Skip to main content
Erschienen in: Insights into Imaging 1/2021

Open Access 01.12.2021 | Critical Review

Imaging diagnosis of classical and new pneumoconiosis: predominant reticular HRCT pattern

verfasst von: Akira Masanori

Erschienen in: Insights into Imaging | Ausgabe 1/2021

Abstract

Our understanding of the manifestations of pneumoconioses is evolving in recent years. Associations between novel exposures and diffuse interstitial lung disease have been newly recognized. In advanced asbestosis, two types of fibrosis are seen, probably related to dose of exposure, existence of pleural fibrosis, and the host factor status of the individual. In pneumoconiosis of predominant reticular type, nodular opacities are often seen in the early phase. The nodular pattern is centrilobular, although some in metal lung show perilymphatic distribution, mimicking sarcoidosis. High-resolution computed tomography enables a more comprehensive correlation between the pathologic findings and clinically relevant imaging findings. The clinician must understand the spectrum of characteristic imaging features related to both known dust exposures and to historically recent new dust exposures.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BOOP
Bronchiolitis obliterans organizing pneumonia
CT
Computed tomography
DAD
Diffuse alveolar damage
DIP
Desquamative interstitial pneumonia
GIP
Giant cell interstitial pneumonia
HP
Hypersensitivity pneumonitis
HRCT
High-resolution computed tomography
ILO
International Labour Organization
IPF
Idiopathic pulmonary fibrosis
NSIP
Non-specific interstitial pneumonia
PAP
Pulmonary alveolar proteinosis
UIP
Usual interstitial pneumonia

Key points

  • The radiological pattern of known pneumoconiosis is changing in recent years.
  • In advanced asbestosis, two types of fibrosis are seen on HRCT, probably related to dose of exposure, existence of pleural fibrosis, and the host factor status of the individual.
  • Similar and different pathologic and radiologic findings are seen in each metal lung disease.
  • The clinician must understand the spectrum of typical HRCT features related to dust exposures.

Introduction

Pneumoconiosis is a classic disease, but exposures to asbestos and silica dust still affect workers. Asbestos and other harmful minerals have been used worldwide. Asbestos has been banned in the industrialized countries. Even now, there are many people in the world who are associated with mining, production, and uses of asbestos and other harmful minerals in the workplace. Professions and products that have risk of exposure to each of the pneumoconiosis are listed in Table 1.
Table 1
Professions and products that have risk of exposure to each of the pneumoconiosis
Agent
Professions and products
Asbestosis
Hard rock mining, construction, road work, tunneling, sandblasting, foundry work, glass manufacture, asbestos-cement products, asphalt floorings, floor tiles, asbestos textiles, asbestos paper products, friction materials
Talc pneumoconiosis
Paints, cosmetic powders, soapstone, ceramics, asphalt, shoe polish, roofing felts, rubber, fertilizer, refractory filler, paper, textiles
Aluminum pneumoconiosis
Refining of bauxite, aluminum smelting, abrasives, aluminum arch welders, aluminum powder, building materials, glass manufacture
Hard metal lung
Hard metal production, grinding, diamond polishing
Indium lung
Transparent electrodes for liquid crystal displays, touchscreens and solar cells, semiconductors
Classical pneumoconiosis is changing the typical pattern. The prevalence of severe and rapidly progressive pneumoconiosis is increasing [1]. The imaging features of metal-related lung disease, such as hard metal lung and aluminosis, have not been completely understood. Associations between novel exposures and diffuse interstitial lung disease or terminal airways disease have newly recognized [2, 3].
Correlation of high-resolution CT (HRCT) features with history of exposure is most important for the diagnosis of pneumoconiosis. HRCT features of predominant reticular type pneumoconiosis can mimic those of idiopathic interstitial pneumonias. In this article, we demonstrate pathology and HRCT findings of asbestosis, uncommon pneumoconioses, and newly recognized pneumoconioses. Compared to chest radiography, HRCT offers improved correlations between histopathologic and clinically relevant imaging findings [47].

