Skip to main content
Erschienen in: Insights into Imaging 1/2020

Open Access 01.12.2020 | Educational Review

Imaging features and differential diagnoses of non-neoplastic diffuse mediastinal diseases

verfasst von: Flavian Tabotta, Gilbert R. Ferretti, Helmut Prosch, Samia Boussouar, Anne-Laure Brun, Justus E. Roos, Lukas Ebner, Igor Letovanec, Michel Brauner, Catherine Beigelman-Aubry

Erschienen in: Insights into Imaging | Ausgabe 1/2020

Abstract

Acute or chronic non-neoplastic diffuse mediastinal diseases have multiple causes, degrees of severity, and a wide range of management. Some situations require emergency care while others do not need specific treatment. Although the diagnosis may be suspected on chest X-ray, it is mainly based on CT. A delayed recognition is not uncommonly observed. Some findings may prompt the radiologist to look for specific associated injuries or lesions.
This pictorial review will successively describe the various non-neoplastic causes of diffuse mediastinal diseases with their typical findings and major differentials.
First, pneumomediastinum that can be provoked by extra- or intra-thoracic triggers requires the knowledge of patient’s history or recent occurrences. Absence of any usual etiological factor should raise suspicion of cocaine inhalation in young individuals.
Next, acute mediastinitis may be related to post-operative complications, esophageal perforation, or contiguous spread of odontogenic or retropharyngeal infections. The former diagnosis is not an easy task in the early stage, owing to the similarities of imaging findings with those of normal post-operative appearance during the first 2–3 weeks.
Finally, fibrosing mediastinitis that is linked to an excessive fibrotic reaction in the mediastinum with variable compromise of mediastinal structures, in particular vascular and airway ones. Differential diagnosis includes tumoral and inflammatory infiltrations of the mediastinum.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
18F-FDG
2-Deoxy-2-[18F] fluorodeoxyglucose
COPD
Chronic obstructive pulmonary disease
CT
Computed tomography
FM
Fibrosing mediastinitis
PET/CT
Positron emission tomography/computed tomography

Key points

  • Pneumomediastinum requires exclusion of tracheobronchial injury.
  • Mediastinal post-operative changes are indistinguishable from acute mediastinitis during the first weeks following surgery.
  • CT, 18F-FDG PET/CT, and diffusion-weighted or dynamic contrast-enhanced MRI may help to narrow the differential diagnosis and may guide tissue sampling.

Background and technical approach

Diffuse mediastinal diseases comprise a heterogeneous group of entities characterized by various degrees of severity [1]. Although these diseases are well-known disorders, diagnosis is not uncommonly delayed due to nonspecific and sometimes faint clinical presentations and symptoms, even in the potentially more serious conditions. Pneumomediastinum should be suspected in case of chest pain, dyspnea, and subcutaneous emphysema. However, acute mediastinitis commonly presents with fever, pleuritic or retrosternal chest pain, and inflammatory syndrome. In fibrosing mediastinitis, the main clinical symptoms include dyspnea and superior vena cava syndrome due to external vascular stricture and airway stenosis. Careful clinical evaluation and radiological correlation is of the utmost importance when approaching diffuse mediastinal pathologies in order to differentiate neoplastic mediastinal infiltration.
Although mediastinal involvement may be suspected on chest radiographs, the signs may be easily missed; hence CT, and, in selected patients, MRI, should be conducted to evaluate the mediastinal compartments. High-resolution imaging is required to provide a detailed assessment of the mediastinal compartment and its complex anatomy, as well as associated anomalies. CT, with a water-soluble contrast agent following a non-contrast acquisition, may demonstrate the esophageal rupture in case of pneumomediastinum, or stenosis in case of chronic mediastinitis. Next, an acquisition with IV contrast may be beneficial in acute and chronic mediastinitis—simultaneous injection of contrast material via brachial veins on both sides may be considered—because this can also depict the regional environment, as well as any additional findings. 18F-FDG PET/CT and diffusion/dynamic contrast-enhanced MRI [2] may be helpful in assessing disease extent and guiding tissue sampling. Fluoroscopy may be part of the diagnosis if an esophageal rupture is suspected and/or in case of vascular compromise as part of the therapeutic procedure.
Specific associated injuries or lesions need to be systematically determined, based on the imaging findings. Various non-neoplastic conditions will be discussed in the following sections.

