Skip to main content
Erschienen in: Pediatric Surgery International 2/2010

01.02.2010 | Original Article

In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering

verfasst von: Gakuto Tani, Noriaki Usui, Masafumi Kamiyama, Takaharu Oue, Masahiro Fukuzawa

Erschienen in: Pediatric Surgery International | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Tissue-engineered cartilage may offer a solution for the treatment of serious airway disease. This study developed a novel procedure to fabricate a scaffold-free cylindrical cartilage under in vitro conditions, while also evaluating the effect of a dynamic culture on the engineered construct.

Methods

Auricular chondrocytes were harvested from New Zealand white rabbits and cultivated under high-density conditions to form a chondrocyte sheet. The sheet was looped around a silicon tube and cultivated for 6 weeks in dynamic or static conditions. The engineered cylindrical cartilages were evaluated macroscopically and histologically. The expression of collagen, glycosaminoglycan content and mechanical properties were determined.

Results

The cylindrical cartilage was sufficiently elastic and stiff to maintain the structure without disruption. Histologically, the construct contained a Safranin-O positive cartilaginous matrix accompanied by the expression of type II collagen. The glycosaminoglycan content increased and reached 72% of the native tracheal cartilage after 6 weeks of cultivation.

Conclusion

A novel procedure was developed for fabricating engineered cartilage, which maintained the shape and a proper level of rigidity and flexibility, under in vitro conditions using sheet-based tissue engineering techniques. This procedure may allow for the development of a tailor-made autograft and a functionally engineered trachea.
Literatur
1.
Zurück zum Zitat Watanabe T, Okuyama H, Kubota A, Kawahara H, Hasegawa T, Ueno T, Saka R, Morishita Y (2008) A case of tracheal agenesis surviving without mechanical ventilation after external esophageal stenting. J Pediatr Surg 43:1906–1908CrossRefPubMed Watanabe T, Okuyama H, Kubota A, Kawahara H, Hasegawa T, Ueno T, Saka R, Morishita Y (2008) A case of tracheal agenesis surviving without mechanical ventilation after external esophageal stenting. J Pediatr Surg 43:1906–1908CrossRefPubMed
2.
Zurück zum Zitat Martinod E, Seguin A, Pfeuty K, Fornes P, Kambouchner M, Azorin JF, Carpentier AF (2003) Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann Thorac Surg 75:1572–1578CrossRefPubMed Martinod E, Seguin A, Pfeuty K, Fornes P, Kambouchner M, Azorin JF, Carpentier AF (2003) Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann Thorac Surg 75:1572–1578CrossRefPubMed
3.
Zurück zum Zitat Azorin JF, Bertin F, Martinod E, Laskar M (2006) Tracheal replacement with an aortic autograft. Eur J Cardiothorac Surg 29:261–263CrossRefPubMed Azorin JF, Bertin F, Martinod E, Laskar M (2006) Tracheal replacement with an aortic autograft. Eur J Cardiothorac Surg 29:261–263CrossRefPubMed
4.
Zurück zum Zitat Tojo T, Niwaya K, Sawabata N, Kushibe K, Nezu K, Taniguchi S, Kitamura S (1998) Tracheal replacement with cryopreserved tracheal allograft: experiment in dogs. Ann Thorac Surg 66:209–213CrossRefPubMed Tojo T, Niwaya K, Sawabata N, Kushibe K, Nezu K, Taniguchi S, Kitamura S (1998) Tracheal replacement with cryopreserved tracheal allograft: experiment in dogs. Ann Thorac Surg 66:209–213CrossRefPubMed
5.
Zurück zum Zitat Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP (1994) Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg 29:201–205CrossRefPubMed Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP (1994) Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg 29:201–205CrossRefPubMed
6.
Zurück zum Zitat Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J (2002) Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 123:1177–1184CrossRefPubMed Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J (2002) Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 123:1177–1184CrossRefPubMed
7.
Zurück zum Zitat Rotter N, Ung F, Roy AK, Vacanti M, Eavey RD, Vacanti CA, Bonassar LJ (2005) Role for interleukin 1alpha in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds. Tissue Eng 11:192–200CrossRefPubMed Rotter N, Ung F, Roy AK, Vacanti M, Eavey RD, Vacanti CA, Bonassar LJ (2005) Role for interleukin 1alpha in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds. Tissue Eng 11:192–200CrossRefPubMed
8.
Zurück zum Zitat Asplund B, Sperens J, Mathisen T, Hilborn J (2006) Effects of hydrolysis on a new biodegradable co-polymer. J Biomater Sci Polym Ed 17:615–630CrossRefPubMed Asplund B, Sperens J, Mathisen T, Hilborn J (2006) Effects of hydrolysis on a new biodegradable co-polymer. J Biomater Sci Polym Ed 17:615–630CrossRefPubMed
9.
Zurück zum Zitat Grayson AC, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 15:1281–1304CrossRefPubMed Grayson AC, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 15:1281–1304CrossRefPubMed
10.
Zurück zum Zitat Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251CrossRefPubMed Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251CrossRefPubMed
11.
Zurück zum Zitat Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196CrossRefPubMed Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196CrossRefPubMed
12.
Zurück zum Zitat Furukawa KS, Imura K, Tateishi T, Ushida T (2008) Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol 133:134–145CrossRefPubMed Furukawa KS, Imura K, Tateishi T, Ushida T (2008) Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol 133:134–145CrossRefPubMed
13.