Asbestosis

In early asbestosis, the fibrotic process is limited to the walls of alveoli around the bronchioles. From this centrilobular position, fibrosis extends outward until it ultimately links adjacent bronchioles [8]. The fibrotic process affects the lower lobes of the lungs and may extent to the middle and upper lobes. In a study of the deposition and clearance of asbestos in rats using radioactive tracer techniques, autoradiographs of lung sections indicated that alveolar deposition was relatively uniform initially, that over a period of several months the uniform distribution changed to one in which fibers accumulated in foci that are mainly subpleural, and that these foci acted as centers for the development of nodular fibrosis [9].
In the early stage of asbestosis, the HRCT findings include subpleural dot-like structures, subpleural lines, intralobular interstitial thickening, interlobular septal thickening, ground-glass opacities, and parenchymal bands [46]. CT-pathologic correlation shows that the subpleural dot-like structures correspond to peribronchiolar fibrosis with subsequent involvement of the alveolar ducts and that the subpleural lines correspond to peribronchiolar fibrosis combined with flattening and collapse of the alveoli. Subpleural dot-like structures arranged along the inner chest wall create subpleural lines (Fig. 1) [7].
In advanced asbestosis, there are two patterns of parenchymal abnormalities, i.e., honeycombing and atelectatic induration fibrosis (Fig. 2a, b) [10]. The frequency of honeycombing on HRCT scans is 17–32% [4, 11, 12]. Atelectatic induration fibrosis is characterized by a combination of collapse and collagenous fibrosis filling the alveolar lumens [8, 10]. The atelectatic induration type evolves much more rapidly and is related to high exposures. Atelectatic induration fibrosis is now rarely encountered in industrialized nations; however, such disease is likely to develop if asbestos dust control is neglected [8]. In a study, atelectatic induration fibrosis type showed 920,000 ± 1,360,000 asbestos fibers/g of dry lung, whereas honeycomb type showed 200,000 ± 490,000 asbestos fibers (p < 0.01) [13]. The characteristic HRCT finding is honeycombing, mimicking usual interstitial pneumonia (UIP). The HRCT findings of atelectatic induration fibrosis type are characterized by consolidation with loss of volume and traction bronchiectasis in the consolidated areas. Honeycombing is rare on the images. Pleural plaques, subpleural dots, and subpleural lines are present in both types. Diffuse pleural thickening is more frequent in the atelectatic induration fibrosis type than in the honeycomb type [13]. In patients with advanced disease, subpleural dot-like structures and subpleural lines are found in less severely involved regions of the pulmonary parenchyma [11].
In a cohort referred for diagnosis of an asbestos-related malignancy in the context of litigation, sixty-five cases with both adequate tissue sampling for histopathologic evaluation of asbestos and radiographic assessment of pulmonary fibrosis reported by B-reader who is a physician certified by the National Institute for Occupational Safety and Health (NIOSH) as demonstrating proficiency in classifying radiographs of the pneumoconioses were examined [14]. Of these, 24 cases were diagnosed as positive for asbestosis based on exposure and the presence ILO standard of profusion 1/0 or greater. The six cases of those 24 cases showed histologically proven asbestosis. The remaining 18 cases with B readings ≧ 1/0 showed interstitial fibrosis consistent with smoking-associated pulmonary fibrosis [14]. Another two cases showed histopathologic evidence of asbestosis but an ILO profusion of < 1/0. It may be possible that persons having many diseases other than asbestosis are included under asbestos-exposed persons with B readings ≧ 1/0.
The principal differential diagnosis of asbestosis is from idiopathic pulmonary fibrosis (IPF). Copley et al. [15] concluded that the HRCT pattern of asbestosis closely resembled that of UIP and differed markedly from that of nonspecific interstitial pneumonia (NSIP). They found that patients with asbestosis had coarser fibrosis than those with IPF but not when the analysis was confined to biopsy-proved UIP.
Cysts in asbestosis rarely exceed about 3 mm in diameter when present, but macrocystic honeycombing can be seen in asbestosis. Histopathologically, some cases of asbestosis resemble UIP, while others resemble fibrotic NSIP [8]. It is also said that the changes resemble those of NSIP, or more rarely UIP pathologically [16]. The fibroblastic foci that characterize the UIP pattern of fibrosing alveolitis are seldom observed in asbestosis [8].
The clinical progression is slow or has stabilized over time in asbestosis, as opposed to IPF. However, some of the past cases evolved much more rapidly, presumably related to high exposures.
In the study of pathologic and HRCT evaluation for 33 asbestos workers [17], 15 cases were pathologically diagnosed as asbestosis and 18 cases as various lung fibroses other than asbestosis. They concluded that on HRCT, subpleural lines were the only clue for the diagnosis of asbestosis. Mixed dust fibrosis and chronic interstitial pneumonia of unclassifiable histopathology, which are airway-centered, were included in the study. They may have centrilobular nodules, however, seldom show subpleural dot-like structures along with the pleural surface which create subpleural lines (Fig. 2). Moreover, there is a significant difference between IPF and asbestosis in pleural changes.

