Skip to main content
Erschienen in: Brain Structure and Function 3/2024

Open Access 02.12.2023 | Review

Induction of excitatory brain state governs plastic functional changes in visual cortical topology

verfasst von: Ulf T. Eysel, Dirk Jancke

Erschienen in: Brain Structure and Function | Ausgabe 3/2024

Abstract

Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Visual cortical plasticity in adulthood

Although the growth and loss of neuronal elements are important common features of postnatal development of the brain the underlying mechanisms are downregulated after the critical periods and the coarse structure and function of the adult brain are considered relatively stable after optimization in early life. However, challenges like use and disuse as well as damage seem to reinstall functional as well as structural mechanisms of neuronal plasticity in the adult. Retinal lesions are a reproducible and well documented model for lesion induced cortical plasticity and have been widely used over the last 40 years to study neuronal reorganization in the adult visual system. Our contributions to the investigation of cortical plasticity in the adult visual cortex focus on the role of cortical excitability in the functional dynamics of reorganization making use of perturbations such as employed in the retinal lesion model in cats and rats (Giannikopoulos and Eysel 2006; Palagina et al. 2009) and transcranial magnetic stimulation (TMS) experiments in cats (Kozyrev et al. 2014, 2018). The following review has been compiled based on these four publications, centered around the widely discussed idea that transformation of the cortex into an excitatory state is crucial for functional reorganization processes. We outline the cortical mechanisms of adult visual plasticity—starting from invasive retinal lesion interventions and single electrode recordings towards noninvasive cortical stimulation procedures (TMS) combined with wide-field optical imaging of high spatiotemporal coverage using voltage-sensitive dye (VSD).

Map reorganization and increased excitability in the primary visual cortex following retinal lesion

Specific functions of cat visual cortical cells become fully developed 2–3 months postnatal at the end of their individual critical periods (Braastad and Heggelund 1985; Daw et al. 1995; Fregnac and Imbert 1984). However, if retinal lesions impact the afferent cortical inputs in adulthood the resulting visually "blind" lesion projection zone (LPZ) in the visual cortex again becomes a site for substantial neuronal plasticity. With time more and more cells regain visual excitability and the gradual filling-in process is characterized by the emergence of displaced receptive fields (RF). Sufficiently small lesions are completely filled-in in animals (Chino et al. 1992, 1995; Gilbert 1992; Gilbert and Wiesel 1992; Heinen and Skavenski 1991; Kaas et al. 1990) and humans (Gerrits and Timmerman 1969; Zur and Ullman 2003). Earlier experiments had discovered a small extent of topographical reorganization after retinal lesions subcortically with RFs displaced by 5° at 15° eccentricity corresponding to 250 µm in the lateral geniculate nucleus (Eysel et al. 1980, 1981; Eysel 1982). A similar displacement of cortical RFs after paracentral lesions revealed a plasticity spanning distances larger than 2.5 mm (Gilbert 1992; Gilbert and Wiesel 1992; Kaas et al. 1990). In the early phase of reorganization cortical cells displayed enlarged RFs immediately inside of the LPZ (Chino et al. 1992; Gilbert and Wiesel 1992). At termination of the following long-term cortical remodeling the enlarged RFs were reduced in size (Gilbert and Wiesel 1992) and several other RF properties showed improvements towards normality (Chino et al. 1995). The following two sections highlight a strong cortical hyperexcitability associated with the spatiotemporal dynamics during the previously described filling-in process and demonstrate the intracortical spread of excitation in the adult visual cortex, using single cell recordings in the cat and 2D-voltage-sensitive dye (VSD) imaging with high temporal resolution in the rat, respectively.

Dynamic changes of excitability during cortical map reorganization

The classical method to demonstrate the reorganization of cortical connectivity following retinal lesions (see Box 1) is the electrophysiological recording of single cells and the determination of their receptive field topography while recording within the LPZ and in the normal cortex (Fig. 1).
Box 1
.
Retinal lesion procedures
 
To study cortical reorganization in cats, a central retinal lesion of approximately 10° in diameter was produced (Fig. 1A) with xenon light (LOG-2 photocoagulator, Clinitex, Inc., USA) in both eyes of adult cats. The optic disks, the vascular pattern, and the retinal lesions (dark pigmented areas) were visible in fundus photographs (Fig. 1A)
Electrophysiological recordings in the visual cortex
For extracellular recordings an independently controlled linear microelectrode array (305 µm inter-electrode distance) was used. Receptive field topography was first determined with hand-held bar-shaped stimuli for each recording site and plotted as rectangles in the same map (Fig. 1C). Visual responses were then quantified using gratings (0.2–0.7 cycles/deg drifting at 1–2 cycles/s with different orientations (0°–180°) and directions of motion (0°–360°). Recordings were performed in control animals and lesioned animals after survival times of 2 weeks, 1 and 2 months and 1-year
After recovery periods between 2 weeks and 12 months the lesion-induced cortical changes were investigated in acute preparations under continuous anesthesia. Single cortical cells were recorded in the upper layers of cat area 17 moving from inside the LPZ in the upper part of the medial bank downwards into the visual cortex representing the surrounding normal retina (Fig. 1B). In control animals, RFs shifted from the area centralis progressively towards the periphery of the visual field. In lesioned animals, while moving the electrodes downwards through the LPZ the RFs piled up at ectopic positions next to the retinal lesion and only showed a progressive shift when recording further down from the normal cortex.
The maintained activity (Fig. 1D) and the visual responses (for details of recordings see Box 1) were quantitatively determined (Fig. 1E) and depicted as a function of recording location along the electrode track (Fig. 1B).
In control animals, it was found that the relative recording probability of single cells was constant along the vertical recording tracks, but decreased progressively with distance from the normal cortex in lesioned animals and reached about 15% of normal close to the center of the LPZ with recovery times up to 3 months. A significant increase to more than 50% was observed after 1 year of recovery.
Spatiotemporal peaks of significantly increased maintained activity were discovered at 2 and 4 weeks migrating with time towards the center of the LPZ which disappeared upon completion of the filling-in after 12 weeks to 1 year. At this time normal maintained activity was measured throughout the LPZ, while very low maintained activity was observed in the central LPZ (Fig. 1D). At the same recovery times comparable peaks of visual hyperexcitability characterized the newly emerging visual responses inside the LPZ (Fig. 1E). The rising phase and peak of visual hyperexcitability resulted from strong responses to full-field drifting gratings while no well-defined RFs were detected at these recording sites during early reorganization of the LPZ. This spatiotemporal pattern characterized the forefront of visual re-innervation of previously "blind" cells. The well-defined RFs emerged later in time within the LPZ, i.e. closer towards the normally innervated cortex (see arrows in Fig. 1E).
In normal cats, RF size grows larger at larger eccentricities in the visual field as shown along the recording tracks from the cortical surface downwards (Fig. 1F, control). In contrast, at the shorter survival times after lesioning the width of RFs in the LPZ started at significantly larger values and decreased towards the border of the LPZ (Fig. 1F). The widest RFs were detected close to the excitability peak (Fig. 1D, E). At longer survival times (3 and 12 months), the RF widths inside the LPZ recovered and decreased to the sizes found in normal cells close to the LPZ (Fig. 1F).
It can be concluded that increased excitability in general and the increased size of RFs in particular might indicate an imbalance between glutamatergic excitation and GABAergic inhibition in the LPZ of adult cats in early stages of functional reorganization. Two weeks after retinal lesioning the GAD immunoreactivity is downregulated (Arckens et al. 2000; Rosier et al. 1995) and GABA concentrations are decreased. At the same time, a peak of strongly increased Glutamate immunohistochemistry is detected in the LPZ. This peak moves spatiotemporally within about 3 months together with a peak of hyperactivity (Fig. 1D, E) from the border towards the center of the LPZ (Arckens et al. 2000). This is accompanied by a functional filling-in of the scotoma (Giannikopoulos and Eysel 2006). In early postnatal life increased excitation and reduced inhibition are known to promote synaptic plasticity based on the weak GABAergic inhibition and even excitatory effects of GABA (Guo et al. 1997; Lin et al. 1994). Under these conditions, effective long-term potentiation can be elicited (Fox 1995). Electrical stimulation of horizontal fibers elicited LTP in the cat visual cortex (Hirsch and Gilbert 1993), and horizontal axons responded to retinal lesions with axonal sprouting in the adult cat and monkey (Darian-Smith and Gilbert 1994; Yamahachi et al. 2009). On these grounds, we suggest that the hyperexcitability combined with synaptic use in the horizontal cortical fiber system are key mechanisms for synaptic reconnection and functional filling-in following retinal lesions.
In summary, when visual cortical cells are deprived of retinal input by homonymous retinal lesions in adulthood they form an initially unresponsive “blind” LPZ. This cortical region becomes the stage for subsequent neuronal plasticity with visual reactivation and topographic remodeling (Chino et al. 1992, 1995; Gilbert 1992; Gilbert and Wiesel 1992; Heinen and Skavenski 1991; Kaas et al. 1990). Altogether the literature about lesion-induced plasticity suggests that cortical remodeling is accompanied by a temporal loss of inhibition and increase of cortical excitability that appears to promote functional reorganization of the cortical circuitry.

