Skip to main content
Erschienen in: Molecular Imaging and Biology 3/2018

01.06.2018 | Review Article

Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery

verfasst von: Stephanie J. Blocker, Anthony F. Shields

Erschienen in: Molecular Imaging and Biology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Molecular imaging is a vital tool to non-invasively measure nanoparticle delivery to solid tumors. Despite the myriad of nanoparticles studied for cancer, successful applications of nanoparticles in humans is limited by inconsistent and ineffective delivery. Successful nanoparticle delivery in preclinical models is often attributed to enhanced permeability and retention (EPR)—a set of conditions that is heterogeneous and transient in patients. Thus, researchers are evaluating therapeutic strategies to modify nanoparticle delivery, particularly treatments which have demonstrated effects on EPR conditions. Imaging nanoparticle distribution provides a means to measure the effects of therapeutic intervention on nanoparticle delivery to solid tumors. This review focuses on the utility of imaging to measure treatment-induced changes in nanoparticle delivery to tumors and provides preclinical examples studying a broad range of therapeutic interventions.
Literatur
1.
Zurück zum Zitat Sagnella SM, McCarroll JA, Kavallaris M (2014) Drug delivery: beyond active tumour targeting. Nanomedicine 10:1131–1137CrossRefPubMed Sagnella SM, McCarroll JA, Kavallaris M (2014) Drug delivery: beyond active tumour targeting. Nanomedicine 10:1131–1137CrossRefPubMed
3.
Zurück zum Zitat Toussaint M, Pinel S, Auger F et al (2017) Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 7:436–451CrossRefPubMedPubMedCentral Toussaint M, Pinel S, Auger F et al (2017) Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 7:436–451CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med:7–314ra183 Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med:7–314ra183
5.
Zurück zum Zitat Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed
7.
Zurück zum Zitat Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268CrossRefPubMed Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268CrossRefPubMed
9.
Zurück zum Zitat Funkhouser J (2002) Reinventing pharma: the Theranostic revolution. Curr Drug Discov 2:17–19 Funkhouser J (2002) Reinventing pharma: the Theranostic revolution. Curr Drug Discov 2:17–19
10.
Zurück zum Zitat Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038CrossRefPubMed Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038CrossRefPubMed
11.
Zurück zum Zitat Zhou H, Qian W, Uckun FM et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9:7976–7991CrossRefPubMedPubMedCentral Zhou H, Qian W, Uckun FM et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9:7976–7991CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890CrossRefPubMedPubMedCentral Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Geretti E, Leonard SC, Dumont N et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14:2060–2071CrossRefPubMed Geretti E, Leonard SC, Dumont N et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14:2060–2071CrossRefPubMed
14.
Zurück zum Zitat Doi Y, Abu Lila AS, Matsumoto H et al (2016) Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 11:5573–5582CrossRefPubMedPubMedCentral Doi Y, Abu Lila AS, Matsumoto H et al (2016) Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 11:5573–5582CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Nakamura K, Abu Lila AS, Matsunaga M et al (2011) A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 19:2040–2047CrossRefPubMedPubMedCentral Nakamura K, Abu Lila AS, Matsunaga M et al (2011) A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 19:2040–2047CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Moding EJ, Clark DP, Qi Y et al (2013) Dual-energy micro-computed tomography imaging of radiation-induced vascular changes in primary mouse sarcomas. Int J Radiat Oncol Biol Phys 85:1353–1359CrossRefPubMed Moding EJ, Clark DP, Qi Y et al (2013) Dual-energy micro-computed tomography imaging of radiation-induced vascular changes in primary mouse sarcomas. Int J Radiat Oncol Biol Phys 85:1353–1359CrossRefPubMed
17.
Zurück zum Zitat Matteucci ML, Anyarambhatla G, Rosner G et al (2000) Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 6:3748–3755PubMed Matteucci ML, Anyarambhatla G, Rosner G et al (2000) Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 6:3748–3755PubMed
18.
Zurück zum Zitat Kleiter MM, Yu D, Mohammadian LA et al (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807CrossRefPubMed Kleiter MM, Yu D, Mohammadian LA et al (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807CrossRefPubMed
19.
Zurück zum Zitat Head HW, Dodd GD 3rd, Bao A et al (2010) Combination radiofrequency ablation and intravenous radiolabeled liposomal doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology 255:405–414CrossRefPubMedPubMedCentral Head HW, Dodd GD 3rd, Bao A et al (2010) Combination radiofrequency ablation and intravenous radiolabeled liposomal doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology 255:405–414CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Zheng X, Goins BA, Cameron IL et al (2011) Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 67:173–182CrossRefPubMed Zheng X, Goins BA, Cameron IL et al (2011) Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 67:173–182CrossRefPubMed