Talc pneumoconiosis

High-resolution CT findings in talcosis from inhaled talc consist of diffuse small centrilobular nodules (Fig. 3a), ground-glass opacities, and heterogeneous conglomerate masses with high-attenuation areas consistent with talc deposition. The parenchymal abnormalities are diffuse but most severe in the upper and middle lung zones with relative sparing of the lung bases [1821]. Conglomerated masses in silicosis usually involve the upper-lung zones, while in talcosis they are distributed throughout all lung zones [20, 21]. In talcosis observed in soapstone artisans, interlobular septal thickening was found in all patients, in addition to small centrilobular nodules (75%) and ground-glass opacity (67%) [22]. Slight lymph node enlargement with increased attenuation is visible in some cases of talcosis (Fig. 3b). Increased CT attenuation of lymph nodes and large opacities is caused by large numbers of talc particles [21].
CT findings in talcosis from injected talc include diffuse small nodules, perihilar conglomerated masses with areas of high attenuation, ground-glass opacities, and, particularly in patients with talcosis secondary to methylphenidate abuse, panacinar emphysema [19, 23, 24]. IV talcosis is usually hematogenous in distribution. The small nodules have a predominantly perivascular distribution. A case of pulmonary intravascular talcosis mimicking military tuberculosis has been reported [25].
Inhalation of metals and their fumes can induce a wide range of lung pathology, including granulomatous disease, giant cell interstitial pneumonitis (GIP), chemical pneumonitis, interstitial fibrosis, airways disorders, and cancer. Metals such as aluminum, cobalt, copper, and indium induce pulmonary fibrosis. Metal-induced pulmonary fibrosis has some similarities.

Aluminum pneumoconiosis

Aluminum lung is characterized by diffuse interstitial fibrosis mainly located in the upper and middle lobes of the lung. In the early stages of aluminosis, the HRCT findings are characterized by small rounded and ill-defined centrilobular opacities mainly in the upper lobes [26, 27]. Alveolar septal fibrosis or centrilobular nodules under the resolution of HRCT scans create ground-glass opacity. In addition to centrilobular nodules, the nodular pattern in aluminosis includes nodules in lymphatic distribution mimicking sarcoidosis, probably reflecting a granulomatous lung reaction (Fig. 4a, b).
In advanced stages, it is characterized by subpleural bullous emphysema with an increased risk of spontaneous pneumothorax [28]. The HRCT appearances of aluminum pneumoconiosis may be variable and include nodular, reticular, and upper lung fibrosis pattern (Fig. 4a, b) [28]. Conglomerated masses mimicking silicosis are thought to be affected by exposure to silica other than aluminum dust. Interstitial lung disease in corundum (aluminum oxide) abrasive workers can be accelerating silicosis or mixed dust fibrosis.
Increased attenuation of mediastinal lymph nodes with histologically proven aluminum storage can be seen on CT scans [29].

Hard metal pneumoconiosis

Exposure to hard metal causes asthmatic reaction, hypersensitivity pneumonitis, and pulmonary fibrosis [30]. Patients typically present with hard metal interstitial lung disease after 10–12 years of exposure, but the disease can occur in as little as 2 years [31]. GIP is the classic pathology of cobalt related interstitial lung disease. GIP is characterized by a chronic interstitial pneumonia with fibrosis that is typically bronchiolocentric [32].
The HRCT appearance of hard metal interstitial lung disease may be variable and may mimic sarcoidosis, NSIP, UIP, and fibrotic hypersensitivity pneumonitis [28, 3337]. As for the predominant distribution of parenchymal abnormalities, both upper predominant (Fig. 5a) and lower predominant distribution are reported to the same degree. The major HRCT findings are ground-glass opacities. The ground-glass opacities show diffuse, patchy, or lobular distribution. Reticular opacities and small nodular opacities are also seen. The small nodules are distributed mainly in centrilobular location [28, 3537]. Some patients show perilymphatic distribution, mimicking sarcoidosis [33, 36]. In some cases with hard metal pneumoconiosis, the predominant HRCT finding is centrilobular nodules. The centrilobular nodules on HRCT correspond to the histologic finding of bronchiolocentric fibrosis [28]. Ground-glass centrilobular nodules and air trapping are the predominant findings in cobalt-related ILD with a HP pattern [38].
In the early stages of hard metal pneumoconiosis, the HRCT scan shows ground-glass opacities and centrilobular nodules (Fig. 5b) [39]. Traction bronchiectasis and architectural distortion are seen in advanced cases. Clustered cystic lesions are also seen and consist of traction bronchiectasis and bronchiolectasis, and bullae (Fig. 5c). Consolidation is a rare finding, seen in a fatal case [28]. Peripheral cystic spaces are reported in some cases [28, 33, 40]. Lymph node enlargement and spontaneous pneumothorax have been reported [30].
Progression of fibrosis in hard metal lung disease is very different from case to case (Fig. 6). The progression is slow in some cases, and others rapidly deteriorate [28, 31, 41]. Ground-glass opacities are reported to improve following cessation of exposure to hard metal and treatment [35]. Patients with fibrosis are less likely to experience disease remission.

Indium lung disease

Workplace exposure to indium compounds including indium oxide and indium-tin oxide causes several lung diseases; pulmonary fibrosis, emphysema and pulmonary alveolar proteinosis (PAP). Ten clinical cases of lung disease in indium workers from three countries (Japan, United States, and China) had been reported [42, 43]. Among the reported cases, those with shorter diagnostic latency had findings more consistent with PAP, while cases with longer diagnostic latency had findings more consistent with interstitial lung disease. Two patients initially diagnosed with PAP had radiographic progression to fibrosis over several years [43]. Amata et al. reported that radiographic interstitial changes can be reduced in indium workers by cessation of exposure to indium, whereas emphysematous lesions can progress among those with a history of heavy exposure [44]. An advanced case of indium lung disease with severely progressive emphysema has been reported [45].
In cases with interstitial lung disease, the major HRCT findings are ground-glass opacities and/or centrilobular opacities (Fig. 7) [43]. The parenchymal abnormalities show diffuse, upper or mid-lung predominance, and sometimes lower-lung predominance. Interstitial opacities with volume reduction and traction bronchiectasis in the upper lungs are reported [42]. Paraseptal emphysema, small cysts at both apices and subpleural honeycomb can be seen [42].

