Skip to main content
Erschienen in: Insights into Imaging 1/2020

Open Access 01.12.2020 | Educational Review

Imaging spectrum of abnormal subcutaneous and visceral fat distribution

verfasst von: Asako Yamamoto, Yoshinao Kikuchi, Toru Kusakabe, Hideyuki Takano, Keita Sakurai, Shigeru Furui, Hiroshi Oba

Erschienen in: Insights into Imaging | Ausgabe 1/2020

Abstract

Adipose tissue plays multiple and complex roles not only in mechanical cushioning and energy storage but also as an important secretory organ that regulates energy balance and homeostasis multilaterally. Fat tissue is categorized into subcutaneous fat tissue (SCAT) or visceral fat tissue (VSA) depending on its distribution, with the two having different metabolic functions. Near-total lack of fat in congenital/acquired generalized lipodystrophy, cachexia, or any other severe malnutrition condition induces severe multi-organ dysfunction due to lack of production of leptin and other adipokines. Increased visceral fat tissue secondary to obesity, hypercortisolism, or multiple symmetric lipomatosis raises the risk of insulin resistance, cardiac complications, and airway or spinal canal stenosis, although the fat distribution pattern differs in each condition. Partial abnormal fat distribution conditions such as HIV/HAART therapy-associated lipodystrophy, familial partial lipodystrophies, and acquired partial lipodystrophy frequently show a mixture of lipoatrophy and lipohypertrophy with metabolic dysfunction. Characteristic imaging features in conditions with local abnormal fat distribution can provide information about a patient’s co-existent/unrecognized disease(s), past medical history, or lifestyle. Knowledge of characteristic abnormal fat distribution patterns can contribute to proper and timely therapeutic decision-making and patient education.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACTH
Adrenocorticotropic hormone
AGL
Acquired generalized lipodystrophy
ALT
Atypical lipomatous tumor
BAT
Brown adipose tissue
CGL
Congenital generalized lipodystrophy
HAART
Highly active antiretroviral therapy
HALS
HIV-1/highly active antiretroviral therapy-associated lipodystrophy syndrome
HIV
Human immunodeficiency virus
LE
Lupus erythematosus
LEP
Lupus erythematosus profundus
LScs
Localized scleroderma en coup de sabre
MSL
Multiple symmetric lipomatosis
NRTIs
Thymidine analog nucleoside reverse transcriptase inhibitors
PRS
Parry-Romberg syndrome
SCAT
Subcutaneous fat tissue
VSA
Visceral fat tissue
WAT
White adipose tissue

Key points

  • Adipose tissue plays multiple and complex roles not only in mechanical cushioning and energy storage, but also as a secretory organ that regulates homeostasis.
  • It is essential to understand the anatomy and function of fat tissue to facilitate recognition of abnormal conditions and associated disorders.
  • Generalized fat loss induces severe multi-organ dysfunction due to lack of production of leptin or other adipokines.
  • Generalized or partial excessive fat accumulation can raise the risk of cardiac/respiratory/neurological disorders and insulin-resistance.
  • Partial or localized conditions show characteristic distribution patterns on images, possibly shedding light on the patient’s co-existent/hidden disease, past medical history, or lifestyle.

Background

Until the middle of the twentieth century, adipose tissue was of little interest to scientists, because its sole function was considered to be tissue support [1]. It has now become clear, however, that adipose tissue plays multiple and complex roles not only in mechanical cushioning and energy storage but also as a secretory organ that helps to regulate energy balance, homeostasis, appetite, inflammation, insulin sensitivity, and lipid metabolism [2]. Fat tissue is categorized as subcutaneous fat tissue (SCAT) or visceral fat tissue (VSA) depending on its distribution, and white adipose tissue and brown adipose tissue on its function.
For abnormal fat distribution, terms such as lipodystrophy, lipohypertrophy, or lipoatrophy are used. Lipodystrophy is an umbrella term used to describe a diverse group of metabolic disorders characterized by either complete or partial loss of fat (lipoatrophy), which may occur in conjunction with pathological accumulation of fat in other distinct regions of the body. Conditions that can cause lipodystrophy are classified as genetic or acquired in etiology, but progressing genetic research may change our understanding of their etiology from acquired to genetic or genetic phenotyping in the near future.
There is considerable heterogeneity related to the pattern and extent of fat loss among conditions showing abnormal fat distribution. In this paper, we categorized these conditions into generalized and non-generalized (partial and localized) distribution patterns: those showing abnormal adipose distribution affecting nearly the entire body (generalized), those affecting multiple limbs (partial), and those showing small, discrete areas of involvement (localized). Conditions of generalized abnormal fat deposition including congenital and acquired generalized lipodystrophy exhibit excessive or inadequate fat accumulation not only in SCAT and VAT, but also in the bone marrow. These conditions derive life-threatening metabolic dysfunction. Partial conditions represented by HIV-1/highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome frequently show an uneven mixture of lipohypertrophy and lipoatrophy. The severity of this complication also varies, and it may be associated with conditions such as insulin-resistance or airway/spinal canal stenosis. The localized pattern, such as that induced by trauma or mechanical stress-related conditions, frequently exhibits characteristic imaging features, which may provide information about a patient’s co-existent disease(s) and lifestyle.
This paper focuses on the abnormal distribution of subcutaneous and visceral adipose tissue, divided into generalized and non-generalized patterns (Table 1). Syndromes associated with vascular malformations can also present as lipohypertrophy but are not discussed here.
Table 1
Conditions showing abnormal subcutaneous and visceral fat distribution
 
Subcutaneous
Visceral
BM fat loss
Generalized
   
 Congenital generalized lipodystrophy
+
 Acquired generalized lipodystrophy
→~↓
±
 Cachexia
+
 Malnutrition
+
 Hypercortisolism
-
 Obesity
-
Non-generalized
 Multiple symmetric lipomatosis
→~↑
 
 HIV/HAART therapy-associated
↑~↓
→~↑
 
 Drug injection-associated
↑(~ ↓)
 
 Trauma and stress-associated
↑~↓
 
 Familial partial lipodystrophies
↑~↓
→~↑
 
 Autoimmune disease-associated
 
 Acquired partial lipodystrophy
→~↑
 
Bold conditions are shown in figures
BM bone marrow

Normal adipose tissue anatomy, types, and physiology

Anatomy

Mature adipocytes contain only one-third of adipose tissue. Nerves and vessels, fibroblasts and adipocyte precursor cells contain the remaining two-thirds of adipose tissue [3]. Mature adipocytes are divided into two cytotypes, white and brown, recognized by their colors and functions. White adipocytes are unilocular large spherical droplets [4]. On the other hand, brown adipocytes are multilocular with abundant mitochondria packed with cristae within the cytoplasm.