Clinical scenarios

Pneumomediastinum

Pathophysiology

Pneumomediastinum, defined as free gas located within the mediastinum, may dissect along fascial sheaths (Fig. 1) to create a cervical and thoracic subcutaneous emphysema [3]. Pneumorrachis, pneumoperitoneum, or rarely, retropneumoperitoneum, and even air within the esophageal wall that mimics an esophageal dissection (Fig. 2), may be observed [4].
The Macklin effect, or pulmonary interstitial emphysema, which is responsible for more than 95% of cases, corresponds to an alveolar rupture with air dissection along the interstitial sheaths toward the mediastinum (Fig. 1), eventually leading to a pneumomediastinum [5]. The Macklin effect, more frequent than esophageal or tracheobronchial disruptions, has been reported in 39% of cases of severe, blunt trauma pneumomediastinum. It has been associated with a significantly prolonged intensive care stay, reflecting severe trauma [3, 5]. Importantly, its identification does not rule out a tracheobronchial injury (Fig. 2), which must be excluded in cases of traumatic as well as post-procedure pneumomediastinum [4] (Fig. 3).

Iatrogenic causes

At least half of all esophageal perforations are estimated to be iatrogenic in nature. This can result from endoscopic or surgical procedures, as well as thermal injury during left atrial ablation. Typical imaging findings include pneumomediastinum, pleural effusion on the left side more commonly than on the right side, and mediastinal hematoma [6] with extravasation of swallowed water-soluble contrast.

Boerhaave’s syndrome

Spontaneous rupture, known as Boerhaave’s syndrome, occurs when incomplete crico-pharyngeal relaxation during vomiting results in a sudden increase in intraluminal esophageal pressure (Fig. 4). Rupture is most common in the distal left posterior wall immediately above the diaphragm. It may be suspected on a chest X-ray in patients with esophageal rupture but is not specific to that condition. Esophageal rupture is characterized by a V-shaped air collection, with one limb of the V produced by mediastinal gas that outlines the left lower lateral mediastinal border, and the other limb produced by gas between the parietal pleura and medial left hemidiaphragm. Mortality is high without prompt thoracotomy [6].

Tracheobronchial lesions

Tracheobronchial lesions are rare, occurring in 1 to 3% of patients with blunt trauma and 2 to 9% of those who suffer penetrating cervical and/or thoracic injuries. The former preferentially causes lesions in the intra-thoracic trachea and main-stem bronchus, 80% of which are up to 2.5 cm from the carina, most commonly on the right side, and are considered less protected by the mediastinal structures. Uncommon causes include iatrogenic injuries, such as intubation-related trauma [7] (Fig. 3).

Other conditions

Other causes of pneumomediastinum include acute exacerbation of severe asthma, excessive coughing, diabetic ketoacidosis, physical exertion, the Valsalva maneuver, or inhalational drug abuse [5], as well as extra-thoracic causes, such as facial fracture. In young individuals, the absence of other etiological factors should raise the suspicion of free-base cocaine use [8]. Rare circumstances, such as a lightning strike or insufflation of the content of a dry chemical fire extinguisher, have also been reported.

Acute mediastinitis

Pathophysiology

Most cases of acute mediastinitis are encountered following cardiovascular or other thoracic surgical procedures. Risk factors for post-sternotomy mediastinitis may be categorized into patient-related, including age as well as co-morbidities, such as obesity, diabetes, history of smoking, COPD, and renal failure, and operative factors or environmental elements (operating room and medical devices) [9].
Other cau ses typically comprise either esophageal perforation or the contiguous spread of odontogenic or retropharyngeal infections (Fig. 5). Rarely, mediastinitis may result from a penetrating trauma or hematogenous spread of infection.