Nylon flock worker’s lung

In nylon flock worker’s lung, histopathologic evaluation commonly shows a NSIP pattern with lymphocytic bronchiolitis with peribronchovascular interstitial lymphoid infiltrates. Other secondary histological features that were variably present include diffuse alveolar damage (DAD), bronchiolitis obliterans with organizing pneumonia (BOOP), and desquamative interstitial pneumonia (DIP) [4648]. HRCT appearances reflect these histopathologic findings.
The most common imaging findings in flock workers’ lung are ground-glass opacities and micronodules predominantly distributed in the centrilobular region. The parenchymal abnormalities are diffuse, patchy, or predominantly show a basal and peripheral pattern. Reticular opacities, traction bronchiectasis, septal thickening, and consolidation are also seen [4649]. In some cases, HRCT shows extensive basal-predominant ground-glass opacity similar to that seen in NSIP or DIP. In advanced stages, HRCT shows subpleural-predominant reticular abnormalities associated with honeycombing and traction bronchiectasis similar to that of UIP [49].
Flock workers’ lung shows profuse micronodules and more extensive ground-glass opacity compared to IPF. These HRCT features are included under non-UIP patterns that are considered to be inconsistent with IPF in the 2011 American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines [50].

Newly recognized pneumoconioses

In addition to indium lung disease and flock workers’ lung, recent studies have linked new causative occupational and environmental agents with both airways disease and parenchymal lung disease [2]. Representative examples are shown in Table 2. The last four entities are not discussed in the text of the manuscript. Further studies on each entity are needed.
Table 2
Newly recognized pneumoconioses
Agent
Causative agent
Characteristic histopathology
CT findings
Indium lung
Indium-tin oxide
Interstitial fibrosis, PAP, emphysema
Ground-glass opacities, centrilobular nodules, traction bronchiectasis, crazy-paving appearance, LAA
Nylon flock worker’s lung
Nylon fibers
NSIP with lymphocytic bronchiolitis, DIP
Diffuse micronodular opacities, patchy consolidation, honeycombing
Flavor worker’s lung (Popcorn worker’s lung)
Diacetyl
BO
Mosaic attenuation (air trapping)
World-trade center lung
Complex amalgam, fiberglass, fly ash, silica, asbestos, etc
Asthmatic bronchiolitis, BO, AEP, sarcoid-like granulomatosis
Mosaic attenuation (air trapping), peripheral consolidation, diffuse micronodules
Nanoparticles
Carbon nanotubes, etc
Interstitial fibrosis
Patchy ground-glass opacities, centrilobular nodules, traction bronchiectasis
Ardystil syndrome
Acramin-FWN
OP
Peripheral predominant patchy consolidation
PAP, pulmonary alveolar proteinosis; NSIP, nonspecific interstitial pneumonia; DIP, desquamative interstitial pneumonia; BO, bronchiolitis obliterans; AEP, acute eosinophilic pneumonia; OP, organizing pneumonia

Conclusion

Asbestosis has two types of fibrosis, probably related to dose of exposure, existence of pleural fibrosis, and the host factor status of the individual. Metal-related lung diseases have similarities and differences irrespective of kinds of metal. Some of the radiologic and pathologic findings of pneumoconiosis resemble those of idiopathic interstitial pneumonias. Dust exposure can cause pathologic and radiologic changes indistinguishable from IPF. It is postulated that many types of dust exposures can increase risk of developing IPF [51]. HRCT reflects pathologic changes of pneumoconiosis. HRCT would enable a more comprehensive correlation between the pathologic findings and the clinically relevant imaging findings. Further study of HRCT of pneumoconiosis is warranted.

Acknowledgements

I thank Drs. Narufumi Suganuma (Kochi University), Mika Nishimori (Kochi University), ans Nantaka Kiranantawat (Songklanagarind Hospital) for their assistance.
Our Institutional Review Board approved that informed consent was unnecessary, because this study was retrospective and patient’s name was blinded.
Not applicable.