White adipose tissue (WAT) and brown adipose tissue (BAT)

It is well known that mammals have two types of adipose tissue: white adipose tissue (WAT), mainly composed of white adipocytes, and brown adipose tissue (BAT), mainly composed of brown adipocytes [2]. They are mixed to various degrees depending on factors such as the individual’s age and circumstances (e.g., starvation and cold exposure). White adipose tissue (WAT) comprises most of adult fat. Although WAT and BAT both receive a vascular and nerve supply, BAT contains a richer vascular tree, dense with numerous capillaries [2].
The physiology of WAT can be summarized into three overlapping categories: lipid metabolism, glucose metabolism, and endocrine function [3]. Leptin, one of the most thoroughly investigated adipokines, is referred to in the next section in congenital generalized lipodystrophy.
In neonates, BAT can be found in several areas including the interscapular region, axillae, and muscles in the neck [57]. In adults, no discrete collection of BAT is observed. The function of BAT in adult humans has been investigated but not determined to date.

Subcutaneous and visceral fat tissue

There are two major anatomic distributions with unique anatomic, metabolic, or endocrine properties: visceral (VAT) and subcutaneous adipose tissue (SCAT). VAT is divided into intraperitoneal and retroperitoneal distribution. SCAT occupies about 80% of all body fat in healthy adults [8]. SCAT is further divided into superficial subcutaneous and deep subcutaneous adipose tissue [9].
The metabolic function of VAT and SCAT is substantially different. For example, visceral adipocytes are more metabolically active and have a greater lipolytic activity compared with SCAT. Adipocytes from VAT are more insulin-resistant than adipocytes from SCAT [10, 11]. SCAT is the major source of leptin production [8]. Superfluous energy accumulates in adipocytes at SCAT, which acts as a metabolic sink. Only when the capacity of SCAT is exceeded or impaired does VAT accumulation occurs.

Generalized abnormal fat distribution

Congenital generalized lipodystrophy (Berardinelli-Seip syndrome) (CGL)

Congenital (genetic) lipodystrophy has been reported in about 1000 patients with various types related to the pattern of fat loss and genetic molecular defect [12, 13]. Congenital generalized lipodystrophy is an autosomal recessive trait, with an incidence estimated at less than one in 12 million [13]. They are recognized at birth by a near-total lack of body fat and increased muscular appearance. Markedly low serum levels of leptin and adiponectin secreted from adipose tissue drive insulin resistance and its complications such as diabetes mellitus, dyslipidemia, hepatic steatosis, acanthosis nigricans, polycystic ovarian disease, and hypertension [12].
CT and MRI demonstrate the nearly complete absence of adipose tissue well, whereas adipose tissue may be preserved in the orbits, mouth, tongue, palms and soles, scalp, perineum, and periarticular regions [14] (Figs. 1 and 2). Lytic lesions may be formed in the long bones or appendicular bones after puberty [15]. Disappearance of adipose tissue from bone marrow should be anticipated on MRI, which may make any bone lesion difficult to detect. The imaging differential diagnoses are Werner syndrome, anorexia nervosa, cachexia, and other severe wasting conditions. The finding of normal or hypertrophic muscles and past history including medication history are key points for making the diagnosis. Acquired generalized lipodystrophy may show almost the same clinical and imaging findings although the onset is usually during childhood and the distribution and extent of fat loss are variable. Genes for congenital lipodystrophies including CGL continue to be reported [12]. Although there are many types of inherited partial lipodystrophy, most of them are extremely rare. Familial partial dystrophy and acquired partial lipodystrophy are mentioned briefly in the chapter of uneven lipodystrophy.

Acquired generalized lipodystrophy (AGL)/Lawrence syndrome

AGL is a very rare acquired form of generalized lipodystrophy that develops in a previously healthy child or adult. Loss of SCAT occurs usually during childhood in patients with AGL showing a variable pattern and extent [12]. Although most patients show generalized loss of fat, some also show spared areas such as VAT and bone marrow fat. Severe hepatic steatosis, fibrosis, and diabetes mellitus are the major complication in AGL. The pathogenesis of fat loss in patients with AGL remains unknown, but previous infection can be linked to this syndrome because histologic analysis of subcutaneous tissue reveals panniculitis [16]. Antibodies against adipocyte-membrane antigens have been detected in a few cases. AGL may coexist with autoimmune diseases such as Hashimoto’s thyroiditis, rheumatoid arthritis, hemolytic anemia, and chronic active hepatitis [2].

Cachexia

Cachexia is clinically defined as > 5% weight loss over 3 months or > 10% within the previous 6 months in patients with malignancy [17]. Fat loss is a poor prognostic factor in advanced cancer regardless of a patient’s body weight [18]. Adipose tissue metabolism and whole-body fat mass are regulated through two major pathways: lipolysis (fat breakdown) and lipogenesis (fat synthesis). Adipose atrophy in cancer patients is attributed to increased lipolysis and fat oxidation, decreased lipogenesis, impaired lipid deposition and adipogenesis, and browning of white adipose tissue [17]. Cancer patients exhibit smaller adipocytes compared with non-cancer ones, but the total fat cell number is not altered [19]. Fat loss occurs more rapidly and precociously than the reduction of lean mass in cachexia, with extension in rush especially in the immediate period preceding death [20]. CT shows not only fat depletion but also increased density of visceral and subcutaneous fat that may reflect depletion of fat cell size with fibrotic, inflammatory, or edematous change (Fig. 3).

Eating disorder

Eating disorders are characterized by a persistent disturbance of eating that impairs health or psychosocial functioning with the highest mortality of any psychiatric disorder [21]. Anorexia nervosa and bulimia nervosa are serious life-threatening eating disorders. Anorexia nervosa is characterized by self-starvation and excessive weight loss. Bulimia nervosa is characterized by a cycle of binging and compensatory behaviors such as self-induced vomiting designed to undo or compensate for the effects of binge eating.
Patients with severe anorexia or bulimia nervosa can show extremely depleted body fat mass with increased attenuation on CT [22]. Visceral adipose tissue attenuation can be a biomarker of current and prior disease status [22]. Not only subcutaneous and visceral fat, but also diminishment of the normal hyperintense T1-weighted signal is observed from bone marrow (Fig. 4). The signal alteration of bone marrow is named as serous atrophy of bone marrow radiologically or gelatinous bone marrow pathologically. A variety of conditions such as chronic infection, malabsorption, chronic heart and kidney failure, and alcoholism have been identified as causes of serous atrophy of bone marrow [23]. Skeletal growth retardation, in particular in young male patients, may also be evident on imaging studies. Osteoporosis occurs in up to 50% of patients with anorexia with seven times higher the risk of insufficient fracture in patients who have had anorexia for longer than 5 years than in healthy women of the same age [24].
Although obesity (BMI > 30) is not a single but multifactorial condition, binge eating disorder or overeating is one of the most important backgrounds. The increase of fat amount is characterized by increased adipocyte size. Subcutaneous and visceral fat amount is strongly associated with insulin resistance [25]. In obese patients, mass-like subcutaneous fat accumulation can be observed: pseudogynecomastia on the anterior chest wall and buffalo’s hump on the posterior neck. In pseudogynecomastia, the underlying mass is not breast tissue but pure fat (Fig. 5). Buffalo hump can also occur in the course of HIV/HAART therapy, Cushing’s syndrome, or long-time steroid use. Obesity and such conditions may overlap.