Strengthening of horizontal cortical connections captured with voltage-sensitive dye imaging

Single cell recordings as described above provide accurate local information about neuronal output. However, because of limits in the density of spatial sampling and the suprathreshold nature of the signals, the underlying analogue synaptic events that drive far-reaching integrative processes cannot be accessed. Moreover, gradual voltage changes in postsynaptic population activity (Jancke 2017, 2018) within the LPZ that accompany recovery processes remain elusive.
Wide-field optical imaging using voltage-sensitive dye (VSD) (see Box 2) permits the depiction of the ongoing state of the cortex through measurements of changes in membrane voltage across millions of neurons under varying input conditions (Onat et al. 2011a). Furthermore, as the emitted fluorescent signals reflect a continuum of membrane potentials, gradual changes in subthreshold activity that spread via long-range cortical connections (Creutzfeldt et al. 1977; Fisken et al. 1975; Gilbert and Wiesel 1979; Rockland and Lund 1982) become unmasked. Consequently, reorganization processes across widely interconnected neurons, including their nonlinear interactions that are not apparent in extracellular spiking, can be tracked over a wide spatial range as postsynaptic activity at mesoscopic population level (Freeman and Barrie 2000; Jancke et al. 1999; Jancke 2000, 2017; Onat et al. 2011a, 2013). Because the optically measured signals provide a direct link to the functional cortical architecture (Arieli et al. 1996; Blasdel and Salama 1986; Bonhoeffer and Grinvald 1991), potential systematic mappings of stimulus parameters and their combinations become accessible in terms of cortical coordinates (Onat et al. 2011b).
Box 2
.
Wide-field optical imaging with voltage-sensitive dyes
 
To capture the time course of reorganization processes along with alterations in the functional characteristics of lateral connectivity at the neuronal population level, wide-field optical imaging in combination with voltage-sensitive dye (VSD) can be a useful tool (Grinvald and Hildesheim 2004; Jancke et al. 2004)
Using a tandem-lens system (Ratzlaff and Grinvald 1991) and a fast CCD camera, wide-field VSD imaging allows recording of changes in cortical activity across several millimeters of cortex (Berger et al. 2007; Chen et al. 2006; Grinvald et al. 1994; Jancke et al. 2004; Meirovithz et al. 2012; Muller et al. 2014; Onat et al. 2011a, b; Petersen et al. 2003; Roland et al. 2006; Sit et al. 2009) with high temporal (milliseconds) and spatial resolution [50 microns; for a review see Grinvald and Hildesheim (2004)]. In addition, as the method records activity from large pools of neurons with high spatiotemporal resolution, patterns of activity dynamics can be revealed that are currently still not detectable with densely spaced multi-electrode arrays. Moreover, the method avoids biases in sampling of neurons
Note that due to light scattering, the depth of the tissue staining with dye, and the applicable focal depth, the main source of the fluorescent imaging signals is derived from cortical superficial layers (> 80%) (Grinvald and Hildesheim 2004; Petersen et al. 2003). Thus, any remodeling occurring in deeper cortical layers including thalamo-cortical afferents is unlikely to be accessible. As neurons in layers 5/6 have dendritic arbors up into layers 2/3, deeper cortical layers may nonetheless contribute to the optical signal
One major strength of VSD imaging is its capability to unravel horizontal influence and propagation of activity across upper cortical layers (Grinvald et al. 1994; Jancke et al. 2004; Jancke 2017; Muller et al. 2014; Rekauzke et al. 2016). For a direct proof Fig. 2 demonstrates an example in rat visual cortex, where horizontal propagation was unmasked using an “artificial scotoma” (i.e., hindering retinal feed-forward input using a local isoluminant gray area that omitted a part of the full-field stimulus). Note again that the visualization of such horizontal spread is of particular importance regarding studies of cortical plasticity, as these follow the hypothesis that horizontal connections are a major source of retinal lesion-induced cortical rewiring (Das and Gilbert 1995; Giannikopoulos and Eysel 2006; Kaas et al. 1990).
In our experiments in rats, a laser was used to coagulate a small region (~ 1 mm in diameter) of the retina eliminating all retinal layers dorsal to the optic disc (Fig. 3A). Hence, this intervention produced a retinal lesion that removed feedforward visual input to the medial part of the primary visual cortex, leading to a temporo-nasal scotoma of ~ 15–20° (Fig. 3A, B, D). In this study, following the retinal lesions, VSD imaging was conducted in three groups of animals: the first group, lesioned at P65, was recorded at P69–P72 (“acute lesion”). The second group was also lesioned at P65 but imaged after an extended period of recovery, that is, P92–P105. A third group of unlesioned rats with matching ages was imaged in order to characterize normal retinotopic cortical representations as a control (Fig. 3C).
A summary of the cortical retinotopic map obtained after lesion is shown in Fig. 3, where with the exception of the LPZ (stippled line marks LPZ border) that was “cortically blind”, activity in response to all stimuli outside the projection of the retinal lesion was retinotopically arranged in overlapping fashion (compare colors of sketch of stimulus positions in the visual field and contours encircling cortical activation in Fig. 3D, left and right panels, respectively). Recordings of cortical activity in response to stimuli that covered the entire visual field (full-field gratings), including the scotoma, revealed significant differences between groups (Fig. 4), 6 days after lesion (“acute”, upper row) and 28 days post-lesion (“recovery”, lower row). At response onset, cortical regions that were unaffected by the lesion showed a similar instantaneous and broadly distributed emergence of activity in both groups. This reflected most likely maintained early subcortical input to the parts of the cortex outside the LPZ (marked-off by black line). Indeed, the latency maps in Fig. 4B confirmed that the earliest responses were found along the lateral posterior–anterior axis (green colors) where direct thalamic input remained functionally intact. From then on, in both cases (i.e., after short and longer recovery times) latencies increased systematically towards medial regions (red/gray), demonstrating delayed spread of activity crossing the LPZ border via horizontal axons (black line). Thus, lateral input became gradually effective across regions within the LPZ, which can be seen by the systematic shift of the curves in Fig. 4C towards the LPZ [each of the traces depicts spatial averages across unaffected regions (green), around LPZ border (red), and within the LPZ (gray)]. Noteworthy, also the slopes of latency gradients throughout the LPZ became steeper for 28 days post-lesion cases when compared with acutely lesioned animals (Fig. 4C, lower and upper plot, respectively), demonstrating a more rapid succession of activation across the LPZ after longer recovery. Furthermore, amplitudes of activation inside the LPZ reached higher values in animals after long recovery than in acute animals that had only little time for functional retrieval (Fig. 4D).
In summary, this study showed maintained ability of the adult rat visual cortex for plastic reorganization. In particular, VSD imaging enabled in this case the direct visualization of the functional strengthening of lateral connectivity during the time course of recovery from retinal lesion. That is, after retinal lesion (i.e., local removal of direct retinal input), visually evoked activity of neuronal populations inside the LPZ remained initially subthreshold indicated by propagation of low-level activity and further verified through additional extracellular recordings (not shown). Contrastingly, after longer recovery times, the emergence of stimulus-evoked suprathreshold activity within the LPZ was revealed, most likely due to reorganization processes that strengthened horizontal cortical input.
These findings are corroborated and extended by retinal lesion studies by Keck et al. in adult mice, where within 1–2 days the number of inhibitory cell boutons and spines dropped sharply and inhibitory synaptic density and function declined, while the initially depressed excitatory activity returned to normal values due to synaptic scaling. This was followed by a massive restructuring of excitatory connectivity (within 3–63 days), accompanied by stabilization of new connections and functional filling-in of the scotoma (Keck et al. 2008, 2011, 2013); see also review by Sammons and Keck (2015). Altogether, our results in rodents suggest that horizontal connectivity can undergo gradual reinforcement that counteracts lesion-induced loss of visual thalamic projections, similarly as found in our cat experiments (Giannikopoulos and Eysel 2006). Of note, using the retinal lesion model in monkey revealed only little reorganization effects at the border of the cortical LPZ (Smirnakis et al. 2005). These results were obtained with fMRI recordings and may therefore be not sensitive enough to capture post-lesion neuronal organization processes (Calford et al. 2005). On the other hand, it needs to be considered that projections of the length of axons into visual space coordinates are significantly different between rodents and primates. This may facilitate reorganization processes over larger distances in functional space for rodents as compared to primates. Interestingly, Russo et al. (2021) showed recently in humans that focal cortical lesion can result in the deafferentation of connected areas promoting the emergence of sleep-like slow-waves. Thus, besides local state changes in the region around the LPZ, additional long-range effects may contribute to the observed reorganization properties in V1 following retinal lesion.
The crucial point of this review is to present the idea that an induced excitatory cortical state can trigger functional cortical rewiring in the adult. So far, we showed that retinal lesions produce such an excitatory state in the LPZ in the affected cortical region. However, the question arises whether an excitatory cortical state can also be produced locally through noninvasive methods? If this is the case, applications in humans might become feasible that could initiate neuronal rewiring to confined cortical regions.