Zurück zum Zitat Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Kikuchi T, Mochida J (2007) Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes. Eur Cell Mater 13:87–92PubMed Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Kikuchi T, Mochida J (2007) Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes. Eur Cell Mater 13:87–92PubMed
14.
Zurück zum Zitat Naumann A, Dennis JE, Aigner J, Coticchia J, Arnold J, Berghaus A, Kastenbauer ER, Caplan AI (2004) Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Tissue Eng 10:1695–1706CrossRefPubMed Naumann A, Dennis JE, Aigner J, Coticchia J, Arnold J, Berghaus A, Kastenbauer ER, Caplan AI (2004) Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Tissue Eng 10:1695–1706CrossRefPubMed
15.
Zurück zum Zitat L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365CrossRefPubMed L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365CrossRefPubMed
16.
Zurück zum Zitat Park K, Huang J, Azar F, Jin RL, Min BH, Han DK, Hasty K (2006) Scaffold-free, engineered porcine cartilage construct for cartilage defect repair—in vitro and in vivo study. Artif Organs 30:586–596CrossRefPubMed Park K, Huang J, Azar F, Jin RL, Min BH, Han DK, Hasty K (2006) Scaffold-free, engineered porcine cartilage construct for cartilage defect repair—in vitro and in vivo study. Artif Organs 30:586–596CrossRefPubMed
17.
Zurück zum Zitat Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2007) Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28:5462–5470CrossRefPubMed Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2007) Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28:5462–5470CrossRefPubMed
18.
Zurück zum Zitat Wu W, Cheng X, Zhao Y, Chen F, Feng X, Mao T (2007) Tissue engineering of trachea-like cartilage grafts by using chondrocyte macroaggregate: experimental study in rabbits. Artif Organs 31:826–834CrossRefPubMed Wu W, Cheng X, Zhao Y, Chen F, Feng X, Mao T (2007) Tissue engineering of trachea-like cartilage grafts by using chondrocyte macroaggregate: experimental study in rabbits. Artif Organs 31:826–834CrossRefPubMed
19.
Zurück zum Zitat Weidenbecher M, Tucker HM, Awadallah A, Dennis JE (2008) Fabrication of a neotrachea using engineered cartilage. Laryngoscope 118:593–598CrossRefPubMed Weidenbecher M, Tucker HM, Awadallah A, Dennis JE (2008) Fabrication of a neotrachea using engineered cartilage. Laryngoscope 118:593–598CrossRefPubMed
20.
Zurück zum Zitat Nagai T, Furukawa KS, Sato M, Ushida T, Mochida J (2008) Characteristics of a scaffold-free articular chondrocyte plate grown in rotational culture. Tissue Eng Part A 14:1183–1193CrossRefPubMed Nagai T, Furukawa KS, Sato M, Ushida T, Mochida J (2008) Characteristics of a scaffold-free articular chondrocyte plate grown in rotational culture. Tissue Eng Part A 14:1183–1193CrossRefPubMed
21.
Zurück zum Zitat Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J, Shimizu Y (2005) Regenerative medicine of the trachea, the first human case. Ann Otol Rhinol Laryngol 114:429–433PubMed Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J, Shimizu Y (2005) Regenerative medicine of the trachea, the first human case. Ann Otol Rhinol Laryngol 114:429–433PubMed
22.
Zurück zum Zitat Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T (2005) Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26:6415–6422CrossRefPubMed Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T (2005) Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26:6415–6422CrossRefPubMed
23.
Zurück zum Zitat Watt FM (1988) Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 89:373–378PubMed Watt FM (1988) Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 89:373–378PubMed
24.
Zurück zum Zitat Schulze-Tanzil G, de Souza P, Villegas Castrejon H, John T, Merker HJ, Scheid A, Shakibaei M (2002) Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res 308:371–379CrossRefPubMed Schulze-Tanzil G, de Souza P, Villegas Castrejon H, John T, Merker HJ, Scheid A, Shakibaei M (2002) Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res 308:371–379CrossRefPubMed
25.
Zurück zum Zitat Kanzaki M, Yamato M, Hatakeyama H, Kohno C, Yang J, Umemoto T, Kikuchi A, Okano T, Onuki T (2006) Tissue engineering epithelial cell sheets for the creation of bioartificial trachea. Tissue Eng 12:1275–1283CrossRefPubMed Kanzaki M, Yamato M, Hatakeyama H, Kohno C, Yang J, Umemoto T, Kikuchi A, Okano T, Onuki T (2006) Tissue engineering epithelial cell sheets for the creation of bioartificial trachea. Tissue Eng 12:1275–1283CrossRefPubMed
26.
Zurück zum Zitat Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissue with cell sheet engineering. Biomaterials 28:5033–5043CrossRefPubMed Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissue with cell sheet engineering. Biomaterials 28:5033–5043CrossRefPubMed
Metadaten
Titel
In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering
verfasst von
Gakuto Tani
Noriaki Usui
Masafumi Kamiyama
Takaharu Oue
Masahiro Fukuzawa
Publikationsdatum
01.02.2010
Verlag
Springer-Verlag
Erschienen in
Pediatric Surgery International / Ausgabe 2/2010
Print ISSN: 0179-0358
Elektronische ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-009-2543-3

Weitere Artikel der Ausgabe 2/2010

Pediatric Surgery International 2/2010 Zur Ausgabe

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Frühe Hypertonie erhöht späteres kardiovaskuläres Risiko

Wie wichtig es ist, pädiatrische Patienten auf Bluthochdruck zu screenen, zeigt eine kanadische Studie: Hypertone Druckwerte in Kindheit und Jugend steigern das Risiko für spätere kardiovaskuläre Komplikationen.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.