21.
Zurück zum Zitat Lammers T, Subr V, Peschke P et al (2008) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–910CrossRefPubMedPubMedCentral Lammers T, Subr V, Peschke P et al (2008) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–910CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720CrossRefPubMed Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720CrossRefPubMed
23.
Zurück zum Zitat Daldrup-Link HE, Mohanty S, Ansari C et al (2016) Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 1:e85608CrossRefPubMedPubMedCentral Daldrup-Link HE, Mohanty S, Ansari C et al (2016) Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 1:e85608CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Kumar V, Boucher Y, Liu H et al (2016) Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9:431–437CrossRefPubMedPubMedCentral Kumar V, Boucher Y, Liu H et al (2016) Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9:431–437CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Appelbe OK, Zhang Q, Pelizzari CA et al (2016) Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol Pharm 13:3457–3467CrossRefPubMedPubMedCentral Appelbe OK, Zhang Q, Pelizzari CA et al (2016) Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol Pharm 13:3457–3467CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327CrossRefPubMed Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327CrossRefPubMed
27.
Zurück zum Zitat Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm
28.
Zurück zum Zitat Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMed Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMed
29.
Zurück zum Zitat Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612CrossRefPubMedPubMedCentral Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554CrossRefPubMedPubMedCentral Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed
32.
Zurück zum Zitat Jung B, Shim MK, Park MJ et al (2017) Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int J Pharm 520:111–118CrossRefPubMed Jung B, Shim MK, Park MJ et al (2017) Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int J Pharm 520:111–118CrossRefPubMed
33.
Zurück zum Zitat Gao W, Wang Z, Lv L et al (2016) Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:1131–1144CrossRefPubMedPubMedCentral Gao W, Wang Z, Lv L et al (2016) Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:1131–1144CrossRefPubMedPubMedCentral
34.
35.
Zurück zum Zitat Lv S, Li M, Tang Z et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342CrossRefPubMed Lv S, Li M, Tang Z et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342CrossRefPubMed
36.
Zurück zum Zitat Danhier F (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121CrossRefPubMed Danhier F (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121CrossRefPubMed
37.
Zurück zum Zitat Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766CrossRefPubMed Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766CrossRefPubMed
38.
Zurück zum Zitat Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465CrossRefPubMedPubMedCentral Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Yokoi K, Kojic M, Milosevic M et al (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246CrossRefPubMedPubMedCentral Yokoi K, Kojic M, Milosevic M et al (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Yokoi K, Chan D, Kojic M et al (2015) Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release 217:293–299CrossRefPubMedPubMedCentral Yokoi K, Chan D, Kojic M et al (2015) Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release 217:293–299CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020CrossRefPubMedPubMedCentral Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Kjellman P, in ‘t Zandt R, Fredriksson S et al (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095CrossRefPubMed Kjellman P, in ‘t Zandt R, Fredriksson S et al (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095CrossRefPubMed
43.
Zurück zum Zitat Song J, Yang X, Yang Z et al (2017) Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano Song J, Yang X, Yang Z et al (2017) Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano
44.
Zurück zum Zitat Ramishetti S, Huang L (2012) Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv 3:1429–1445CrossRefPubMedPubMedCentral Ramishetti S, Huang L (2012) Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv 3:1429–1445CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514CrossRefPubMed Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514CrossRefPubMed
46.
Zurück zum Zitat Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMed Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMed
47.
Zurück zum Zitat Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799CrossRefPubMed Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799CrossRefPubMed
48.
Zurück zum Zitat Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234CrossRefPubMed Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234CrossRefPubMed
49.
Zurück zum Zitat Zalcman G, Mazieres J, Margery J et al (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387:1405–1414CrossRefPubMed Zalcman G, Mazieres J, Margery J et al (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387:1405–1414CrossRefPubMed
50.
Zurück zum Zitat Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676CrossRefPubMed Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676CrossRefPubMed
51.
