheimer’s disease: evidence for a pervasive microvasculopathy. Biochem Biophys Res Commun. 2021;555:89–94.PubMedCrossRef Philbert SA, Xu J, Unwin RD, Dowsey AW, Cooper GJS. Widespread severe cerebral elevations of haptoglobin and haemopexin in sporadic Alzheimer’s disease: evidence for a pervasive microvasculopathy. Biochem Biophys Res Commun. 2021;555:89–94.PubMedCrossRef
55.
Zurück zum Zitat Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, et al. Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci. 2014;5(9):837–47.PubMedCrossRef Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, et al. Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci. 2014;5(9):837–47.PubMedCrossRef
56.
Zurück zum Zitat Maresca B, Spagnuolo MS, Cigliano L. Haptoglobin modulates beta-amyloid uptake by U-87 MG astrocyte cell line. J Mol Neurosci. 2014;56(1):35–47.PubMedCrossRef Maresca B, Spagnuolo MS, Cigliano L. Haptoglobin modulates beta-amyloid uptake by U-87 MG astrocyte cell line. J Mol Neurosci. 2014;56(1):35–47.PubMedCrossRef
57.
Zurück zum Zitat Zhang Z, Deng L, Yu H, Shi Y, Bai F, Xie C, et al. Association of angiotensin-converting enzyme functional gene I/D polymorphism with amnestic mild cognitive impairment. Neurosci Lett. 2012;514(1):131–5.PubMedCrossRef Zhang Z, Deng L, Yu H, Shi Y, Bai F, Xie C, et al. Association of angiotensin-converting enzyme functional gene I/D polymorphism with amnestic mild cognitive impairment. Neurosci Lett. 2012;514(1):131–5.PubMedCrossRef
58.
Zurück zum Zitat Li Y, Zhang Z, Deng L, Bai F, Shi Y, Yu H, et al. Genetic variation in angiotensin converting-enzyme affects the white matter integrity and cognitive function of amnestic mild cognitive impairment patients. J Neurol Sci. 2017;380:177–81.PubMedCrossRef Li Y, Zhang Z, Deng L, Bai F, Shi Y, Yu H, et al. Genetic variation in angiotensin converting-enzyme affects the white matter integrity and cognitive function of amnestic mild cognitive impairment patients. J Neurol Sci. 2017;380:177–81.PubMedCrossRef
59.
Zurück zum Zitat Rozzini L, Chilovi BV, Bertoletti E, Conti M, Del Rio I, Trabucchi M, et al. Angiotensin converting enzyme (ACE) inhibitors modulate the rate of progression of amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2006;21(6):550–5.PubMedCrossRef Rozzini L, Chilovi BV, Bertoletti E, Conti M, Del Rio I, Trabucchi M, et al. Angiotensin converting enzyme (ACE) inhibitors modulate the rate of progression of amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2006;21(6):550–5.PubMedCrossRef
60.
Zurück zum Zitat Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR, Huq F, et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290–9.PubMedCrossRef Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR, Huq F, et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290–9.PubMedCrossRef
61.
Zurück zum Zitat Bamberger C, Pankow S, Martinez-Bartolome S, Ma M, Diedrich J, Rissman RA, et al. Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer’s disease. J Proteome Res. 2021;20(5):2762–71.PubMedPubMedCentralCrossRef Bamberger C, Pankow S, Martinez-Bartolome S, Ma M, Diedrich J, Rissman RA, et al. Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer’s disease. J Proteome Res. 2021;20(5):2762–71.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):43.PubMedPubMedCentralCrossRef Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):43.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, et al. SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23(24):6644–58.PubMedPubMedCentralCrossRef Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, et al. SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23(24):6644–58.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Zhu Y, Chen Z, Chen X, Hu S. Serum sEPCR levels are elevated in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(5):517–21.PubMedCrossRef Zhu Y, Chen Z, Chen X, Hu S. Serum sEPCR levels are elevated in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(5):517–21.PubMedCrossRef
65.
Zurück zum Zitat Huang C, Wen X, Xie H, Hu D, Li K. Identification and experimental validation of marker genes between diabetes and Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:8122532.PubMedPubMedCentralCrossRef Huang C, Wen X, Xie H, Hu D, Li K. Identification and experimental validation of marker genes between diabetes and Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:8122532.PubMedPubMedCentralCrossRef
Metadaten
Titel
Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning
verfasst von
Yuye Wang
Yu Sun
Yu Wang
Shuhong Jia
Yanan Qiao
Zhi Zhou
Wen Shao
Xiangfei Zhang
Jing Guo
Bin Zhang
Xiaoqian Niu
Yi Wang
Dantao Peng
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Alzheimer's Research & Therapy / Ausgabe 1/2023
Elektronische ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01324-4

Weitere Artikel der Ausgabe 1/2023

Alzheimer's Research & Therapy 1/2023 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.