Non-generalized (partial/localized) abnormal fat distribution

A mixture of fat accumulation and lipoatrophy can occur in patients with this category.

HIV-1/highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS)

With the introduction of effective antiretroviral therapy, HALS has become one of its most important long-term adverse effects [26]. HALS includes subcutaneous fat loss (lipoatrophy), fat accumulation (lipohypertrophy), or a combination of both (Fig. 6). These morphologic abnormalities can also be associated with disorders of glucose and lipid metabolism.
Lipoatrophy manifests as a loss of fat mainly in the face, limbs, and buttocks [27]. Facial lipoatrophy is characterized by loss of the buccal and/or temporal fat pads, resulting in concave cheeks, prominent nasolabial folds, and periorbital hollowing [28]. It has been reported that an important fat loss has to exceed 30% to become evident clinically. The main risk factor for lipoatrophy is exposure to thymidine analog nucleoside reverse transcriptase inhibitors (NRTIs), which today, however, are no longer the first-line drugs resorted to [27].
Fat accumulation occurs in the trunk, cervical-dorsal area (“buffalo hump”), breasts, upper chest, or visceral adipose tissue. Dyslipidemia and insulin resistance frequently co-exist in this condition. Risk factors for the development of fat deposition include increasing age, female sex, elevated baseline triglycerides, and higher body fat percentage [29].

Insulin injection

Abnormal reaction of subcutaneous fat to insulin injection is well known as lipohypertrophy and lipoatrophy. Insulin lipohypertrophy shows a tumor-like swelling of fatty tissue at the injection site due to the lipogenic effect of insulin (Fig. 7). Growth hormone receptor antagonist is also reported to be a cause of lipohypertrophy at the injection site [30]. Lipoatrophy, which is considered to be an immune complex-mediated inflammatory lesion, rarely occurs today since the advent of recombinant human insulin and insulin analogs [31]. Lipohypertrophy remains a frequent complication of insulin therapy, reportedly in 28.7% of those with type 1 diabetes and 3.6% with type 2 diabetes with a greater tendency of developing the lesion in patients using medium or long-acting insulin [32, 33]. Injection into lipohypertrophied sites may contribute to poor glycemic control due to an erratic absorption of the drug.

Multiple symmetric lipomatosis (Madelung’s disease) (MSL)

Madelung’s disease, also known as benign symmetric lipomatosis, is a rare condition that shows a symmetrical accumulation of adipose tissue, primarily around the neck, back, shoulders, and upper trunk (Fig. 8). It usually affects adult males, mostly in the Mediterranean and eastern European population aged from 40 to 50 years [34]. MSL has a strong association with heavy alcohol intake. Alcohol cessation and weight control are recommended although they do not reverse or stop the course of the disease [35]. MSL is also found in non-alcoholics in association with mitochondrial DNA mutations [36]. A defect of adrenergic stimulated lipolysis or mitochondrial disorder of brown fat tissue has been considered as the etiology of this disease in recent studies [37].
Suprascapular and supraclavicular involvement is common and tracheal or esophageal compression due to deep space-occupying lesions is a life-threatening complication [38]. CT is the optimal modality to evaluate deep-seated fat accumulation. Palliative removal of fatty tissue by surgical resection or liposuction and by injection lipolysis is recommended when symptomatic.

Cushing’s syndrome/hypercortisolism

Cushing’s syndrome results directly from chronic exposure to excess glucocorticoid. It includes iatrogenic, ectopic adrenocorticotropic hormone (ACTH) syndrome, Cushing disease (pituitary ACTH-dependent Cushing’s syndrome), and adrenal tumors [39]. The most common feature of patients with Cushing’s syndrome is progressive central obesity (Fig. 9). Adipocytes from VAT are more insulin-resistant compared with SCAT. The amount of visceral fat is a striking factor underlying the enhanced cardiovascular risk seen in this condition and is mediated by insulin resistance [40, 41]. Central obesity can also induce hypertension through increased activity of adipose tissue renin-angiotensin-aldosterone system, sympathetic activation, and other mechanisms connected with insulin resistance.
The extremities are usually spared and may be wasted. Fat can also accumulate in the supraclavicular fossa, spinal canal (spinal epidural lipomatosis), cheeks (moon face), or dorsocervical fat pad (buffalo hump) [39, 42]. Buffalo hump in Cushing’s syndrome is usually consistent with the general degree of obesity. In the muscle, weakness and proximal muscle wasting are induced by the catabolic effects of excess glucocorticoid on the skeletal muscle. Osteoporosis is caused by decreased intestinal and renal calcium absorption and increased bone resorption [43].

Autoimmune disease

Localized scleroderma (morphea) and lupus erythematosus panniculitis (lupus erythematosus profundus (LEP)) are well-known connective tissue disorders involving the subcutaneous compartment resulting in lipoatrophy [44]. They are usually localized but rarely progress to acquired generalized lipoatrophy [12]. Morphea is classically confined to the skin and/or underlying tissues but may extend over muscular fascia, muscle tissue, tendons, joint synovia, and even bone marrow (deep morphea) (Fig. 10). Morphea usually manifests as a single well-circumscribed lesion on the extremities or upper trunk, near the spine with keloid-like hard and shiny skin changes [45]. MRI shows localized lipoatrophy under the depressed thickened skin with or without varying degree of signal change in underlying fascia and musculature involvement. It is usually asymptomatic and not associated with visceral involvement. Generalized morphea is the most severe form of localized morphea. Clinical diagnostic criteria are applied for diagnosis: four or more lesions larger than 3 cm in diameter or involvement of two or more of the seven body areas (the head and neck, the right and left upper extremities, the anterior and posterior trunks) [45].
Linear scleroderma is characterized by one or more linear streaks of cutaneous induration that may involve the dermis, subcutaneous tissue, muscle, and underlying bone. It affects mainly children and is more common in females than males (3:1) and named “en coup de sabre” (LScs) when affecting the hemiface [46]. Parry-Romberg syndrome (PRS), also known as progressive hemifacial atrophy, clinically overlaps with LScs and can even affect the brain [47]. CT and MRI may show cerebral hemiatrophy or high signal of white matter on T2-weighted image ipsilateral to the affected facial side not only atrophy of the skin and underlying bone and soft tissue (Fig. 11) [48].
LEP is an unusual variant of lupus erythematosus (LE), which occurs in 1–3% of patients with cutaneous LE [49]. LEP primarily involves subcutaneous tissues and tends to have a chronic course resulting in broad lipoatrophy. Face and limbs are most commonly involved [50].