Competing interests

The author declares that he/she have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Cohen RA, Petsonk EL, Rose C et al (2016) Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates. Am J Respir Crit Care Med 193:673–680PubMedPubMedCentralCrossRef Cohen RA, Petsonk EL, Rose C et al (2016) Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates. Am J Respir Crit Care Med 193:673–680PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Sauler M, Gulati M (2012) Newly recognized occupational and environmental causes of chronic terminal airways and parenchymal lung disease. Clin Chest Med 33(4):667–680PubMedPubMedCentralCrossRef Sauler M, Gulati M (2012) Newly recognized occupational and environmental causes of chronic terminal airways and parenchymal lung disease. Clin Chest Med 33(4):667–680PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Goldyn SR, Condos R, Rom WN (2008) The burden of exposure-related diffuse lung disease. Semin Respir Crit Care Med 29(6):591–602PubMedCrossRef Goldyn SR, Condos R, Rom WN (2008) The burden of exposure-related diffuse lung disease. Semin Respir Crit Care Med 29(6):591–602PubMedCrossRef
4.
Zurück zum Zitat Aberle DR, Gamsu G, Ray CS, Feuerstein IM (1988) Asbestos-related pleural and parenchymal fibrosis: detection with high-resolution CT. Radiology 166:729–734PubMedCrossRef Aberle DR, Gamsu G, Ray CS, Feuerstein IM (1988) Asbestos-related pleural and parenchymal fibrosis: detection with high-resolution CT. Radiology 166:729–734PubMedCrossRef
5.
Zurück zum Zitat Akira M, Yokoyama K, Yamamoto S et al (1991) Early asbestosis: evaluation with thin-section CT. Radiology 178:409–416PubMedCrossRef Akira M, Yokoyama K, Yamamoto S et al (1991) Early asbestosis: evaluation with thin-section CT. Radiology 178:409–416PubMedCrossRef
6.
Zurück zum Zitat Gamsu G, Salmon CJ, Warnock ML, Blanc PD (1995) CT quantification of interstitial fibrosis in patients with asbestosis: a comparison of two methods. AJR Am J Roentgenol 164(1):63–68PubMedCrossRef Gamsu G, Salmon CJ, Warnock ML, Blanc PD (1995) CT quantification of interstitial fibrosis in patients with asbestosis: a comparison of two methods. AJR Am J Roentgenol 164(1):63–68PubMedCrossRef
7.
Zurück zum Zitat Akira M, Yamamoto S, Yokoyama K et al (1990) Asbestosis: high-resolution CT-pathologic correlation. Radiology 176:389–394PubMedCrossRef Akira M, Yamamoto S, Yokoyama K et al (1990) Asbestosis: high-resolution CT-pathologic correlation. Radiology 176:389–394PubMedCrossRef
8.
Zurück zum Zitat Roggli VL, Gibbs AR, Attanoos R et al (2010) Pathology of asbestosis—an update of the diagnostic criteria: report of the Asbestos Committee of the College of American Pathologists and Pulmonary Pathology Society. Arch Pathol Lab Med 134:462–480PubMedCrossRef Roggli VL, Gibbs AR, Attanoos R et al (2010) Pathology of asbestosis—an update of the diagnostic criteria: report of the Asbestos Committee of the College of American Pathologists and Pulmonary Pathology Society. Arch Pathol Lab Med 134:462–480PubMedCrossRef
9.
Zurück zum Zitat Morgan A, Evans JC, Holmes A (1975) Deposition and clearance of inhaled fibrous minerals in the rat: studies using radioactive tracer techniques. Inhaled Part 4(Pt 1):259–274PubMed Morgan A, Evans JC, Holmes A (1975) Deposition and clearance of inhaled fibrous minerals in the rat: studies using radioactive tracer techniques. Inhaled Part 4(Pt 1):259–274PubMed
10.
Zurück zum Zitat Yamamoto S (1997) Histopathological features of pulmonary asbestosis with particular emphasis on the comparison with those of usual interstitial pneumonia. Osaka City Med J 43(2):225–242PubMed Yamamoto S (1997) Histopathological features of pulmonary asbestosis with particular emphasis on the comparison with those of usual interstitial pneumonia. Osaka City Med J 43(2):225–242PubMed
11.
Zurück zum Zitat Akira M, Morinaga K (2016) The comparison of high-resolution computed tomography findings in asbestosis and idiopathic pulmonary fibrosis. Am J Ind Med 59(4):301–306PubMedCrossRef Akira M, Morinaga K (2016) The comparison of high-resolution computed tomography findings in asbestosis and idiopathic pulmonary fibrosis. Am J Ind Med 59(4):301–306PubMedCrossRef
12.