Transcranial magnetic stimulation as a tool for the noninvasive facilitation of visual cortical plasticity

Transcranial magnetic stimulation (TMS) is an increasingly applied noninvasive method (see Box 3) for the medical treatment of humans, such as interventions for neurorehabilitation and diagnostics of neurological disorders (Freitas et al. 2013; Hamer et al. 2005; Höflich et al. 1993; Hummel and Cohen 2005; Kleinjung et al. 2005; Lefaucheur et al. 2001; Loo and Mitchell 2005; McKinley et al. 2012). TMS has also been shown to be a valuable instrument in basic brain research. This is firstly because TMS-evoked perturbative effects (Deco et al. 2019) permit area-selective manipulation of cortical function (Jahanshahi and Dirnberger 1999; Pascual-Leone et al. 2000; Walsh and Cowey 2000). In addition, long-lasting alterations in cortical processing can be induced using different TMS protocols in combination with specific contextual (e.g., sensory-motor) protocols that facilitate plasticity and learning (Tegenthoff et al. 2005; Thompson et al. 2008; Waterston and Pack 2010). For instance, by measuring changes in phosphene thresholds repetitive 1 Hz and 10 Hz TMS protocols over the human visual cortex showed opposing plastic effects on excitability (Boroojerdi et al. 2000; Fierro et al. 2005). 10 Hz repetitive TMS across human V1 improved contrast sensitivity of amblyopic ("lazy-eye") patients (Thompson et al. 2008) and modulates performance in visual feature discrimination and detection tasks (Klaes et al. 2003; Romei et al. 2010). Nonetheless, the physiological mechanisms that underlie TMS-induced adaptive perceptual and behavioral changes remain often unclear (Freitas et al. 2013; Gersner et al. 2011; Siebner et al. 2022). One of the major reasons of this gap in knowledge is that neuroimaging "online approaches" (Siebner et al. 2009) that can be used in humans like, EEG (Ilmoniemi et al. 1997), MEG (Kähkönen et al. 2005), fMRI (Bestmann et al. 2008; Bohning et al. 1997; Paus et al. 1997; Roberts et al. 1997) or near-infrared imaging (Parks et al. 2012) are restricted in either spatial or temporal resolutions, or equally limited in both. Alternative recording methods such as the local monitoring of electrical activity, as frequently applied in animal models, are lacking the needed spatial sampling density and demand the use of (invasive) metal fibers (as single electrode or electrode arrays), which in turn generates TMS stimulation artifacts.
Box 3
.
Transcranial magnetic stimulation
 
For TMS a brief strong current is delivered through a coil generating a magnetic field which traverses the scalp (Barker et al. 1985). In turn an electric field is produced that causes current flow leading to excitation within the neuronal tissue under the coil. The method is free of pain because the brain contains no pain receptors. Instead, for example, when applied over the visual cortex TMS pulses can elicit phosphenes, which are local light sensations (Barlow et al. 1947). TMS became a valuable tool in neuroscience as a single TMS pulse produces a focal suppression (“virtual lesion”) within the target area that can be used to infer its relevance for a given task (Walsh and Cowey 1998; Pascual-Leone et al. 2000). High-frequency pulses are often used to measure cortical excitability or to alter the cortical state when applied as pulse trains over longer time periods (Pascual-Leone et al. 1999; Di Lazzaro et al. 2004; Huber et al. 2013). The latter regime was used in our studies

Using light to track TMS-induced changes of cortical activity in real-time

One of the major points of this review is to outline the idea that an induced excitatory cortical state, here generated through the use of 10 Hz repetitive transcranial magnetic stimulation (rTMS), may directly be exploitable to target cortical rewiring processes. Insight into the mechanisms underlying such reorganization processes will crucially help creating settings, in which cortical functional loss in humans may partially be restored (or recovery supported) using noninvasive applications that externally stimulate the brain. Next, we therefore describe our experiments that aimed at elucidating cortical reorganization processes after application of TMS followed by subsequent sensory (in our case visual) stimulation during post-TMS excitatory state.
Using fluorescent light to track changes in neuronal activity, VSD imaging avoids signal artifact contamination due to the strong electric field induced by the TMS pulses. Indeed, this optical approach allowed to accomplish, for the first time, artifact-free visualization of TMS-induced activity over several millimeters of cortex in the anesthetized cat with a single image-frame resolution of 10 ms (Fig. 5). Using VSD imaging it could be shown that each TMS pulse (Fig. 5B, left trace) produces a brief focal spot of activation with highest amplitudes evoked close to the coil (cf. Figure 5A, C, first 2 frames after TMS onset, reddish colors). This initial activation was succeeded by strong and widespread suppression lasting up to ~ 300 ms (bluish colors). Thus, a single TMS pulse caused a brief ~ 20 ms period of excitation succeeded by an instantaneous decrease in the postsynaptic potential of a large amount of neurons below baseline (i.e., producing a so-called “vertical lesion”). Following suppression, activity showed a rebound (Moliadze et al. 2003) during which locally rising activity was surrounded by cortical regions that remained suppressed. Altogether, these observations suggest that TMS releases a powerful volley that may initially drive interneurons (Lenz et al. 2016; Murphy et al. 2016; Werhahn et al. 1999; Ziemann 2003), most likely inhibitory neurons expressing parvalbumin (PV) (Benali et al. 2011). As PV neurons target pyramidal neurons on the soma (Markram et al. 2004) and given their far-reaching axonal-dendritic structure (Chung et al. 2013), which may produce enhanced TMS-sensitivity (McAllister et al. 2009), PV interneurons likely impose synchronized inhibition in the cortical circuitries (Pascual-Leone et al. 2000). In turn, excitatory networks could be activated that counterbalance such initially TMS-evoked inhibition, presumably involving activation of NMDA-receptors (Huang et al. 2007).
How are further consecutive TMS pulses represented in the cortex and how do they influence the progression of activity dynamics? After the early phase of suppression following the first TMS pulse, high-frequency TMS (10 Hz) applied over the visual cortex (Aydin-Abidin et al. 2006; Bohotin et al. 2002) induced consecutive boosts in activity in close synchrony with each TMS pulse. Hence, in this case, activity builds-up to high levels with widespread activation (see right trace in Fig. 5C). In Fig. 5D time traces of spatially averaged activity are shown. It can be noticed that in the 10 Hz condition (red trace) the strength of suppression after the first-pulse appears moderately smaller than for the single-pulse protocol (Fig. 5D, compare red and green trace, respectively). We speculate that multiple repetitions of TMS trials lead to enhanced activity that accumulates during high-frequency trials, possibly driven by reduced efficacy of inhibition (Lenz et al. 2016). Overall, repetitive 10 Hz TMS-pulses increased step-wise the level of postsynaptic potentials, starting from initial suppression up to high amplitudes producing an excitatory state across a large pool of cortical neurons (Kozyrev et al. 2014).