Stress/trauma-induced

Post-traumatic lipoatrophy/hypertrophy

Posttraumatic subcutaneous lipoatrophy occurs following a fall, blunt injury (Fig. 12), or surgery (Fig. 13), with subsequent fat tissue damage, organized hemorrhage, fat necrosis, and fibrosis [51]. Often, the interval between the injury and initial observation of the deformity is prolonged. It is more prevalent in women and children, usually appearing on the shins, thighs, arms, breasts, and buttocks [52]. The radiologic appearance of subcutaneous posttraumatic lipoatrophy may accompany linear spiculated lesion with globular component on MRI, correlated with lipogranuloma pathologically [53, 54].
Although the pathogenesis of post-traumatic lipohypertrophy, so-called “pseudolipoma,” is not well-proven, blunt trauma has classically been reported as the cause [55]. Repetitive mechanical stress also induces a prominent increase in the volume of subcutaneous adipose tissue. By carrying heavy loads, abnormal local fat accumulation on the shoulder has been reported in festival participants in Japan and Southern Italy, wine porters, brewery workers, and heavy handbag carriers [56]. On CT and MRI, an increase in the volume of non-capsulated adipose tissue is evident (Fig. 14).

Semicircular lipoatrophy

Semicircular lipoatrophy is a type of localized lipoatrophy characterized by band-like horizontal depressions measuring 2 to 4 cm in width, located on the anterolateral aspect of the thighs (Fig. 15). The most widely accepted cause is repetitive microtrauma against such as the edge of furniture or tight-fitting clothes [57]. Semicircular lipoatrophy is frequently reported among office working women aged 20 to 40 years. The lesion is typically observed at 72–73 cm above the ground, which is the standard height of office furniture [58]. Other risk factors are reported to include overweight, routine electrical shock, clothing made of fibers, wearing of rubber-soled shoes, and low humidity air conditioning [58]. When the suspected cause is found and removed from the daily life, the lesions resolve within 9 months to 4 years [59]. MRI shows a clear superficial loss of subcutaneous tissue without findings of panniculitis and thickening of interlobular septa with a reduction in the size of fat lobules [60].

Others

Familial partial lipodystrophies

Familial partial lipodystrophy is inherited in an autosomal dominant or recessive fashion showing a mixture of partial fat atrophy and accumulation with onset during childhood or puberty [12]. The phenotypic heterogeneity of familial partial lipodystrophy has been reported as types 1–6.

Mandibuloacral dysplasia

Mandibuloacral dysplasia is an extremely rare autosomal recessive progeroid syndrome due to mutations in genes encoding nuclear lamina proteins, lamins A/C (LMNA) or prelamin A processing enzyme, and zinc metalloproteinase (ZMPSTE24) which has been reported in approximately 40 case reports [61, 62]. Lipoatrophy appears in childhood or early adolescence. In addition to lipodystrophy, this condition shows craniofacial and skeletal abnormalities including mandibular and clavicular hypoplasia, delayed closure of the cranial sutures, acro-osteolysis, joint contractures or bird-like facies with postnatal growth retardation, and cutaneous changes [12].

Acquired partial lipodystrophy (Barraquer-Simons syndrome)

Approximately 250 cases of acquired partial lipodystrophy have been reported. It typically shows a childhood or adolescent onset with a unique, cephalocaudal progression of fat loss with fat accumulation in the lower half of the body [63]. Infections, autoimmune diseases, and membranoproliferative glomerulonephritis have been linked to the development of acquired partial lipodystrophy [12].

Adipose tumors as differential diagnoses

Adipocytic tumors are the most common soft tissue tumors clinically, and radiologists always need to differentiate them from those conditions showing localized abnormal fat distribution discussed above. Here, we illustrate imaging findings of benign and intermediate adipose tumors (lipoma, angiolipoma, spindle cell/pleomorphic lipoma, lipomatosis of nerve, and well-differentiated liposarcoma/atypical lipomatous tumor) which can be major differential diagnoses.
Lipoma accounts for approximately 50% of all soft tissue tumors and the most common subcutaneous neoplasm consists mainly of mature adipose tissue [64]. Lipoma usually demonstrates an encapsulated high signal mass on T2- and T1-weighted images that contain thin septa less than 2 mm, with suppression on fat saturated images (Fig. 16), but some show a non-capsulated pattern. Lipoma commonly manifests as a solitary mass but can also manifest as multiple masses in 5–15% of cases [64]. Those atypical lipomas can resemble non-neoplastic abnormal fat distribution conditions. Lipomas are usually asymptomatic, though local pain, tenderness, or nerve compression is reported when they become large [65]. Abnormal non-neoplastic fat distribution conditions usually show no such symptoms though mechanical obstruction or metabolic dysfunction may also be present. Fat necrosis within a lipoma presents a variable imaging appearance with inflammatory or fibrotic change, and these can be difficult to differentiate from fat accumulation due to mechanical pressure or trauma, other benign adipose tumors, or well-differentiated liposarcoma.
Angiolipoma is a benign neoplasm consisted of mature adipose tissue and vascular structures. It represents as well-defined multiple, small subcutaneous mass with tenderness located commonly in the forearm, upper arm, or trunk [66]. The MR imaging features of these lesions are the presence of fat nodules with or without low signal on T1- or T2-weighted images with or without high signal on fat saturated T2-weighted images representing the prominent vasculature [67] (Fig. 17). Lipogranulomas found with post-traumatic lipoatrophy/lipohypertrophy would be the differential diagnosis, though the presence of pain, absence of traumatic history, and normal distribution of surrounding subcutaneous fat demonstrate the different nature of those conditions.
Spindle cell/pleomorphic lipoma is a benign, well-circumscribed subcutaneous mass commonly located in the posterior neck or shoulder in middle-aged men with frequent expression of androgen receptor [68]. Histologically, spindle cell/pleomorphic lipoma consists of adipocytes with varying proportions of spindle cells with rope-like collagen bundles [69]. Fat is reported to be detectable in 89% of these lesions, ranging from 25% to 75% of the tumor volume on MRI [70]. Non-adipose components are similar to those of skeletal muscle on T1-weighted imaging and hyperintense on fat-saturated fluid-sensitive sequences (Fig. 18) Intense enhancement of the non-adipose component further supports this diagnosis. The mass is generally firmer than lipomas or most conditions with non-neoplastic localized abnormal fat distribution. When it occurs in atypical locations, it becomes challenging to differentiate from liposarcomas or even other non-adipose soft tissue tumors.
Lipomatosis of a nerve is a rare, not fully understood benign condition, which has been referred to variously as fibrolipomatous hamartoma, perineural lipoma, fatty infiltration of the nerve, or neural fibrolipoma [64]. This condition most commonly occurs in patients before 30 years of age, involving the median nerve of the wrist and hand. Accompanying varying degrees of mesenchymal overgrowth including adipose tissue with frequent sensory symptoms such as paresthesia or numbness, with or without macrodactyly, is the typical presentation [71] (Fig. 19). The location and adipose tissue distribution interspersing nerve bundles are imaging findings distinctive from those of already discussed non-neoplastic abnormal fat distribution conditions.
Well-differentiated liposarcoma/atypical lipomatous tumor (ALT) is the most common liposarcoma, classified as an intermediate (locally aggressive) adipocytic tumor. It most commonly locates in a deep-seated well-vascularized area and rarely in subcutaneous locations [72]. Well-differentiated liposarcoma and ALT are synonyms describing similar lesions morphologically and karyotypically and are differentiated by the location of the tumor and the surgical resectability [66]. The term of well-differentiated liposarcoma is used for lesions exclusively in the retroperitoneum, mediastinum, and spermatic cord, while ALT is used for lesions arising elsewhere [66]. Well-differentiated liposarcoma/ALT can be the differential diagnosis for multiple symmetric lipomatosis, hypercortisolism, or post-traumatic lipohypertrophy with fat necrosis. The imaging findings typically depict a fatty mass with thick and irregular septa, septal enhancement, and non-adipose areas with prominent mass effect, local encasement of vital organs, and asymmetrical distribution compared with those non-neoplastic conditions [73] (Fig. 20).