Zurück zum Zitat Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989CrossRefPubMed Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989CrossRefPubMed
52.
Zurück zum Zitat Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950CrossRefPubMed Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950CrossRefPubMed
53.
Zurück zum Zitat Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482CrossRefPubMedPubMedCentral Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344CrossRefPubMed Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344CrossRefPubMed
55.
56.
57.
Zurück zum Zitat Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112CrossRefPubMedPubMedCentral Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Hylander BL, Sen A, Beachy SH et al (2015) Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 217:160–169CrossRefPubMedPubMedCentral Hylander BL, Sen A, Beachy SH et al (2015) Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 217:160–169CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Lu D, Wientjes MG, Lu Z et al (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322:80–88CrossRefPubMed Lu D, Wientjes MG, Lu Z et al (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322:80–88CrossRefPubMed
60.
Zurück zum Zitat Wang J, Lu Z, Wang J et al (2015) Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors. J Control Release 216:103–110CrossRefPubMedPubMedCentral Wang J, Lu Z, Wang J et al (2015) Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors. J Control Release 216:103–110CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–504CrossRefPubMed Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–504CrossRefPubMed
62.
Zurück zum Zitat Stapleton S, Jaffray D, Milosevic M (2016) Radiation effects on the tumor microenvironment: implications for nanomedicine delivery. Adv Drug Deliv Rev. Stapleton S, Jaffray D, Milosevic M (2016) Radiation effects on the tumor microenvironment: implications for nanomedicine delivery. Adv Drug Deliv Rev.
63.
Zurück zum Zitat Davies Cde L, Lundstrom LM, Frengen J et al (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res 64:547–553CrossRefPubMed Davies Cde L, Lundstrom LM, Frengen J et al (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res 64:547–553CrossRefPubMed
64.
65.
Zurück zum Zitat Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–744CrossRefPubMed Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–744CrossRefPubMed
66.
Zurück zum Zitat Ware MJ, Krzykawska-Serda M, Chak-Shing Ho J et al (2017) Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci Rep 7:43961CrossRefPubMedPubMedCentral Ware MJ, Krzykawska-Serda M, Chak-Shing Ho J et al (2017) Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci Rep 7:43961CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat McGahan JP, Brock JM, Tesluk H et al (1992) Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297CrossRefPubMed McGahan JP, Brock JM, Tesluk H et al (1992) Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297CrossRefPubMed
68.
Zurück zum Zitat Kirui DK, Mai J, Palange AL et al (2014) Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors. PLoS One 9:e86489CrossRefPubMedPubMedCentral Kirui DK, Mai J, Palange AL et al (2014) Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors. PLoS One 9:e86489CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Kirui DK, Koay EJ, Guo X et al (2014) Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 10:1487–1496CrossRefPubMed Kirui DK, Koay EJ, Guo X et al (2014) Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 10:1487–1496CrossRefPubMed
70.
Zurück zum Zitat Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032PubMed Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032PubMed
71.
Zurück zum Zitat Huang SK, Stauffer PR, Hong K et al (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191PubMed Huang SK, Stauffer PR, Hong K et al (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191PubMed
72.
Zurück zum Zitat Li L, ten Hagen TL, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137CrossRefPubMed Li L, ten Hagen TL, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137CrossRefPubMed
73.
Zurück zum Zitat Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed
74.
Zurück zum Zitat Diop-Frimpong B, Chauhan VP, Krane S et al (2011) Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A 108:2909–2914CrossRefPubMedPubMedCentral Diop-Frimpong B, Chauhan VP, Krane S et al (2011) Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A 108:2909–2914CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429CrossRefPubMedPubMedCentral Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429CrossRefPubMedPubMedCentral
Metadaten
Titel
Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery
verfasst von
Stephanie J. Blocker
Anthony F. Shields
Publikationsdatum
01.06.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 3/2018
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-017-1142-2

Weitere Artikel der Ausgabe 3/2018

Molecular Imaging and Biology 3/2018 Zur Ausgabe

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Wie toxische Männlichkeit der Gesundheit von Männern schadet

08.04.2024 Andrologie Nachrichten

Stark, erfolgreich, allzeit belastbar – das sind Erwartungen, die Jungen und Männer von der Gesellschaft spüren. Das kann sie „toxisch“ werden lassen – und letztlich sogar der Gesundheit schaden, mahnt Dr. Dirk Sander von der Deutschen Aidshilfe.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.