Imaging findings

In a retrospective study that included 40 various causes of acute mediastinitis, the most common abnormal findings were represented by increased attenuation of fat and pleural effusion, followed by free gas bubbles in the mediastinum, localized mediastinal fluid collections, sternal dehiscence, mediastinal lymph nodes, pericardial effusion, lung infiltrates, and pleuro-mediastinal fistula [10]. There was a high sensitivity and specificity for CT after day 17 in post-operative patients, with a low diagnostic yield in the early post-operative period. The normal post-operative appearance of the mediastinum during the first 2–3 weeks after surgery may mimic mediastinitis (Fig. 6) and may not return to normal for as long as 2 months after surgery. This lack of specificity of CT during the first 2 weeks requires a careful correlation between clinical and radiological findings that require contrast-enhanced CT.
In any case, careful analysis of cartilage and bone is necessary to detect loco-regional involvement, such as a cartilaginous abscess or focal osteitis (Fig. 6).

Complications

Fatal aortic arch ruptures (Fig. 7) have been reported in the context of mediastinitis that originated from several conditions, including odontogenic infection, foreign body ingestion, endoscopic botulinum toxin injection, or after open heart surgery [11].

Fibrosing mediastinitis and mimickers (Table 1)

Pathophysiology

Fibrosing mediastinitis (FM), also known as sclerosing mediastinitis, is a condition related to an abnormal immunologic reaction that results in the proliferation of fibro-inflammatory tissue in the mediastinum and/or hila [12]. It leads to a variable constriction of systemic veins, pulmonary arteries and veins, the airways and/or the esophagus, with a morbidity related to location and extent of fibrosis. The pleura, pericardium, and coronary arteries may also be involved [12].
Table 1
Fibrosing mediastinitis and differential diagnoses
Clinical scenarios
DIAGNOSIS
DIFFERENTIAL DIAGNOSIS
Fibrosing mediastinitis
Lymphoma
Castleman disease
Sarcoidosis
Granulomatous subtype
Nongranulomatous subtype
Erdheim-Chester
IgG-4
IMAGING FEATURES OF FIBROSING MEDIASTINITIS AND DIFFERENTIAL DIAGNOSIS
X-ray Features
Focal calcified paratracheal, subcarinal or hilar mass ++ Widening of the mediastinum
Distortion and obliteration of lines
   
Mediastinal widening Retrosternal filling
Hilar enlargement
Mediastinal masses
Displacement of adjacent structures
Ipsilateral pleural effusion
Periostal reaction
Mediastinal widening
Mass effect
Hilar lymphadenopathies
Nodal and lung calcifications Reticulonodular opacities, lung fibrosis, traction bronchiectasis
CT Features
Focal calcified paratracheal, subcarinal or hilar mass ++
Superior vena cava syndrome
Infiltrating soft tissue, rarely calcified
Variable heterogeneous enhancement
Pulmonary arterial hypertension and bronchial arteries hypertrophy
Unilateral pulmonary oedema, lung volume loss, chronic post-obstructive pneumonitis, bronchiectasis
Periaortic infiltration extending to the pericardium, right coronary sulci and/or myocardium of the right atrium with pleural involvement
Thickening of the peribronchovascular bundles and interlobular septae
Diffuse mass in the posterior mediastinum
Superior vena cava syndrome Lymphadenopathies, including internal mammary, axillary
Pericardial, pleural (unilateral) effusion
Calcification (post-treatment)
Pulmonary nodule, mass-like consolidation, infiltrates
Solitary or multicentric infiltrative mediastinal mass, arborising calcifications
Intense homogeneous enhancement and washout
Lymph nodes
Centrilobular nodules
Lymphadenopathies
Perilymphatic nodules, micronodules of upper/mid lung distribution, lung fibrosis
MR Features
Heterogeneous T1 signal isointense to muscle
Variable T2 signal
Heterogeneous enhancement post-Gadolinium injection
 