Conclusion

Radiologists should be aware of the typical imaging findings and disease spectrum of abnormal deposition of subcutaneous fat. Although the underlying conditions are diverse, the radiological findings can be the key making possible an early assessment and suggesting the optimal methods needed to achieve a definitive diagnosis.

Acknowledgements

The authors thank Dr. Won Bae (Associate Professor, Dept. of Radiology, University of California, San Diego) for his input on preparation of the manuscript and organization of the content. We are also grateful to Dr. Yuichi Ishikawa of Teikyo University School of Medicine and Mr. John Gelblum for the assistance during the drafting of the revised version of the manuscript.
This review was approved by the ethics committee in Teikyo University School of Medicine, Tokyo, Japan (TUIC-COI 18-1494).
Informed consent for publication was taken on document independently.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fat Acids 73:9–15CrossRef Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fat Acids 73:9–15CrossRef
3.
Zurück zum Zitat Avram AS, Avram MM, James WD (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53:671–683PubMedCrossRef Avram AS, Avram MM, James WD (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53:671–683PubMedCrossRef
6.
Zurück zum Zitat Raboi CA, Smith W (1999) Brown fat necrosis in the setting of congenital heart disease and prostaglandin E1 use: a case report. Pediatr Radiol 29:61–63PubMedCrossRef Raboi CA, Smith W (1999) Brown fat necrosis in the setting of congenital heart disease and prostaglandin E1 use: a case report. Pediatr Radiol 29:61–63PubMedCrossRef
7.
Zurück zum Zitat Okuyama C, Ushijima Y, Kubota T et al (2003) 123I-Metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med 44:1421–1425PubMed Okuyama C, Ushijima Y, Kubota T et al (2003) 123I-Metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med 44:1421–1425PubMed
8.
Zurück zum Zitat Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef
9.
Zurück zum Zitat Smith SR, Lovejoy JC, Greenway F et al (2001) Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50:425–435PubMedCrossRef Smith SR, Lovejoy JC, Greenway F et al (2001) Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 50:425–435PubMedCrossRef
10.
Zurück zum Zitat Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM (1995) Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 96:88–98PubMedPubMedCentralCrossRef Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM (1995) Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 96:88–98PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Frayn KN (2000) Visceral fat and insulin resistance--causative or correlative? Br J Nutr 83(Suppl 1):S71–S77PubMedCrossRef Frayn KN (2000) Visceral fat and insulin resistance--causative or correlative? Br J Nutr 83(Suppl 1):S71–S77PubMedCrossRef
14.
Zurück zum Zitat Chandalia M, Garg A, Vuitch F, Nizzi F (1995) Postmortem findings in congenital generalized lipodystrophy. J Clin Endocrinol Metab 80:3077–3081PubMed Chandalia M, Garg A, Vuitch F, Nizzi F (1995) Postmortem findings in congenital generalized lipodystrophy. J Clin Endocrinol Metab 80:3077–3081PubMed
15.
Zurück zum Zitat Agarwal AK, Simha V, Oral EA et al (2003) Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab 88:4840–4847PubMedCrossRef Agarwal AK, Simha V, Oral EA et al (2003) Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab 88:4840–4847PubMedCrossRef
16.
Zurück zum Zitat Billings JK, Milgraum SS, Gupta AK, Headington JT, Rasmussen JE (1987) Lipoatrophic panniculitis: a possible autoimmune inflammatory disease of fat. Report of three cases. Arch Dermatol 123:1662–1666PubMedCrossRef Billings JK, Milgraum SS, Gupta AK, Headington JT, Rasmussen JE (1987) Lipoatrophic panniculitis: a possible autoimmune inflammatory disease of fat. Report of three cases. Arch Dermatol 123:1662–1666PubMedCrossRef
18.
Zurück zum Zitat Murphy RA, Wilke MS, Perrine M et al (2010) Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin Nutr 29:482–487PubMedCrossRef Murphy RA, Wilke MS, Perrine M et al (2010) Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin Nutr 29:482–487PubMedCrossRef
19.
Zurück zum Zitat Agustsson T, Ryden M, Hoffstedt J et al (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67:5531–5537PubMedCrossRef Agustsson T, Ryden M, Hoffstedt J et al (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67:5531–5537PubMedCrossRef
20.
Zurück zum Zitat Batista ML Jr, Henriques FS, Neves RX et al (2016) Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 7:37–47PubMedCrossRef Batista ML Jr, Henriques FS, Neves RX et al (2016) Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 7:37–47PubMedCrossRef
21.
22.
Zurück zum Zitat Gill CM, Torriani M, Murphy R et al (2016) Fat attenuation at CT in anorexia nervosa. Radiology 279:151–157PubMedCrossRef Gill CM, Torriani M, Murphy R et al (2016) Fat attenuation at CT in anorexia nervosa. Radiology 279:151–157PubMedCrossRef
23.
Zurück zum Zitat Boutin RD, White LM, Laor T et al (2015) MRI findings of serous atrophy of bone marrow and associated complications. Eur Radiol 25:2771–2778PubMedCrossRef Boutin RD, White LM, Laor T et al (2015) MRI findings of serous atrophy of bone marrow and associated complications. Eur Radiol 25:2771–2778PubMedCrossRef
24.
Zurück zum Zitat Legroux-Gerot I, Vignau J, D'Herbomez M et al (2007) Evaluation of bone loss and its mechanisms in anorexia nervosa. Calcif Tissue Int 81:174–182PubMedCrossRef Legroux-Gerot I, Vignau J, D'Herbomez M et al (2007) Evaluation of bone loss and its mechanisms in anorexia nervosa. Calcif Tissue Int 81:174–182PubMedCrossRef