Targeted remodeling of visual cortical maps through TMS treatment

In our experiments in the cat visual cortex, the baseline status of orientation map layout was determined before application of TMS (pre-treatment maps). These maps were then re-evaluated directly after rTMS and after a subsequent “passive visual training” protocol lasting ~ 30 min. The visual stimulation protocol consisted of repeated presentations of gratings (phase-shifted) with a single orientation (Fig. 6A, sketch on top). Two examples of orientation maps before (pre) and after treatment with high-frequency rTMS (10 Hz) and after visual stimulation (post) are shown in Fig. 6A. Pre-TMS maps were characterized by a systematic and balanced representation of orientation angles centered around so-called “pinwheel” centers (Fig. 6A, left column). Thus, the maps before application of the protocol displayed their typical and well-known layout (Bonhoeffer and Grinvald 1991) with roughly equal incidence of all orientations. Next, the maps after 10 Hz rTMS and the following prolonged exposure to a selected orientation (visual “training”) were re-evaluated. The timespan directly after visual stimulation was excluded from analysis to avoid confound with early adaptation effects (Dragoi et al. 2000). We discovered that the maps were now dominated by regions representing the stimulated orientation (see Fig. 6A upper row after “training” with horizontal (0°) orientation). In fact, the cortical area encoding the “trained” orientation, here horizontal (see orange-reddish colors) increased by 28.9%, as measured in a time interval of 1–2.5 h after visual stimulation. This plasticity effect was independent of the orientation used for “training”, as verified by the use of different orientations in the individual experiments. For instance, in the experiment depicted in Fig. 6A bottom row, the stimulus orientation was 90°. In this case, orientation dominance shifted towards vertical (see bluish-greenish colors), revealing an increase (18.6%) in the representation of orientations that again matched closely the stimulated orientation.
The relative enlargement of regions encoding the “trained” orientation was on average 19.0 ± 4.0% SEM (7 experiments). Conversely, a significant reduction of the number of pixels with orientation preferences that were orthogonal to the stimulated orientation was observed (see Fig. 6B, red bar at 90°). Small but no significant changes of orientation maps were detected when the visual stimulation was carried out in combination with sham TMS (Fig. 6B, black bars, 3 experiments). Therefore, the reorganization of the cortical maps was evident by an increased occurrence of orientations that represented the visually “trained” and neighboring orientations when 10 Hz rTMS was coupled to subsequent visual stimulation (Fig. 6C, thin red lines in left graph show distribution of orientation preference after 10 Hz TMS for the individual experiments). Additional analysis showed that the TMS- and “training”-induced bias in the remodeled map layouts was not randomly recruited. Instead, remodeling was characterized by a systematic shift of orientation preferences towards the targeted visually “trained” orientation (cf. Fig. 3 in Kozyrev et al. 2018).
The above observations clearly suggest that the key mechanisms underlying significant remodeling of the functional cortical architecture are generated by means of high-frequency 10 Hz rTMS. Of note, no plastic changes were detected after application of 1 Hz rTMS. Therefore, further analysis of the time window directly after the 10 Hz rTMS treatment (“post-10 Hz TMS”) was performed. The left image in Fig. 7A depicts the layout of an orientation map, this time assigning reproducibility values to all pixels (brightness in maps indicates strength in reproducibility). In brief, if a pixel response was consistently strongest for a certain orientation in each trial (i.e., displaying low single-pixel trial-to-trial circular variance; for in depth explanations of the procedure see Grabska-Barwinska et al. 2009, 2012), a high reproducibility score is assigned. Thus, in Fig. 7A low values (dark) indicate that preferred orientation was inconsistent across trials. Interestingly, and as a proof of concept, this analysis also locates the position of pinwheel centers (cf. dark small regions in the center of encircled areas). Around pinwheel centers (Bonhoeffer and Grinvald 1991) neurons are tuned to different orientations in close vicinity. Hence, their spatial average across pixels leads to low reproducibility values. Using this approach, it could be revealed that the reproducibility of orientation preference for each image pixel was strongly declined after 10 Hz rTMS as compared to the map obtained before TMS (Fig. 7A, compare right (post) and left frame (pre), respectively).
One major cause of increased response variability after 10 Hz rTMS could be reduced inhibition. Note that before application of rTMS, the response to visual stimulation displayed a “notch”, i.e., a small downturn during the early rising phase of activity (Fig. 7B, gray time course). Such notch can typically be found in visually evoked VSD signals and is considered as a signature of inhibition, which may sharpen neuronal tuning to orientation (Sharon and Grinvald 2002). We found that after 10 Hz rTMS the notch was attenuated and activity continued rising towards higher amplitudes as compared to pre-TMS (Fig. 7, see encircled region and further progression of time courses, bluish and gray traces, respectively). Taken together, these results indeed suggest that following 10 Hz rTMS inhibition is reduced, which may facilitate an excitatory cortical state, where amplitudes of sensory-evoked activity are increased and orientation-specific response constituents are weakened (Kozyrev et al. 2014). Consequently, orientation selectivity, calculated as the difference between preferred and orthogonal responses (i.e., “modulation depth”), was significantly reduced for pixels with low as compared to pixels with high reproducibility (Fig. 7C; for a similar observation using intrinsic optical imaging and electrophysiology see (Kim et al. 2015). Moreover, the rTMS-induced loss in orientation selectivity manifested in decorrelated activity across the neuronal circuitries. Correlating pre-and post-TMS orientation maps in response to various stimulus orientations revealed that correlations after 10 Hz rTMS strongly declined (Fig. 7E, left and right plots in upper row). In summary, our 10 Hz rTMS experiments in cats suggested that high-frequency TMS stimulation produces a brain state that sets the ground for subsequent remodeling of functional cortical connectivity. In the visual cortex, such state was characterized by decreased orientation selectivity, increased excitability along with signatures of reduced inhibition, and decorrelation of neuronal responses.
How sustained were perturbation effects and the subsequent cortical remodeling after the solitary TMS intervention? Because of dye bleaching reliable VSD imaging could be performed maximally ~ 6 h after application of TMS (median data acquisition time was 2.5 h post TMS). Within this time window the observed reorganization of cortical orientation maps stayed stable. However, it appears reasonable to assume that a long-lasting establishment of rTMS-induced functional cortical remodeling requires repeated sessions (Cirillo et al. 2017; Gersner et al. 2011). One possible explanation for the need of multiple TMS sessions might be that adult neuronal networks need to overcome “plasticity thresholds” to prevent reestablishment of their pre-treatment properties (Rose et al. 2016). It also should be considered that the described experiments were performed under anesthesia, which can critically change neuronal responsiveness (Niell and Stryker 2010). Thus, results could deviate when subjects receive repeated TMS interventions in the awake state. Nonetheless, several findings speak to the fact that remodeling of cortical maps depends also on structural plastic changes. For instance, de novo formation of axonal boutons along with spine growth and their retraction occur over only tens of minutes (Holtmaat and Svoboda 2009). Moreover, in retinal lesion experiments it was demonstrated that such intensified dendritic synaptic spine turnover could contribute to restructuring of cortical circuitries on a relatively large spatial scale (Keck et al. 2008).
Finally, it remains to be clarified whether TMS-induced cortical remodeling includes additional plastic changes in cortico-thalamic connections (Jaepel et al. 2017) and to which extent remodeling may uncover existing intrinsic connectivity by a potential unmasking of latent inhibitory connections (Barron et al. 2017; Calford et al. 1999; Gilbert and Wiesel 1992). High-frequency TMS is well-known to facilitate cortical disinhibition (Cash et al. 2010, 2016) which in turn likely causes increased excitability as seen in our experiments. In entorhinohippocampal slices 10 Hz magnetic stimulation was shown to decrease the strength of GABAergic synaptic input (Lenz et al. 2016). Thus, the 10 Hz rTMS-induced shift in orientation preference observed in our studies towards the “trained” orientation could emerge from functional weakening of lateral suppression (Patterson et al. 2013). Furthermore, based on the observation that cortical activity displays a strong rebound and excitation phase after prolonged TMS application (Kozyrev et al. 2014; Li et al. 2017), it was recently suggested that the rTMS-induced increase in excitability also involves strengthening of cortico-subcortical loops (Li et al. 2017). Thus, we propose that cortical remodeling by rTMS initially triggers increased cortical excitability in parallel with a cascade of changes in functional strength of connectivity including cortico-thalamic input.