Zurück zum Zitat Al-Jarad N, Strickland B, Pearson MC, Rubens MB, Rudd RM (1992) High resolution computed tomographic assessment of asbestosis and cryptogenic fibrosing alveolitis: a comparative study. Thorax 47:645–650PubMedPubMedCentralCrossRef Al-Jarad N, Strickland B, Pearson MC, Rubens MB, Rudd RM (1992) High resolution computed tomographic assessment of asbestosis and cryptogenic fibrosing alveolitis: a comparative study. Thorax 47:645–650PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kawabata Y, Yamamoto S, Kishimoto T, Kobashi Y (2008) Macroscopic subtypes of asbestosis in relation to the amount of asbestos in 63 Japanese autopsy cases. Nihon Kokyuki Gakkai Zasshi 46:77–84 (in Japanese)PubMed Kawabata Y, Yamamoto S, Kishimoto T, Kobashi Y (2008) Macroscopic subtypes of asbestosis in relation to the amount of asbestos in 63 Japanese autopsy cases. Nihon Kokyuki Gakkai Zasshi 46:77–84 (in Japanese)PubMed
14.
Zurück zum Zitat Bledsoe JR, Christiani DC, Kradin RL (2015) Smoking-associated fibrosis and pulmonary asbestosis. Int J Chron Obstruct Pulmon Dis 10:31–37PubMed Bledsoe JR, Christiani DC, Kradin RL (2015) Smoking-associated fibrosis and pulmonary asbestosis. Int J Chron Obstruct Pulmon Dis 10:31–37PubMed
15.
Zurück zum Zitat Copley SJ, Wells AU, Rubens MB et al (2003) Asbestosis and idiopathic pulmonary fibrosis: comparison of thin-section CT features. Radiology 229:731–736PubMedCrossRef Copley SJ, Wells AU, Rubens MB et al (2003) Asbestosis and idiopathic pulmonary fibrosis: comparison of thin-section CT features. Radiology 229:731–736PubMedCrossRef
16.
Zurück zum Zitat Corrin B, Nicholson AG (2011) Asbestosis. In: Corrin B, Nicholson AG (eds) Pathology of the lung, 3rd edn. Churchill Livingstone, Edinburgh, pp 342–350 Corrin B, Nicholson AG (2011) Asbestosis. In: Corrin B, Nicholson AG (eds) Pathology of the lung, 3rd edn. Churchill Livingstone, Edinburgh, pp 342–350
17.
Zurück zum Zitat Arakawa H, Kishimoto T, Ashizawa K et al (2016) Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations. Eur Radiol 26:1485–1492PubMedCrossRef Arakawa H, Kishimoto T, Ashizawa K et al (2016) Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations. Eur Radiol 26:1485–1492PubMedCrossRef
18.
Zurück zum Zitat Marchiori E, Lourenço S, Gasparetto TD, Zanetti G, Mano CM, Nobre LF (2010) Pulmonary talcosis: imaging findings. Lung 188:165–171PubMedCrossRef Marchiori E, Lourenço S, Gasparetto TD, Zanetti G, Mano CM, Nobre LF (2010) Pulmonary talcosis: imaging findings. Lung 188:165–171PubMedCrossRef
19.
Zurück zum Zitat Padley SP, Adler BD, Staples CA, Müller NL (1993) Pulmonary talcosis: CT findings in three cases. Radiology 186:125–127PubMedCrossRef Padley SP, Adler BD, Staples CA, Müller NL (1993) Pulmonary talcosis: CT findings in three cases. Radiology 186:125–127PubMedCrossRef
20.
Zurück zum Zitat Marchiori E, Souza AS Jr, Muller NL (2004) Inhalational pulmonary talcosis: high-resolution CT findings in 3 patients. J Thorac Imaging 19(1):41–44PubMedCrossRef Marchiori E, Souza AS Jr, Muller NL (2004) Inhalational pulmonary talcosis: high-resolution CT findings in 3 patients. J Thorac Imaging 19(1):41–44PubMedCrossRef
21.
Zurück zum Zitat Akira M, Kozuka T, Yamamoto S, Sakatani M, Morinaga K (2007) Inhalational talc pneumoconiosis: radiographic and CT findings in 14 patients. AJR Am J Roentgenol 188:326–333 Akira M, Kozuka T, Yamamoto S, Sakatani M, Morinaga K (2007) Inhalational talc pneumoconiosis: radiographic and CT findings in 14 patients. AJR Am J Roentgenol 188:326–333
22.
Zurück zum Zitat Pereira Faria P, de Souza Veiga A, Coutinho Teixeira L et al (2014) Talcosis in soapstone artisans: high-resolution CT findings in 12 patients. Clin Radiol 69(3):e136–e139PubMedCrossRef Pereira Faria P, de Souza Veiga A, Coutinho Teixeira L et al (2014) Talcosis in soapstone artisans: high-resolution CT findings in 12 patients. Clin Radiol 69(3):e136–e139PubMedCrossRef
23.
Zurück zum Zitat Ward S, Heyneman LE, Reittner P, Kazerooni EA, Godwin JD, Müller NL (2000) Talcosis associated with IV abuse of oral medications: CT findings. AJR Am J Roentgenol 174:789–793PubMedCrossRef Ward S, Heyneman LE, Reittner P, Kazerooni EA, Godwin JD, Müller NL (2000) Talcosis associated with IV abuse of oral medications: CT findings. AJR Am J Roentgenol 174:789–793PubMedCrossRef
24.