25.
Zurück zum Zitat Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5:93–99PubMedCrossRef Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM (1997) Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 5:93–99PubMedCrossRef
26.
Zurück zum Zitat Carr A (2003) HIV lipodystrophy: risk factors, pathogenesis, diagnosis and management. AIDS 17(Suppl 1):S141–S148PubMedCrossRef Carr A (2003) HIV lipodystrophy: risk factors, pathogenesis, diagnosis and management. AIDS 17(Suppl 1):S141–S148PubMedCrossRef
27.
Zurück zum Zitat Mateo MG, Gutierrez Mdel M, Vidal F, Domingo P (2014) An update on the pharmacological strategies in the treatment of HIV-1-associated adipose redistribution syndromes. Expert Opin Pharmacother 15:1749–1760PubMedCrossRef Mateo MG, Gutierrez Mdel M, Vidal F, Domingo P (2014) An update on the pharmacological strategies in the treatment of HIV-1-associated adipose redistribution syndromes. Expert Opin Pharmacother 15:1749–1760PubMedCrossRef
28.
Zurück zum Zitat Guaraldi G, Fontdevila J, Christensen LH et al (2011) Surgical correction of HIV-associated facial lipoatrophy. AIDS 25:1–12PubMedCrossRef Guaraldi G, Fontdevila J, Christensen LH et al (2011) Surgical correction of HIV-associated facial lipoatrophy. AIDS 25:1–12PubMedCrossRef
29.
Zurück zum Zitat Jacobson DL, Knox T, Spiegelman D, Skinner S, Gorbach S, Wanke C (2005) Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin Infect Dis 40:1837–1845PubMedCrossRef Jacobson DL, Knox T, Spiegelman D, Skinner S, Gorbach S, Wanke C (2005) Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin Infect Dis 40:1837–1845PubMedCrossRef
30.
Zurück zum Zitat Rochira V, Zirilli L, Diazzi C, Romano S, Carani C (2012) Clinical and radiological evidence of the recurrence of reversible pegvisomant-related lipohypertrophy at the new site of injection in two women with acromegaly: a case series. J Med Case Rep 6:2PubMedPubMedCentralCrossRef Rochira V, Zirilli L, Diazzi C, Romano S, Carani C (2012) Clinical and radiological evidence of the recurrence of reversible pegvisomant-related lipohypertrophy at the new site of injection in two women with acromegaly: a case series. J Med Case Rep 6:2PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Radermecker RP, Pierard GE, Scheen AJ (2007) Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am J Clin Dermatol 8:21–28PubMedCrossRef Radermecker RP, Pierard GE, Scheen AJ (2007) Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am J Clin Dermatol 8:21–28PubMedCrossRef
32.
Zurück zum Zitat Hauner H, Stockamp B, Haastert B (1996) Prevalence of lipohypertrophy in insulin-treated diabetic patients and predisposing factors. Exp Clin Endocrinol Diabetes 104:106–110PubMedCrossRef Hauner H, Stockamp B, Haastert B (1996) Prevalence of lipohypertrophy in insulin-treated diabetic patients and predisposing factors. Exp Clin Endocrinol Diabetes 104:106–110PubMedCrossRef
33.
Zurück zum Zitat Watson D, Vines R (1973) Variations in the incidence of lipodystrophy using different insulins. Med J Aust 1:248–250PubMedCrossRef Watson D, Vines R (1973) Variations in the incidence of lipodystrophy using different insulins. Med J Aust 1:248–250PubMedCrossRef
34.
Zurück zum Zitat Hadjiev B, Stefanova P, Shipkov C, Uchikov A, Mojallal A (2010) Madelung disease: on the morphologic criteria for diagnosis and treatment. Ann Plast Surg 64:807–808PubMedCrossRef Hadjiev B, Stefanova P, Shipkov C, Uchikov A, Mojallal A (2010) Madelung disease: on the morphologic criteria for diagnosis and treatment. Ann Plast Surg 64:807–808PubMedCrossRef
35.
Zurück zum Zitat Smith PD, Stadelmann WK, Wassermann RJ, Kearney RE (1998) Benign symmetric lipomatosis (Madelung’s disease). Ann Plast Surg 41:671–673PubMedCrossRef Smith PD, Stadelmann WK, Wassermann RJ, Kearney RE (1998) Benign symmetric lipomatosis (Madelung’s disease). Ann Plast Surg 41:671–673PubMedCrossRef
36.
Zurück zum Zitat Landis MS, Etemad-Rezai R, Shetty K, Goldszmidt M (2009) Case 143: Madelung disease. Radiology 250:951–954PubMedCrossRef Landis MS, Etemad-Rezai R, Shetty K, Goldszmidt M (2009) Case 143: Madelung disease. Radiology 250:951–954PubMedCrossRef
37.
Zurück zum Zitat Plummer C, Spring PJ, Marotta R et al (2013) Multiple symmetrical lipomatosis--a mitochondrial disorder of brown fat. Mitochondrion 13:269–276PubMedCrossRef Plummer C, Spring PJ, Marotta R et al (2013) Multiple symmetrical lipomatosis--a mitochondrial disorder of brown fat. Mitochondrion 13:269–276PubMedCrossRef
38.
Zurück zum Zitat Mevio E, Sbrocca M, Mullace M, Viglione S, Mevio N (2012) Multiple symmetric lipomatosis: a review of 3 cases. Case Rep Otolaryngol 2012:910526PubMedPubMedCentral Mevio E, Sbrocca M, Mullace M, Viglione S, Mevio N (2012) Multiple symmetric lipomatosis: a review of 3 cases. Case Rep Otolaryngol 2012:910526PubMedPubMedCentral
39.
Zurück zum Zitat Wajchenberg BL, Bosco A, Marone MM et al (1995) Estimation of body fat and lean tissue distribution by dual energy X-ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing’s disease. J Clin Endocrinol Metab 80:2791–2794PubMed Wajchenberg BL, Bosco A, Marone MM et al (1995) Estimation of body fat and lean tissue distribution by dual energy X-ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing’s disease. J Clin Endocrinol Metab 80:2791–2794PubMed
40.
Zurück zum Zitat Dagenais GR, Yi Q, Mann JF, Bosch J, Pogue J, Yusuf S (2005) Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J 149:54–60PubMedCrossRef Dagenais GR, Yi Q, Mann JF, Bosch J, Pogue J, Yusuf S (2005) Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J 149:54–60PubMedCrossRef
41.