Iso to hyperintense T1 relative to skeletal muscle
Arborising calcifications as low T2
Enhancement post-Gadolinium injection
Low ADC values
 
CLINICAL AND IMAGING FEATURES OF EXTRA-THORACIC MANIFESTATIONS
Clinical Features
Superior vena cava syndrome
Non specific
Non specific
Riedel’s thyroiditis
Retroperitoneal fibrosis
Sclerosing cholangitis
Autoimmune pancreatitis
+/- Palpable lymphadenopathies
+/- Hepatosplenomegaly
Fluid retention
50% asymptomatic
Dry eyes
Erythema nodosum
Parotid enlargement
Imaging Features
 
+/- retroperitoneal fibrosis
Bone pain
Focal neurological involvement
Exophthalmos
Retroperitoneal fibrosis
Hypophysal changes related to diabetes insipidus
CNS involvement
Orbital pseudotumor
Riedel thyroiditis
Retroperitoneal fibrosis
Autoimmune pancreatitis
Sclerosing cholangitis
   

Granulomatous subtype

The most common form is the focal or granulomatous subtype of fibrosing mediastinitis, mainly due to histoplasmosis (less frequently tuberculosis), and other fungal or inflammatory conditions, such as sarcoidosis. This form usually manifests as a localized, calcified mass in the paratracheal or subcarinal regions of the mediastinum or in the pulmonary hila, commonly responsible for a superior vena cava syndrome. Diagnosis can be made based on imaging findings, preventing the need for tissue sampling.

Non-granulomatous subtype

The diffuse or non-granulomatous subtype accounts for about 10 to 20% of cases of fibrosing mediastinitis. It may be idiopathic or can originate in association with autoimmune disorders, methysergide exposure, or prior radiation exposure [12]. Fibrosing processes in other locations, such as retroperitoneal fibrosis, may also be encountered [12]. This subtype, which affects multiple mediastinal compartments and which is sometimes diagnosed after considerable delay, manifests as diffusely infiltrated soft tissue, rarely calcified, with heterogeneous enhancement after intravenous administration of contrast material. Each structure can be surrounded, encased, and/or occluded. It is noteworthy that a sequential occurrence is observed in this setting, with a primary involvement of the pulmonary veins, then the pulmonary arteries, and finally the airways. While extrinsic compression of the pulmonary arteries and/or veins is a major cause of pulmonary hypertension (Figs. 8 and 9), longstanding pulmonary venous occlusion may also lead to secondary pulmonary arterial hypertension and cor pulmonale. In addition, arterial and venous compression may lead to an imaging appearance of unilateral pulmonary edema (Fig. 10) [13], and hemoptysis may occur due to hypertrophy of the systemic arteries. With regard to airway involvement, the trachea and the main, lobar, and/or segmental bronchi may be involved and are characterized by volume loss, chronic post-obstructive pneumonitis, endoluminal mucus plugs, or bronchiectasis [12]. Although surgical biopsies are more appropriate, the role of percutaneous CT-guided core tissue biopsies should be emphasized.
Fibrosing mediastinitis has been reported as an unusual mediastinal manifestation of IgG4-related disease (Fig. 11) [14]. The diagnosis requires a comprehensive evaluation for other disease manifestations, including Riedel’s thyroiditis, retroperitoneal fibrosis, sclerosing cholangitis, or autoimmune pancreatitis [12], which may precede and/or suggest the diagnosis. Improvement with corticosteroid therapy has been described in this setting in contrast to numerous other forms of fibrosing mediastinitis.