Concluding remarks and future directions

Overall, in our review we summarized how plasticity in the primary visual cortex is supported by increased excitability, most conceivably triggered through changes in excitation-inhibition balance—a crucial driving force for plasticity in neuronal function (Antal et al. 2006, 2011; Bavelier et al. 2010; Isaacson and Scanziani 2011; Letzkus et al. 2015). Our review adds to the notion that the adult visual intra-cortical network is principally capable of undergoing plastic changes in the basic layout of its functional properties. Specifically, we support the view that adult visual cortical circuitries have the intrinsic potential to create functional re-mapping (Calford et al. 1999; Darian-Smith and Gilbert 1994; Das and Gilbert 1995; Giannikopoulos and Eysel 2006; Gilbert and Wiesel 1992; Godde et al. 2002; Kaas et al. 1990; Palagina et al. 2009).
Using small retinal lesions in order to locally and functionally deprive feed-forward input, our studies in adult cats and rats revealed a cortical region of increased excitability, i.e., subsequent hyperactivity, within the lesion-corresponding cortical area followed by substantial reorganization (Giannikopoulos and Eysel 2006; Palagina et al. 2009). We further suggest that visual cortical re-mapping can be accomplished noninvasively with TMS stimulation and specifically targeted to defined plastic changes when combined with selective visual “training” (Kozyrev et al. 2014, 2018). We demonstrate that high frequency rTMS (10 Hz) creates a cortical state where responses to sensory input are “destabilized” apparent by increased variability of evoked activity. In such state, the cortex may transiently undergo a high sensitivity to biases in sensory input (Brickwedde et al. 2019; Clopath et al. 2017; Froemke et al. 2007; Schuett et al. 2001; Sczesny-Kaiser et al. 2014, 2016)—here exercised by visual stimulation with a specific orientation over a longer time period (Bharmauria et al. 2022).
We show that immediately after high frequency rTMS, the cortex is primed to relearn new connectivity patterns (see summary sketch in Fig. 8). Specifically, increased variability in cortical responses found after high frequency rTMS (Goldsworthy et al. 2021; Kozyrev et al. 2018; Pasley et al. 2009) may facilitate sensitivity to new sensory input regularities, as synapses are exposed to a correlational state above levels reached during normal sensory processing (Fregnac et al. 2010). Indeed, also in the motor domain recent studies revealed promising learning effects after noninvasive brain stimulation protocols (Reis et al. 2009; Suppa et al. 2017; Wessel et al. 2021; Zimerman et al. 2013), in which motor response variability (Wu et al. 2014) may effectively drive motor learning abilities (Teo et al. 2011) and may help to guide therapeutic interventions (Goldsworthy et al. 2021).