Zurück zum Zitat Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB (1999) Annual deaths attributable to obesity in the United States. JAMA 282:1530–1538PubMedCrossRef Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB (1999) Annual deaths attributable to obesity in the United States. JAMA 282:1530–1538PubMedCrossRef
42.
Zurück zum Zitat Koch CA, Doppman JL, Watson JC, Patronas NJ, Nieman LK (1999) Spinal epidural lipomatosis in a patient with the ectopic corticotropin syndrome. N Engl J Med 341:1399–1400PubMedCrossRef Koch CA, Doppman JL, Watson JC, Patronas NJ, Nieman LK (1999) Spinal epidural lipomatosis in a patient with the ectopic corticotropin syndrome. N Engl J Med 341:1399–1400PubMedCrossRef
43.
Zurück zum Zitat Adler RA, Rosen CJ (1994) Glucocorticoids and osteoporosis. Endocrinol Metab Clin N Am 23:641–654CrossRef Adler RA, Rosen CJ (1994) Glucocorticoids and osteoporosis. Endocrinol Metab Clin N Am 23:641–654CrossRef
44.
45.
Zurück zum Zitat Fett N, Werth VP (2011) Update on morphea: part I. Epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol 64:217–228 quiz 229-230CrossRefPubMed Fett N, Werth VP (2011) Update on morphea: part I. Epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol 64:217–228 quiz 229-230CrossRefPubMed
47.
Zurück zum Zitat Pinheiro TP, Silva CC, Silveira CS, Botelho PC, Pinheiro M, Pinheiro Jde J (2006) Progressive hemifacial atrophy--case report. Med Oral Patol Oral Cir Bucal 11:E112–E114PubMed Pinheiro TP, Silva CC, Silveira CS, Botelho PC, Pinheiro M, Pinheiro Jde J (2006) Progressive hemifacial atrophy--case report. Med Oral Patol Oral Cir Bucal 11:E112–E114PubMed
48.
Zurück zum Zitat Longo D, Paonessa A, Specchio N et al (2011) Parry-Romberg syndrome and Rasmussen encephalitis: possible association. Clinical and neuroimaging features. J Neuroimaging 21:188–193PubMedCrossRef Longo D, Paonessa A, Specchio N et al (2011) Parry-Romberg syndrome and Rasmussen encephalitis: possible association. Clinical and neuroimaging features. J Neuroimaging 21:188–193PubMedCrossRef
49.
Zurück zum Zitat Requena L, Sanchez Yus E (2001) Panniculitis. Part II. Mostly lobular panniculitis. J Am Acad Dermatol 45:325–361 quiz 362-324PubMedCrossRef Requena L, Sanchez Yus E (2001) Panniculitis. Part II. Mostly lobular panniculitis. J Am Acad Dermatol 45:325–361 quiz 362-324PubMedCrossRef
50.
Zurück zum Zitat Park HS, Choi JW, Kim BK, Cho KH (2010) Lupus erythematosus panniculitis: clinicopathological, immunophenotypic, and molecular studies. Am J Dermatopathol 32:24–30PubMedCrossRef Park HS, Choi JW, Kim BK, Cho KH (2010) Lupus erythematosus panniculitis: clinicopathological, immunophenotypic, and molecular studies. Am J Dermatopathol 32:24–30PubMedCrossRef
51.
Zurück zum Zitat Crawford EA, King JJ, Fox EJ, Ogilvie CM (2009) Symptomatic fat necrosis and lipoatrophy of the posterior pelvis following trauma. Orthopedics 32:444PubMedCrossRef Crawford EA, King JJ, Fox EJ, Ogilvie CM (2009) Symptomatic fat necrosis and lipoatrophy of the posterior pelvis following trauma. Orthopedics 32:444PubMedCrossRef
52.
Zurück zum Zitat Tillman C, Holst R, Svedman C (2003) Traumatic fat necrosis: a case report. Acta Derm Venereol 83:227–228PubMedCrossRef Tillman C, Holst R, Svedman C (2003) Traumatic fat necrosis: a case report. Acta Derm Venereol 83:227–228PubMedCrossRef
53.
Zurück zum Zitat Lopez JA, Saez F, Alejandro Larena J, Capelastegui A, Martin JI, Canteli B (1997) MRI diagnosis and follow-up of subcutaneous fat necrosis. J Magn Reson Imaging 7:929–932PubMedCrossRef Lopez JA, Saez F, Alejandro Larena J, Capelastegui A, Martin JI, Canteli B (1997) MRI diagnosis and follow-up of subcutaneous fat necrosis. J Magn Reson Imaging 7:929–932PubMedCrossRef
54.
Zurück zum Zitat Canteli B, Saez F, de los Rios A, Alvarez C (1996) Fat necrosis. Skeletal Radiol 25:305–307PubMedCrossRef Canteli B, Saez F, de los Rios A, Alvarez C (1996) Fat necrosis. Skeletal Radiol 25:305–307PubMedCrossRef
55.
Zurück zum Zitat Theumann N, Abdelmoumene A, Wintermark M, Schnyder P, Gailloud MC, Resnick D (2005) Posttraumatic pseudolipoma: MRI appearances. Eur Radiol 15:1876–1880PubMedCrossRef Theumann N, Abdelmoumene A, Wintermark M, Schnyder P, Gailloud MC, Resnick D (2005) Posttraumatic pseudolipoma: MRI appearances. Eur Radiol 15:1876–1880PubMedCrossRef
56.
Zurück zum Zitat Aust MC, Spies M, Kall S et al (2007) Lipomas after blunt soft tissue trauma: are they real? Analysis of 31 cases. Br J Dermatol 157:92–99PubMedCrossRef Aust MC, Spies M, Kall S et al (2007) Lipomas after blunt soft tissue trauma: are they real? Analysis of 31 cases. Br J Dermatol 157:92–99PubMedCrossRef
57.
Zurück zum Zitat Pomares Roche JM, Arrizabalaga Clemente P (2008) Lipoatrophy semicircularis. Med Clin (Barc) 130:213–215CrossRef Pomares Roche JM, Arrizabalaga Clemente P (2008) Lipoatrophy semicircularis. Med Clin (Barc) 130:213–215CrossRef
58.
Zurück zum Zitat Reinoso-Barbero L, Gonzalez-Gomez MF, Belanger-Quintana D et al (2013) Case-control study of semicircular lipoatrophy, a new occupational disease in office workers. J Occup Health 55:149–157PubMedCrossRef Reinoso-Barbero L, Gonzalez-Gomez MF, Belanger-Quintana D et al (2013) Case-control study of semicircular lipoatrophy, a new occupational disease in office workers. J Occup Health 55:149–157PubMedCrossRef
59.
Zurück zum Zitat Nagore E, Sanchez-Motilla JM, Rodriguez-Serna M, Vilata JJ, Aliaga A (1998) Lipoatrophia semicircularis--a traumatic panniculitis: report of seven cases and review of the literature. J Am Acad Dermatol 39:879–881PubMedCrossRef Nagore E, Sanchez-Motilla JM, Rodriguez-Serna M, Vilata JJ, Aliaga A (1998) Lipoatrophia semicircularis--a traumatic panniculitis: report of seven cases and review of the literature. J Am Acad Dermatol 39:879–881PubMedCrossRef