Erdheim-Chester disease

In addition to IgG4 disease, some disorders, such as Erdheim-Chester disease, must be suspected in case of multisystemic involvement. This rare, non-inherited, non-Langerhans form of histiocytosis, commonly with a BRAF mutation, is characterized by xanthomatous infiltration of the involved tissues with foamy histiocytes surrounded by fibrosis, and appears with heterogeneous systemic manifestations. A common peri-aortic infiltration that extends to the pericardium, the right coronary sulci, and/or the myocardium of the right atrium with pleural involvement may point toward this rare entity. Furthermore, bone, renal, and retroperitoneal involvement (Fig. 12) [15] have been observed. Cardiac-gated CT is required to detect coronary involvement.

Differential diagnosis

The radiological differential diagnosis of diffuse fibrosing mediastinitis is extensive (Fig. 14) [16] and includes lymphoma (Fig. 13) [11], primary lung cancer, metastases, Castleman disease, and uncommonly, atypical sarcoidosis or granulomatosis with polyangiitis. Benign disorders, such as amyloidosis or lymphangiomatosis, may also diffusely infiltrate into the mediastinum (Fig. 15) [17]. The latter affects the lymphatic channels from the mediastinum to the pleura, with an associated thickening of the pulmonary peribronchovascular bundles and interlobular septae, reflecting the lymphatic distribution. Infectious disorders, such as actinomycosis, aspergillosis, zygomycosis, coccidioidomycosis, nocardiosis, mycobacterial infection, or syphilis, should also be excluded.

Diagnostic work-up

In addition to CT and 18F-FDG PET/CT, diffusion and dynamic contrast-enhanced MRI sequences may be useful to ensure an exhaustive assessment of the disease, particularly its cardiovascular extent. Moreover, these sequences may point out the optimal areas to biopsy (Fig. 14) [18].
Due to the histological complexity of these various entities, cytological sampling with fine-needle aspirations should be avoided and surgical biopsy sampling is often required to ensure sufficient material for detailed histologic analysis, immunohistochemical staining, molecular analyses, and culturing [11], if needed (Fig. 15) [12].
In all cases, a systematic analysis of the pulmonary veins and arteries, as well as the tracheobronchial tree and esophagus, is advised when encountering any infiltrative soft tissue density within the mediastinum. This may help to suggest the diagnosis of chronic mediastinitis and, thus, avoid delayed recognition of this condition. Such an approach has to be combined with an overall analysis of the retroperitoneum, liver, thyroid, and pancreas.

Conclusion

In conclusion, non-malignant diffuse mediastinal disease presents with various characteristics, depending on the mechanism involved. The differential diagnosis calls for a systematic approach that includes the patient’s history and habits, excludes a tracheobronchial or esophageal injury in acute conditions, and requires a careful and precise histological examination in diffuse mediastinal tissue infiltration.

Acknowledgements

Thanks to Pr Halimi, Georges Pompidou Hospital, France, for providing us Fig. 10.
Need for ethic committee approval was waived.
Consent to participate is not applicable.
Figures of this paper are entirely anonymized, i.e., individuals cannot be identified, and no formal consent was provided.