Zurück zum Zitat Stern EJ, Frank MS, Schmutz JF, Glenny RW, Schmidt RA, Godwin JD (1994) Panlobular pulmonary emphysema caused by IV injection of methylphenidate (Ritalin): findings on chest radiographs and CT scans. AJR Am J Roentgenol 162:555–560PubMedCrossRef Stern EJ, Frank MS, Schmutz JF, Glenny RW, Schmidt RA, Godwin JD (1994) Panlobular pulmonary emphysema caused by IV injection of methylphenidate (Ritalin): findings on chest radiographs and CT scans. AJR Am J Roentgenol 162:555–560PubMedCrossRef
26.
Zurück zum Zitat Kraus T, Schaller KH, Angerer J, Letzel S (2000) Aluminium dust-induced lung disease in the pyro-powder-producing industry: detection by high-resolution computed tomography. Int Arch Occup Environ Health 73:61–64PubMedCrossRef Kraus T, Schaller KH, Angerer J, Letzel S (2000) Aluminium dust-induced lung disease in the pyro-powder-producing industry: detection by high-resolution computed tomography. Int Arch Occup Environ Health 73:61–64PubMedCrossRef
27.
Zurück zum Zitat Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S (2006) Aluminosis – detection of an almost forgotten disease with HRCT. J Occup Med Toxicol 1(4):1–9 Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S (2006) Aluminosis – detection of an almost forgotten disease with HRCT. J Occup Med Toxicol 1(4):1–9
28.
29.
Zurück zum Zitat Vahlensieck M, Overlack A, Müller K-M (2000) Computed tomographic high-attenuation mediastinal lymph nodes after aluminum exposition. Eur Radiol 10:1945–1946PubMedCrossRef Vahlensieck M, Overlack A, Müller K-M (2000) Computed tomographic high-attenuation mediastinal lymph nodes after aluminum exposition. Eur Radiol 10:1945–1946PubMedCrossRef
30.
Zurück zum Zitat Adams TN, Butt YM, Batra K, Glazer CS (2017) Cobalt related interstitial lung disease. Respir Med 129:91–97PubMedCrossRef Adams TN, Butt YM, Batra K, Glazer CS (2017) Cobalt related interstitial lung disease. Respir Med 129:91–97PubMedCrossRef
31.
Zurück zum Zitat Davison AG, Haslam PL, Corrin B et al (1983) Interstitial lung disease and asthma in hard-metal workers: bronchoalveolar lavage, ultrastructural, and analytical findings and results of bronchial provocation tests. Thorax 38:119–128PubMedPubMedCentralCrossRef Davison AG, Haslam PL, Corrin B et al (1983) Interstitial lung disease and asthma in hard-metal workers: bronchoalveolar lavage, ultrastructural, and analytical findings and results of bronchial provocation tests. Thorax 38:119–128PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Khoor A, Roden AC, Colby TV et al (2016) Giant cell interstitial pneumonia in patients without hard metal exposure: analysis of 3 cases and review of the literature. Hum Pathol 50:176–182PubMedCrossRef Khoor A, Roden AC, Colby TV et al (2016) Giant cell interstitial pneumonia in patients without hard metal exposure: analysis of 3 cases and review of the literature. Hum Pathol 50:176–182PubMedCrossRef
33.
Zurück zum Zitat Gotway MB, Golden JA, Warnock M et al (2002) Hard metal interstitial lung disease: high-resolution computed tomography appearance. J Thorac Imaging 17:314–318PubMedCrossRef Gotway MB, Golden JA, Warnock M et al (2002) Hard metal interstitial lung disease: high-resolution computed tomography appearance. J Thorac Imaging 17:314–318PubMedCrossRef
34.
Zurück zum Zitat Choi JW, Lee KS, Chung MP, Han J, Chung MJ, Park JS (2005) Giant cell interstitial pneumonia: high-resolution CT and pathologic findings in four adult patients. AJR Am J Roentgenol 184:268–272PubMedCrossRef Choi JW, Lee KS, Chung MP, Han J, Chung MJ, Park JS (2005) Giant cell interstitial pneumonia: high-resolution CT and pathologic findings in four adult patients. AJR Am J Roentgenol 184:268–272PubMedCrossRef
35.
Zurück zum Zitat Dunlop P, Müller NL, Wilson J, Flint J, Churg A (2005) Hard metal lung disease: high resolution CT and histologic correlation of the initial findings and demonstration of interval improvement. J Thorac Imaging 20(4):301–304PubMedCrossRef Dunlop P, Müller NL, Wilson J, Flint J, Churg A (2005) Hard metal lung disease: high resolution CT and histologic correlation of the initial findings and demonstration of interval improvement. J Thorac Imaging 20(4):301–304PubMedCrossRef
38.