60.
Zurück zum Zitat Ogino J, Saga K, Tamagawa M, Akutsu Y (2004) Magnetic resonance imaging of semicircular lipoatrophy. Dermatology 209:340–341PubMedCrossRef Ogino J, Saga K, Tamagawa M, Akutsu Y (2004) Magnetic resonance imaging of semicircular lipoatrophy. Dermatology 209:340–341PubMedCrossRef
61.
Zurück zum Zitat Simha V, Agarwal AK, Oral EA, Fryns JP, Garg A (2003) Genetic and phenotypic heterogeneity in patients with mandibuloacral dysplasia-associated lipodystrophy. J Clin Endocrinol Metab 88:2821–2824PubMedCrossRef Simha V, Agarwal AK, Oral EA, Fryns JP, Garg A (2003) Genetic and phenotypic heterogeneity in patients with mandibuloacral dysplasia-associated lipodystrophy. J Clin Endocrinol Metab 88:2821–2824PubMedCrossRef
62.
Zurück zum Zitat Agarwal AK, Kazachkova I, Ten S, Garg A (2008) Severe mandibuloacral dysplasia-associated lipodystrophy and progeria in a young girl with a novel homozygous Arg527Cys LMNA mutation. J Clin Endocrinol Metab 93:4617–4623PubMedPubMedCentralCrossRef Agarwal AK, Kazachkova I, Ten S, Garg A (2008) Severe mandibuloacral dysplasia-associated lipodystrophy and progeria in a young girl with a novel homozygous Arg527Cys LMNA mutation. J Clin Endocrinol Metab 93:4617–4623PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Fiorenza CG, Chou SH, Mantzoros CS (2011) Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol 7:137–150PubMedCrossRef Fiorenza CG, Chou SH, Mantzoros CS (2011) Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol 7:137–150PubMedCrossRef
64.
Zurück zum Zitat Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ (2004) From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiographics 24:1433–1466PubMedCrossRef Murphey MD, Carroll JF, Flemming DJ, Pope TL, Gannon FH, Kransdorf MJ (2004) From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiographics 24:1433–1466PubMedCrossRef
65.
Zurück zum Zitat Elia S, Cerioli A, Fiaschetti V, Granai AV (2015) Infraclavicular subpectoral lipoma causing thoracic outlet syndrome. Int J Surg Case Rep 9:101–104PubMedPubMedCentralCrossRef Elia S, Cerioli A, Fiaschetti V, Granai AV (2015) Infraclavicular subpectoral lipoma causing thoracic outlet syndrome. Int J Surg Case Rep 9:101–104PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon, France Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon, France
67.
Zurück zum Zitat Kitagawa Y, Miyamoto M, Konno S et al (2014) Subcutaneous angiolipoma: magnetic resonance imaging features with histological correlation. J Nippon Med Sch 81:313–319PubMedCrossRef Kitagawa Y, Miyamoto M, Konno S et al (2014) Subcutaneous angiolipoma: magnetic resonance imaging features with histological correlation. J Nippon Med Sch 81:313–319PubMedCrossRef
68.
Zurück zum Zitat Khashper A, Zheng J, Nahal A, Discepola F (2014) Imaging characteristics of spindle cell lipoma and its variants. Skeletal Radiol 43:591–597PubMedCrossRef Khashper A, Zheng J, Nahal A, Discepola F (2014) Imaging characteristics of spindle cell lipoma and its variants. Skeletal Radiol 43:591–597PubMedCrossRef
69.
Zurück zum Zitat Billings SD, Folpe AL (2007) Diagnostically challenging spindle cell lipomas: a report of 34 “low-fat” and “fat-free” variants. Am J Dermatopathol 29:437–442PubMedCrossRef Billings SD, Folpe AL (2007) Diagnostically challenging spindle cell lipomas: a report of 34 “low-fat” and “fat-free” variants. Am J Dermatopathol 29:437–442PubMedCrossRef
70.
Zurück zum Zitat Bancroft LW, Kransdorf MJ, Peterson JJ, Sundaram M, Murphey MD, O'Connor MI (2003) Imaging characteristics of spindle cell lipoma. AJR Am J Roentgenol 181:1251–1254PubMedCrossRef Bancroft LW, Kransdorf MJ, Peterson JJ, Sundaram M, Murphey MD, O'Connor MI (2003) Imaging characteristics of spindle cell lipoma. AJR Am J Roentgenol 181:1251–1254PubMedCrossRef
71.
Zurück zum Zitat Tahiri Y, Xu L, Kanevsky J, Luc M (2013) Lipofibromatous hamartoma of the median nerve: a comprehensive review and systematic approach to evaluation, diagnosis, and treatment. J Hand Surg Am 38:2055–2067PubMedCrossRef Tahiri Y, Xu L, Kanevsky J, Luc M (2013) Lipofibromatous hamartoma of the median nerve: a comprehensive review and systematic approach to evaluation, diagnosis, and treatment. J Hand Surg Am 38:2055–2067PubMedCrossRef
72.
Zurück zum Zitat Myhre-Jensen O (1981) A consecutive 7-year series of 1331 benign soft tissue tumours. Clinicopathologic data. Comparison with sarcomas. Acta Orthop Scand 52:287–293PubMedCrossRef Myhre-Jensen O (1981) A consecutive 7-year series of 1331 benign soft tissue tumours. Clinicopathologic data. Comparison with sarcomas. Acta Orthop Scand 52:287–293PubMedCrossRef
73.
Zurück zum Zitat El Ouni F, Jemni H, Trabelsi A et al (2010) Liposarcoma of the extremities: MR imaging features and their correlation with pathologic data. Orthop Traumatol Surg Res 96:876–883PubMedCrossRef El Ouni F, Jemni H, Trabelsi A et al (2010) Liposarcoma of the extremities: MR imaging features and their correlation with pathologic data. Orthop Traumatol Surg Res 96:876–883PubMedCrossRef
Metadaten
Titel
Imaging spectrum of abnormal subcutaneous and visceral fat distribution
verfasst von
Asako Yamamoto
Yoshinao Kikuchi
Toru Kusakabe
Hideyuki Takano
Keita Sakurai
Shigeru Furui
Hiroshi Oba
Publikationsdatum
01.12.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2020
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-019-0833-4

Weitere Artikel der Ausgabe 1/2020

Insights into Imaging 1/2020 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.