Declarations

Conflict of interest

The authors declare no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68:459–463PubMedCrossRef Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68:459–463PubMedCrossRef
Zurück zum Zitat Antal A, Paulus W, Nitsche MA (2011) Electrical stimulation and visual network plasticity. Restor Neurol Neurosci 29:365–374PubMed Antal A, Paulus W, Nitsche MA (2011) Electrical stimulation and visual network plasticity. Restor Neurol Neurosci 29:365–374PubMed
Zurück zum Zitat Arckens L, Schweigart G, Qu Y, Wouters G, Pow DV, Vandesande F, Eysel UT, Orban GA (2000) Cooperative changes in GABA, glutamate and activity levels: the missing link in cortical plasticity. Eur J Neurosci 12:4222–4232PubMedCrossRef Arckens L, Schweigart G, Qu Y, Wouters G, Pow DV, Vandesande F, Eysel UT, Orban GA (2000) Cooperative changes in GABA, glutamate and activity levels: the missing link in cortical plasticity. Eur J Neurosci 12:4222–4232PubMedCrossRef
Zurück zum Zitat Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871PubMedCrossRef Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871PubMedCrossRef
Zurück zum Zitat Aydin-Abidin S, Moliadze V, Eysel UT, Funke K (2006) Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: dependence on stimulus frequency and train duration. J Physiol 574:443–455PubMedPubMedCentralCrossRef Aydin-Abidin S, Moliadze V, Eysel UT, Funke K (2006) Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: dependence on stimulus frequency and train duration. J Physiol 574:443–455PubMedPubMedCentralCrossRef
Zurück zum Zitat Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107PubMedCrossRef Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107PubMedCrossRef
Zurück zum Zitat Barlow HB, Kohn HI, Walsh EG (1947) Visual sensations aroused by magnetic fields. Am J Physiol 148:372–375PubMedCrossRef Barlow HB, Kohn HI, Walsh EG (1947) Visual sensations aroused by magnetic fields. Am J Physiol 148:372–375PubMedCrossRef
Zurück zum Zitat Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30:14964–14971PubMedPubMedCentralCrossRef Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30:14964–14971PubMedPubMedCentralCrossRef
Zurück zum Zitat Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, Eysel UT, Erdmann R, Funke K (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 31:1193–1203PubMedPubMedCentralCrossRef Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, Eysel UT, Erdmann R, Funke K (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 31:1193–1203PubMedPubMedCentralCrossRef
Zurück zum Zitat Berger T, Borgdorff A, Crochet S, Neubauer FB, Lefort S, Fauvet B, Ferezou I, Carleton A, Lüscher H-R, Petersen CCH (2007) Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97:3751–3762PubMedCrossRef Berger T, Borgdorff A, Crochet S, Neubauer FB, Lefort S, Fauvet B, Ferezou I, Carleton A, Lüscher H-R, Petersen CCH (2007) Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol 97:3751–3762PubMedCrossRef
Zurück zum Zitat Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191:383–402PubMedCrossRef Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC (2008) Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 191:383–402PubMedCrossRef
Zurück zum Zitat Bharmauria V, Ouelhazi A, Lussiez R, Molotchnikoff S (2022) Adaptation-induced plasticity in the sensory cortex. J Neurophysiol 128:946–962PubMedCrossRef Bharmauria V, Ouelhazi A, Lussiez R, Molotchnikoff S (2022) Adaptation-induced plasticity in the sensory cortex. J Neurophysiol 128:946–962PubMedCrossRef
Zurück zum Zitat Blasdel G, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585PubMedCrossRef Blasdel G, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585PubMedCrossRef
Zurück zum Zitat Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, George MS (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. NeuroReport 8:2535–2538PubMedCrossRef Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, George MS (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. NeuroReport 8:2535–2538PubMedCrossRef
Zurück zum Zitat Bohotin V, Fumal A, Vandenheede M, Gerard P, Bohotin C, de Maertens NA, Schoenen J (2002) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125:912–922PubMedCrossRef Bohotin V, Fumal A, Vandenheede M, Gerard P, Bohotin C, de Maertens NA, Schoenen J (2002) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125:912–922PubMedCrossRef
Zurück zum Zitat Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431PubMedCrossRef Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431PubMedCrossRef
Zurück zum Zitat Boroojerdi B, Prager A, Muellbacher W, Cohen LG (2000) Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54:1529–1531PubMedCrossRef Boroojerdi B, Prager A, Muellbacher W, Cohen LG (2000) Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54:1529–1531PubMedCrossRef
Zurück zum Zitat Braastad BO, Heggelund P (1985) Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. J Neurophysiol 53:1158–1178PubMedCrossRef Braastad BO, Heggelund P (1985) Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. J Neurophysiol 53:1158–1178PubMedCrossRef
Zurück zum Zitat Calford MB, Schmid LM, Rosa MG (1999) Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex. Proc Biol Sci 266:499–507PubMedPubMedCentralCrossRef Calford MB, Schmid LM, Rosa MG (1999) Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex. Proc Biol Sci 266:499–507PubMedPubMedCentralCrossRef
Zurück zum Zitat Calford MB, Chino YM, Das A, Eysel UT, Gilbert CD, Heinen SJ, Kaas JH, Ullman S (2005) Neuroscience: rewiring the adult brain. Nature 438:E3–E4PubMedCrossRef Calford MB, Chino YM, Das A, Eysel UT, Gilbert CD, Heinen SJ, Kaas JH, Ullman S (2005) Neuroscience: rewiring the adult brain. Nature 438:E3–E4PubMedCrossRef
Zurück zum Zitat Cash RF, Ziemann U, Murray K, Thickbroom GW (2010) Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study. J Neurophysiol 103:511–518PubMedCrossRef Cash RF, Ziemann U, Murray K, Thickbroom GW (2010) Late cortical disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study. J Neurophysiol 103:511–518PubMedCrossRef
Zurück zum Zitat Cash RF, Murakami T, Chen R, Thickbroom GW, Ziemann U (2016) Augmenting plasticity induction in human motor cortex by disinhibition stimulation. Cereb Cortex 26:58–69PubMedCrossRef Cash RF, Murakami T, Chen R, Thickbroom GW, Ziemann U (2016) Augmenting plasticity induction in human motor cortex by disinhibition stimulation. Cereb Cortex 26:58–69PubMedCrossRef
Zurück zum Zitat Chen Y, Geisler WS, Seidemann E (2006) Optimal decoding of correlated neural population responses in the primate visual cortex. Nat Neurosci 9:1412–1420PubMedPubMedCentralCrossRef Chen Y, Geisler WS, Seidemann E (2006) Optimal decoding of correlated neural population responses in the primate visual cortex. Nat Neurosci 9:1412–1420PubMedPubMedCentralCrossRef
Zurück zum Zitat Chino YM, Kaas JH, Smith EL III, Langston AL, Cheng H (1992) Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Res 32:789–796PubMedCrossRef Chino YM, Kaas JH, Smith EL III, Langston AL, Cheng H (1992) Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Res 32:789–796PubMedCrossRef
Zurück zum Zitat Chino YM, Smith EL III, Kaas JH, Sasaki Y, Cheng H (1995) Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. J Neurosci 15:2417–2433PubMedPubMedCentralCrossRef Chino YM, Smith EL III, Kaas JH, Sasaki Y, Cheng H (1995) Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. J Neurosci 15:2417–2433PubMedPubMedCentralCrossRef
Zurück zum Zitat Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337PubMedPubMedCentralCrossRef Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337PubMedPubMedCentralCrossRef
Zurück zum Zitat Cirillo G, Di PG, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di LV (2017) Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul 10:1–18PubMedCrossRef Cirillo G, Di PG, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di LV (2017) Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul 10:1–18PubMedCrossRef
Zurück zum Zitat Clopath C, Bonhoeffer T, Hübener M, Rose T (2017) Variance and invariance of neuronal long-term representations. Philos Trans R Soc Lond B Biol Sci 372:1CrossRef Clopath C, Bonhoeffer T, Hübener M, Rose T (2017) Variance and invariance of neuronal long-term representations. Philos Trans R Soc Lond B Biol Sci 372:1CrossRef
Zurück zum Zitat Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR (2019) The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185:300–312PubMedCrossRef Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR (2019) The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185:300–312PubMedCrossRef
Zurück zum Zitat Creutzfeldt OD, Garey LJ, Kuroda R, Wolff JR (1977) The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res 27:419–440PubMed Creutzfeldt OD, Garey LJ, Kuroda R, Wolff JR (1977) The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res 27:419–440PubMed
Zurück zum Zitat Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368:737–740PubMedCrossRef Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368:737–740PubMedCrossRef
Zurück zum Zitat Das A, Gilbert CD (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–784PubMedCrossRef Das A, Gilbert CD (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–784PubMedCrossRef
Zurück zum Zitat Daw NW, Reid SN, Wang XF, Flavin HJ (1995) Factors that are critical for plasticity in the visual cortex. Ciba Found Symp 193:258–276PubMed Daw NW, Reid SN, Wang XF, Flavin HJ (1995) Factors that are critical for plasticity in the visual cortex. Ciba Found Symp 193:258–276PubMed
Zurück zum Zitat Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, Kringelbach ML (2019) Awakening: Predicting external stimulation to force transitions between different brain states. Proc Natl Acad Sci USA 116:18088–18097PubMedPubMedCentralCrossRef Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, Kringelbach ML (2019) Awakening: Predicting external stimulation to force transitions between different brain states. Proc Natl Acad Sci USA 116:18088–18097PubMedPubMedCentralCrossRef
Zurück zum Zitat Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266PubMedCrossRef
Zurück zum Zitat Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298PubMedCrossRef Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298PubMedCrossRef
Zurück zum Zitat Eysel UT (1982) Functional reconnections without new axonal growth in a partially denervated visual relay nucleus. Nature 299:442–444PubMedCrossRef Eysel UT (1982) Functional reconnections without new axonal growth in a partially denervated visual relay nucleus. Nature 299:442–444PubMedCrossRef