Competing interests

Dr. Beigelman-Aubry reports personal fees from Astra Zeneca, personal fees from Gilead, and personal fees from Boehringer Ingelheim, outside the submitted work.
Dr. Ferretti reports personal fees from Roche SAS, personal fees from Boehringer, personal fees from General Electric medical care, personal fees from BMS, non-financial support from Guerbet, personal fees from Astra Zeneca, and personal fees from MSD, outside the submitted work.
Other authors have nothing to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Katabathina VS, Restrepo CS, Martinez-Jimenez S, Riascos RF (2011) Nonvascular, nontraumatic mediastinal emergencies in adults: a comprehensive review of imaging findings. Radiographics 31(4):1141–1160 Katabathina VS, Restrepo CS, Martinez-Jimenez S, Riascos RF (2011) Nonvascular, nontraumatic mediastinal emergencies in adults: a comprehensive review of imaging findings. Radiographics 31(4):1141–1160
2.
Zurück zum Zitat Raptis CA, McWilliams SR, Ratkowski KL, Broncano J, Green DB, Bhalla S (2018) Mediastinal and pleural MR imaging: practical approach for daily practice. Radiographics 38(1):37–55 Raptis CA, McWilliams SR, Ratkowski KL, Broncano J, Green DB, Bhalla S (2018) Mediastinal and pleural MR imaging: practical approach for daily practice. Radiographics 38(1):37–55
3.
Zurück zum Zitat Wintermark M, Schnyder P (2001) The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest 120(2):543–547CrossRef Wintermark M, Schnyder P (2001) The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest 120(2):543–547CrossRef
4.
Zurück zum Zitat Monu NC, Murphy BL (2013) Intramural esophageal dissection associated with esophageal perforation. R I Med J 96(7):44 –46 Monu NC, Murphy BL (2013) Intramural esophageal dissection associated with esophageal perforation. R I Med J 96(7):44 –46
5.
Zurück zum Zitat Chassagnon G, Favelle O, Derogis V, Cottier JP (2015) Spontaneous pneumomediastinum due to the Macklin effect: less is more. Intern Emerg Med 10(6):759–761 Chassagnon G, Favelle O, Derogis V, Cottier JP (2015) Spontaneous pneumomediastinum due to the Macklin effect: less is more. Intern Emerg Med 10(6):759–761
6.
Zurück zum Zitat Marini T, Desai A, Kaorth-Joslin K, Wandtke J, Hobbs SK (2017) Imaging of the oesophagus: beyond cancer. Insights Imaging 8(3):365–376 Marini T, Desai A, Kaorth-Joslin K, Wandtke J, Hobbs SK (2017) Imaging of the oesophagus: beyond cancer. Insights Imaging 8(3):365–376
7.
Zurück zum Zitat Saad R Jr, Goncalves R, Neto VC, et al. (2017) Tracheobronchial injuries in chest trauma: a 17-year experience. Rev Col Bras Cir 44(2):194–201 Saad R Jr, Goncalves R, Neto VC, et al. (2017) Tracheobronchial injuries in chest trauma: a 17-year experience. Rev Col Bras Cir 44(2):194–201
8.
Zurück zum Zitat de Almeida RR, de Souza LS, Mancano AD et al. (2014) High-resolution computed tomographic findings of cocaine-induced pulmonary disease: a state of the art review. Lung 192(2):225–233 de Almeida RR, de Souza LS, Mancano AD et al. (2014) High-resolution computed tomographic findings of cocaine-induced pulmonary disease: a state of the art review. Lung 192(2):225–233
9.
Zurück zum Zitat Goh SSC (2017) Post-sternotomy mediastinitis in the modern era. J Card Surg 32(9):556–566CrossRef Goh SSC (2017) Post-sternotomy mediastinitis in the modern era. J Card Surg 32(9):556–566CrossRef
10.
Zurück zum Zitat Exarhos DN, Malagari K, Tsatalou EG et al (2005) Acute mediastinitis: spectrum of computed tomography findings. Eur Radiol 15(8):1569–1574 Exarhos DN, Malagari K, Tsatalou EG et al (2005) Acute mediastinitis: spectrum of computed tomography findings. Eur Radiol 15(8):1569–1574