Zurück zum Zitat Okuno K, Kobayashi K, Kotani Y, Ohnishi H, Ohbayashi C, Nishimura Y (2010) A case of hard metal lung disease resembling a hypersensitivity pneumonia in radiological images. Intern Med 49(12):1185–2118PubMedCrossRef Okuno K, Kobayashi K, Kotani Y, Ohnishi H, Ohbayashi C, Nishimura Y (2010) A case of hard metal lung disease resembling a hypersensitivity pneumonia in radiological images. Intern Med 49(12):1185–2118PubMedCrossRef
39.
Zurück zum Zitat Akira M (2008) Imaging of occupational and environmental lung diseases. Clin Chest Med 29:117–131PubMedCrossRef Akira M (2008) Imaging of occupational and environmental lung diseases. Clin Chest Med 29:117–131PubMedCrossRef
40.
Zurück zum Zitat Moreira M, Cardoso A, Silva D (2010) Hard metal pneumoconiosis with spontaneous bilateral pneumothorax. J Bras Pneumol 36:148–151PubMedCrossRef Moreira M, Cardoso A, Silva D (2010) Hard metal pneumoconiosis with spontaneous bilateral pneumothorax. J Bras Pneumol 36:148–151PubMedCrossRef
41.
Zurück zum Zitat Ruokonen E-L, Linnainmaa M, Seuri M, Juhakoski P, Söderström KO (1996) A fatal case of hard-metal disease. Scand J Work Environ Health 22:62–65PubMedCrossRef Ruokonen E-L, Linnainmaa M, Seuri M, Juhakoski P, Söderström KO (1996) A fatal case of hard-metal disease. Scand J Work Environ Health 22:62–65PubMedCrossRef
42.
Zurück zum Zitat Omae K, Nakano M, Tanaka A et al (2011) Indium lung—case reports and epidemiology. Int Arch Occup Environ Health 84(5):471–477PubMedCrossRef Omae K, Nakano M, Tanaka A et al (2011) Indium lung—case reports and epidemiology. Int Arch Occup Environ Health 84(5):471–477PubMedCrossRef
43.
44.
Zurück zum Zitat Amata A, Chonan T, Omae K, Nodera H, Terada J, Tatsumi K (2015) High levels of indium exposure relate to progressive emphysematous changes: a 9-year longitudinal surveillance of indium workers. Thorax 70:1040–1046PubMedCrossRef Amata A, Chonan T, Omae K, Nodera H, Terada J, Tatsumi K (2015) High levels of indium exposure relate to progressive emphysematous changes: a 9-year longitudinal surveillance of indium workers. Thorax 70:1040–1046PubMedCrossRef
45.
46.
Zurück zum Zitat Eschenbacher WL, Kreiss K, Lougheed MD et al (1999) Nylon flock-associated interstitial lung disease. Am J Respir Crit Care Med 159:2003–2008PubMedCrossRef Eschenbacher WL, Kreiss K, Lougheed MD et al (1999) Nylon flock-associated interstitial lung disease. Am J Respir Crit Care Med 159:2003–2008PubMedCrossRef
47.
Zurück zum Zitat Kern DG, Crausman RS, Durand KTH, Nayer A, Kuhn III C (1998) Flock workers’ lung: chronic interstitial lung disease in the nylon flocking industry. Ann Intern Med 129:261–272PubMedCrossRef Kern DG, Crausman RS, Durand KTH, Nayer A, Kuhn III C (1998) Flock workers’ lung: chronic interstitial lung disease in the nylon flocking industry. Ann Intern Med 129:261–272PubMedCrossRef
48.
Zurück zum Zitat Kern DG, Kuhn C, Ely W et al (2000) Flock workers’ lung: broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest 117:251–259PubMedCrossRef Kern DG, Kuhn C, Ely W et al (2000) Flock workers’ lung: broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies. Chest 117:251–259PubMedCrossRef
49.
Zurück zum Zitat Weiland DA, Lynch DA, Jensen SP et al (2003) Thin-section CT findings in flock workers’ lung, a work-related interstitial lung disease. Radiology 227:222–231PubMedCrossRef Weiland DA, Lynch DA, Jensen SP et al (2003) Thin-section CT findings in flock workers’ lung, a work-related interstitial lung disease. Radiology 227:222–231PubMedCrossRef
50.
Zurück zum Zitat Raghu G, Collard HR, Egan JJ et al (2011) ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824PubMedPubMedCentralCrossRef Raghu G, Collard HR, Egan JJ et al (2011) ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Gulati M, Redlich CA (2015) Asbestosis and environmental causes of usual interstitial pneumonia. Curr Opin Pulm Med 21(2):193–200PubMedPubMedCentral Gulati M, Redlich CA (2015) Asbestosis and environmental causes of usual interstitial pneumonia. Curr Opin Pulm Med 21(2):193–200PubMedPubMedCentral
Metadaten
Titel
Imaging diagnosis of classical and new pneumoconiosis: predominant reticular HRCT pattern
verfasst von
Akira Masanori
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Erschienen in
Insights into Imaging / Ausgabe 1/2021
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-021-00966-y

Weitere Artikel der Ausgabe 1/2021

Insights into Imaging 1/2021 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.