Zurück zum Zitat Eysel UT, Gonzalez-Aguilar F, Mayer U (1980) A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res 181:285–300PubMedCrossRef Eysel UT, Gonzalez-Aguilar F, Mayer U (1980) A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res 181:285–300PubMedCrossRef
Zurück zum Zitat Eysel UT, Gonzalez-Aguilar F, Mayer U (1981) Time-dependent decrease in the extent of visual deafferentation in the lateral geniculate nucleus of adult cats with small retinal lesions. Exp Brain Res 41:256–263PubMed Eysel UT, Gonzalez-Aguilar F, Mayer U (1981) Time-dependent decrease in the extent of visual deafferentation in the lateral geniculate nucleus of adult cats with small retinal lesions. Exp Brain Res 41:256–263PubMed
Zurück zum Zitat Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A (2005) Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. J Physiol 565:659–665PubMedPubMedCentralCrossRef Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A (2005) Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. J Physiol 565:659–665PubMedPubMedCentralCrossRef
Zurück zum Zitat Fisken RA, Garey LJ, Powell TP (1975) The intrinsic, association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lond B Biol Sci 272:487–536PubMedCrossRef Fisken RA, Garey LJ, Powell TP (1975) The intrinsic, association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lond B Biol Sci 272:487–536PubMedCrossRef
Zurück zum Zitat Fox K (1995) The critical period for long-term potentiation in primary sensory cortex. Neuron 15:485–488PubMedCrossRef Fox K (1995) The critical period for long-term potentiation in primary sensory cortex. Neuron 15:485–488PubMedCrossRef
Zurück zum Zitat Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84:1266–1278PubMedCrossRef Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84:1266–1278PubMedCrossRef
Zurück zum Zitat Fregnac Y, Imbert M (1984) Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev 64:325–434PubMedCrossRef Fregnac Y, Imbert M (1984) Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev 64:325–434PubMedCrossRef
Zurück zum Zitat Fregnac Y, Pananceau M, Rene A, Huguet N, Marre O, Levy M, Shulz DE (2010) A re-examination of hebbian-covariance rules and spike timing-dependent plasticity in cat visual cortex in vivo. Front Synaptic Neurosci 2:147PubMedPubMedCentralCrossRef Fregnac Y, Pananceau M, Rene A, Huguet N, Marre O, Levy M, Shulz DE (2010) A re-examination of hebbian-covariance rules and spike timing-dependent plasticity in cat visual cortex in vivo. Front Synaptic Neurosci 2:147PubMedPubMedCentralCrossRef
Zurück zum Zitat Freitas C, Farzan F, Pascual-Leone A (2013) Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how, and what is the ultimate goal? Front Neurosci 7:42PubMedPubMedCentralCrossRef Freitas C, Farzan F, Pascual-Leone A (2013) Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how, and what is the ultimate goal? Front Neurosci 7:42PubMedPubMedCentralCrossRef
Zurück zum Zitat Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–429PubMedCrossRef Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–429PubMedCrossRef
Zurück zum Zitat Gerrits HJ, Timmerman GJ (1969) The filling-in process in patients with retinal scotomata. Vision Res 9:439–442PubMedCrossRef Gerrits HJ, Timmerman GJ (1969) The filling-in process in patients with retinal scotomata. Vision Res 9:439–442PubMedCrossRef
Zurück zum Zitat Gersner R, Kravetz E, Feil J, Pell G, Zangen A (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31:7521–7526PubMedPubMedCentralCrossRef Gersner R, Kravetz E, Feil J, Pell G, Zangen A (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31:7521–7526PubMedPubMedCentralCrossRef
Zurück zum Zitat Giannikopoulos DV, Eysel UT (2006) Dynamics and specificity of cortical map reorganization after retinal lesions. Proc Natl Acad Sci USA 2006:1 Giannikopoulos DV, Eysel UT (2006) Dynamics and specificity of cortical map reorganization after retinal lesions. Proc Natl Acad Sci USA 2006:1
Zurück zum Zitat Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–125PubMedCrossRef Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–125PubMedCrossRef
Zurück zum Zitat Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–152PubMedCrossRef Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–152PubMedCrossRef
Zurück zum Zitat Godde B, Leonhardt R, Cords SM, Dinse HR (2002) Plasticity of orientation preference maps in the visual cortex of adult cats. Proc Natl Acad Sci USA 99:6352–6357PubMedPubMedCentralCrossRef Godde B, Leonhardt R, Cords SM, Dinse HR (2002) Plasticity of orientation preference maps in the visual cortex of adult cats. Proc Natl Acad Sci USA 99:6352–6357PubMedPubMedCentralCrossRef
Zurück zum Zitat Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC (2021) Effects of rTMS on the brain: is there value in variability? Cortex 139:43–59PubMedCrossRef Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC (2021) Effects of rTMS on the brain: is there value in variability? Cortex 139:43–59PubMedCrossRef
Zurück zum Zitat Grabska-Barwinska A, Distler C, Hoffmann KP, Jancke D (2009) Contrast independence of cardinal preference: stable oblique effect in orientation maps of ferret visual cortex. Eur J Neurosci 29:1258–1270PubMedCrossRef Grabska-Barwinska A, Distler C, Hoffmann KP, Jancke D (2009) Contrast independence of cardinal preference: stable oblique effect in orientation maps of ferret visual cortex. Eur J Neurosci 29:1258–1270PubMedCrossRef
Zurück zum Zitat Grabska-Barwinska A, Ng BS, Jancke D (2012) Orientation selective or not? Measuring significance of tuning to a circular parameter. J Neurosci Methods 203:1–9PubMedCrossRef Grabska-Barwinska A, Ng BS, Jancke D (2012) Orientation selective or not? Measuring significance of tuning to a circular parameter. J Neurosci Methods 203:1–9PubMedCrossRef
Zurück zum Zitat Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885PubMedCrossRef Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885PubMedCrossRef
Zurück zum Zitat Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568PubMedPubMedCentralCrossRef Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568PubMedPubMedCentralCrossRef
Zurück zum Zitat Guo Y, Kaplan IV, Cooper NG, Mower GD (1997) Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of the cat visual cortex. Brain Res Dev Brain Res 103:127–141PubMedCrossRef Guo Y, Kaplan IV, Cooper NG, Mower GD (1997) Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of the cat visual cortex. Brain Res Dev Brain Res 103:127–141PubMedCrossRef
Zurück zum Zitat Hamer HM, Reis J, Mueller HH, Knake S, Overhof M, Oertel WH, Rosenow F (2005) Motor cortex excitability in focal epilepsies not including the primary motor area—a TMS study. Brain 128:811–818PubMedCrossRef Hamer HM, Reis J, Mueller HH, Knake S, Overhof M, Oertel WH, Rosenow F (2005) Motor cortex excitability in focal epilepsies not including the primary motor area—a TMS study. Brain 128:811–818PubMedCrossRef
Zurück zum Zitat Heinen SJ, Skavenski AA (1991) Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res 83:670–674PubMedCrossRef Heinen SJ, Skavenski AA (1991) Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res 83:670–674PubMedCrossRef
Zurück zum Zitat Hirsch JA, Gilbert CD (1993) Long-term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex. J Physiol 461:247–262PubMedPubMedCentralCrossRef Hirsch JA, Gilbert CD (1993) Long-term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex. J Physiol 461:247–262PubMedPubMedCentralCrossRef
Zurück zum Zitat Höflich G, Kasper S, Hufnagel A, Ruhrmann S, Möller H-J (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression—a report of 2 cases. Hum Psychopharmacol 8:361–363CrossRef Höflich G, Kasper S, Hufnagel A, Ruhrmann S, Möller H-J (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression—a report of 2 cases. Hum Psychopharmacol 8:361–363CrossRef
Zurück zum Zitat Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658PubMedCrossRef Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658PubMedCrossRef
Zurück zum Zitat Huang YZ, Chen RS, Rothwell JC, Wen HY (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032PubMedCrossRef Huang YZ, Chen RS, Rothwell JC, Wen HY (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032PubMedCrossRef
Zurück zum Zitat Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali AG, Tononi G, Massimini M (2013) Human cortical excitability increases with time awake. Cereb Cortex 23:332–338PubMedCrossRef Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali AG, Tononi G, Massimini M (2013) Human cortical excitability increases with time awake. Cereb Cortex 23:332–338PubMedCrossRef
Zurück zum Zitat Hummel F, Cohen LG (2005) Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair 19:14–19PubMedCrossRef Hummel F, Cohen LG (2005) Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair 19:14–19PubMedCrossRef
Zurück zum Zitat Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540PubMedCrossRef Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540PubMedCrossRef
Zurück zum Zitat Jaepel J, Hübener M, Bonhoeffer T, Rose T (2017) Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat Neurosci 20:1708–1714PubMedCrossRef Jaepel J, Hübener M, Bonhoeffer T, Rose T (2017) Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat Neurosci 20:1708–1714PubMedCrossRef
Zurück zum Zitat Jahanshahi M, Dirnberger G (1999) The left dorsolateral prefrontal cortex and random generation of responses: studies with transcranial magnetic stimulation. Neuropsychologia 37:181–190PubMedCrossRef Jahanshahi M, Dirnberger G (1999) The left dorsolateral prefrontal cortex and random generation of responses: studies with transcranial magnetic stimulation. Neuropsychologia 37:181–190PubMedCrossRef
Zurück zum Zitat Jancke D (2017) Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. Neurophotonics 4:031206PubMedPubMedCentralCrossRef Jancke D (2017) Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. Neurophotonics 4:031206PubMedPubMedCentralCrossRef
Zurück zum Zitat Jancke D (2018) Optical imaging with voltage sensors—capturing TMS-induced neuronal signals using light. In: Manahan-Vaughan D (ed) Handbook of behavioral neuroscience handbook of neural plasticity techniques. Elsevier, London, pp 223–234CrossRef Jancke D (2018) Optical imaging with voltage sensors—capturing TMS-induced neuronal signals using light. In: Manahan-Vaughan D (ed) Handbook of behavioral neuroscience handbook of neural plasticity techniques. Elsevier, London, pp 223–234CrossRef