11.
Zurück zum Zitat Mezzetto L, Veralldi, GF, Engelberger S, Giovannacci L, Van den Berg J, Rosso R (2016) Successful endovascular repair of a penetrating aortic ulcer in bacterial aortitis. Ann Vasc Surg 35:205 e13–205 e17 Mezzetto L, Veralldi, GF, Engelberger S, Giovannacci L, Van den Berg J, Rosso R (2016) Successful endovascular repair of a penetrating aortic ulcer in bacterial aortitis. Ann Vasc Surg 35:205 e13–205 e17
12.
Zurück zum Zitat Garrana SH, Buckley JR, Rosado-de-Christenson ML, Martine-Jiménez S, Muñoz P, Borsa JJ (2019) Multimodality imaging of focal and diffuse fibrosing mediastinitis. Radiographics 39(3):651–667 Garrana SH, Buckley JR, Rosado-de-Christenson ML, Martine-Jiménez S, Muñoz P, Borsa JJ (2019) Multimodality imaging of focal and diffuse fibrosing mediastinitis. Radiographics 39(3):651–667
13.
Zurück zum Zitat Panagopoulos N, Leivaditis V, Kraniotis P, Ravazoula P, Koletsis E, Dougenis D (2019) Sclerosing mediastinitis causing unilateral pulmonary edema due to left atrial and pulmonary venous compression. A case report and literature review. Braz J Cardiovasc Surg 34(1):85–92 Panagopoulos N, Leivaditis V, Kraniotis P, Ravazoula P, Koletsis E, Dougenis D (2019) Sclerosing mediastinitis causing unilateral pulmonary edema due to left atrial and pulmonary venous compression. A case report and literature review. Braz J Cardiovasc Surg 34(1):85–92
14.
Zurück zum Zitat Ryu JH, Sekiguchi H, Yi ES (2012) Pulmonary manifestations of immunoglobulin G4-related sclerosing disease. Eur Respir J 39(1):180–186CrossRef Ryu JH, Sekiguchi H, Yi ES (2012) Pulmonary manifestations of immunoglobulin G4-related sclerosing disease. Eur Respir J 39(1):180–186CrossRef
15.
Zurück zum Zitat Brun AL, Touitou-Gottenburg D, Haroche J et al. (2010) Erdheim-Chester disease: CT findings of thoracic involvement. Eur Radiol 20(11):2579–2587 Brun AL, Touitou-Gottenburg D, Haroche J et al. (2010) Erdheim-Chester disease: CT findings of thoracic involvement. Eur Radiol 20(11):2579–2587
16.
Zurück zum Zitat Juanpere S, Cañete N, Ortuño P, Martinez S, Sanchez G, Bernado L (2013) A diagnostic approach to the mediastinal masses. Insights Imaging 4(1):29–52 Juanpere S, Cañete N, Ortuño P, Martinez S, Sanchez G, Bernado L (2013) A diagnostic approach to the mediastinal masses. Insights Imaging 4(1):29–52
17.
Zurück zum Zitat Yekeler E, Dursun M, Yildirim A, Tunaci M (2005) Diffuse pulmonary lymphangiomatosis: imaging findings. Diagn Interv Radiol 11(1):31–34 Yekeler E, Dursun M, Yildirim A, Tunaci M (2005) Diffuse pulmonary lymphangiomatosis: imaging findings. Diagn Interv Radiol 11(1):31–34
18.
Zurück zum Zitat Broncano J, Alvarado-Benavides AM, Bhalla S, Álvarez-Kindelan A, Raptis CA, Luna A (2019) Role of advanced magnetic resonance imaging in the assessment of malignancies of the mediastinum. World J Radiol 11(3):27–45 Broncano J, Alvarado-Benavides AM, Bhalla S, Álvarez-Kindelan A, Raptis CA, Luna A (2019) Role of advanced magnetic resonance imaging in the assessment of malignancies of the mediastinum. World J Radiol 11(3):27–45
Metadaten
Titel
Imaging features and differential diagnoses of non-neoplastic diffuse mediastinal diseases
verfasst von
Flavian Tabotta
Gilbert R. Ferretti
Helmut Prosch
Samia Boussouar
Anne-Laure Brun
Justus E. Roos
Lukas Ebner
Igor Letovanec
Michel Brauner
Catherine Beigelman-Aubry
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2020
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00909-z

Weitere Artikel der Ausgabe 1/2020

Insights into Imaging 1/2020 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.