Zurück zum Zitat Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G (1999) Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19:9016–9028PubMedPubMedCentralCrossRef Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G (1999) Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19:9016–9028PubMedPubMedCentralCrossRef
Zurück zum Zitat Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428:423–426PubMedCrossRef Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428:423–426PubMedCrossRef
Zurück zum Zitat Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–231PubMedCrossRef Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–231PubMedCrossRef
Zurück zum Zitat Kähkönen S, Marttinen RE, Yamashita H (2005) Alcohol impairs auditory processing of frequency changes and novel sounds: a combined MEG and EEG study. Psychopharmacology 177:366–372PubMedCrossRef Kähkönen S, Marttinen RE, Yamashita H (2005) Alcohol impairs auditory processing of frequency changes and novel sounds: a combined MEG and EEG study. Psychopharmacology 177:366–372PubMedCrossRef
Zurück zum Zitat Keck T, Mrsic-Flogel TD, Afonso MV, Eysel UT, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1172PubMedCrossRef Keck T, Mrsic-Flogel TD, Afonso MV, Eysel UT, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1172PubMedCrossRef
Zurück zum Zitat Keck T, Scheuss V, Jacobsen RI, Wierenga CJ, Eysel UT, Bonhoeffer T, Hubener M (2011) Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71:869–882PubMedCrossRef Keck T, Scheuss V, Jacobsen RI, Wierenga CJ, Eysel UT, Bonhoeffer T, Hubener M (2011) Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71:869–882PubMedCrossRef
Zurück zum Zitat Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hubener M (2013) Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80:327–334PubMedCrossRef Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hubener M (2013) Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80:327–334PubMedCrossRef
Zurück zum Zitat Kim T, Allen EA, Pasley BN, Freeman RD (2015) Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex. Brain Stimul 8:613–623PubMedPubMedCentralCrossRef Kim T, Allen EA, Pasley BN, Freeman RD (2015) Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex. Brain Stimul 8:613–623PubMedPubMedCentralCrossRef
Zurück zum Zitat Klaes C, Ragert P, Jancke D, Tegenthoff M, Dinse HR (2003) rTMS induced improvement of human orientation discrimination. Soc Neurosci Abstr 29(911):22 Klaes C, Ragert P, Jancke D, Tegenthoff M, Dinse HR (2003) rTMS induced improvement of human orientation discrimination. Soc Neurosci Abstr 29(911):22
Zurück zum Zitat Kleinjung T, Eichhammer P, Langguth B, Jacob P, Marienhagen J, Hajak G, Wolf SR, Strutz J (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 132:566–569PubMedCrossRef Kleinjung T, Eichhammer P, Langguth B, Jacob P, Marienhagen J, Hajak G, Wolf SR, Strutz J (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 132:566–569PubMedCrossRef
Zurück zum Zitat Kozyrev V, Eysel UT, Jancke D (2014) Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci USA 111:13553–13558PubMedPubMedCentralCrossRef Kozyrev V, Eysel UT, Jancke D (2014) Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci USA 111:13553–13558PubMedPubMedCentralCrossRef
Zurück zum Zitat Kozyrev V, Staadt R, Eysel UT, Jancke D (2018) TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps. Proc Natl Acad Sci USA 115:6476–6481PubMedPubMedCentralCrossRef Kozyrev V, Staadt R, Eysel UT, Jancke D (2018) TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps. Proc Natl Acad Sci USA 115:6476–6481PubMedPubMedCentralCrossRef
Zurück zum Zitat Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP (2001) Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. NeuroReport 12:2963–2965PubMedCrossRef Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP (2001) Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. NeuroReport 12:2963–2965PubMedCrossRef
Zurück zum Zitat Lenz M, Galanis C, Muller-Dahlhaus F, Opitz A, Wierenga CJ, Szabo G, Ziemann U, Deller T, Funke K, Vlachos A (2016) Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun 7:10020PubMedPubMedCentralCrossRef Lenz M, Galanis C, Muller-Dahlhaus F, Opitz A, Wierenga CJ, Szabo G, Ziemann U, Deller T, Funke K, Vlachos A (2016) Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun 7:10020PubMedPubMedCentralCrossRef
Zurück zum Zitat Letzkus JJ, Wolff SB, Luthi A (2015) Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:264–276PubMedCrossRef Letzkus JJ, Wolff SB, Luthi A (2015) Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:264–276PubMedCrossRef
Zurück zum Zitat Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A (2017) Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. Elife 6:1CrossRef Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A (2017) Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. Elife 6:1CrossRef
Zurück zum Zitat Lin MH, Takahashi MP, Takahashi Y, Tsumoto T (1994) Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neurosci Res 20:85–94PubMedCrossRef Lin MH, Takahashi MP, Takahashi Y, Tsumoto T (1994) Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neurosci Res 20:85–94PubMedCrossRef
Zurück zum Zitat Loo CK, Mitchell PB (2005) A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J Affect Disord 88:255–267PubMedCrossRef Loo CK, Mitchell PB (2005) A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J Affect Disord 88:255–267PubMedCrossRef
Zurück zum Zitat Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef
Zurück zum Zitat McAllister SM, Rothwell JC, Ridding MC (2009) Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation. Clin Neurophysiol 120:820–826PubMedCrossRef McAllister SM, Rothwell JC, Ridding MC (2009) Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation. Clin Neurophysiol 120:820–826PubMedCrossRef
Zurück zum Zitat McKinley RA, Bridges N, Walters CM, Nelson J (2012) Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage 59:129–137PubMedCrossRef McKinley RA, Bridges N, Walters CM, Nelson J (2012) Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage 59:129–137PubMedCrossRef
Zurück zum Zitat Meirovithz E, Ayzenshtat I, Werner-Reiss U, Shamir I, Slovin H (2012) Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. Cereb Cortex 22:294–307PubMedCrossRef Meirovithz E, Ayzenshtat I, Werner-Reiss U, Shamir I, Slovin H (2012) Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation. Cereb Cortex 22:294–307PubMedCrossRef
Zurück zum Zitat Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679PubMedPubMedCentralCrossRef Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679PubMedPubMedCentralCrossRef
Zurück zum Zitat Muller L, Reynaud A, Chavane F, Destexhe A (2014) The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 5:3675PubMedCrossRef Muller L, Reynaud A, Chavane F, Destexhe A (2014) The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 5:3675PubMedCrossRef
Zurück zum Zitat Murphy SC, Palmer LM, Nyffeler T, Muri RM, Larkum ME (2016) Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. Elife 5:1CrossRef Murphy SC, Palmer LM, Nyffeler T, Muri RM, Larkum ME (2016) Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. Elife 5:1CrossRef
Zurück zum Zitat Onat S, König P, Jancke D (2011a) Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. Cereb Cortex 21:2542–2554PubMedCrossRef Onat S, König P, Jancke D (2011a) Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. Cereb Cortex 21:2542–2554PubMedCrossRef
Zurück zum Zitat Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011b) Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55:1763–1770PubMedCrossRef Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011b) Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55:1763–1770PubMedCrossRef
Zurück zum Zitat Onat S, Jancke D, König P (2013) Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Res 2:1CrossRef Onat S, Jancke D, König P (2013) Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study. F1000Res 2:1CrossRef
Zurück zum Zitat Palagina G, Eysel UT, Jancke D (2009) Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo. Proc Natl Acad Sci USA 106:8743–8747PubMedPubMedCentralCrossRef Palagina G, Eysel UT, Jancke D (2009) Strengthening of lateral activation in adult rat visual cortex after retinal lesions captured with voltage-sensitive dye imaging in vivo. Proc Natl Acad Sci USA 106:8743–8747PubMedPubMedCentralCrossRef
Zurück zum Zitat Parks NA, Maclin EL, Low KA, Beck DM, Fabiani M, Gratton G (2012) Examining cortical dynamics and connectivity with simultaneous single-pulse transcranial magnetic stimulation and fast optical imaging. Neuroimage 59:2504–2510PubMedCrossRef Parks NA, Maclin EL, Low KA, Beck DM, Fabiani M, Gratton G (2012) Examining cortical dynamics and connectivity with simultaneous single-pulse transcranial magnetic stimulation and fast optical imaging. Neuroimage 59:2504–2510PubMedCrossRef
Zurück zum Zitat Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217PubMedCrossRef Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD (1999) Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia 37:207–217PubMedCrossRef
Zurück zum Zitat Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef
Zurück zum Zitat Pasley BN, Allen EA, Freeman RD (2009) State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62:291–303PubMedPubMedCentralCrossRef Pasley BN, Allen EA, Freeman RD (2009) State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62:291–303PubMedPubMedCentralCrossRef
Zurück zum Zitat Patterson CA, Wissig SC, Kohn A (2013) Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. J Neurosci 33:532–543PubMedPubMedCentralCrossRef Patterson CA, Wissig SC, Kohn A (2013) Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. J Neurosci 33:532–543PubMedPubMedCentralCrossRef
Zurück zum Zitat Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMedPubMedCentralCrossRef Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMedPubMedCentralCrossRef
Zurück zum Zitat Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309PubMedPubMedCentralCrossRef Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23:1298–1309PubMedPubMedCentralCrossRef
Zurück zum Zitat Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36:127–137PubMedCrossRef Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36:127–137PubMedCrossRef
Zurück zum Zitat Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106:1590–1595PubMedPubMedCentralCrossRef Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106:1590–1595PubMedPubMedCentralCrossRef
Zurück zum Zitat Rekauzke S, Nortmann N, Staadt R, Hock HS, Schoner G, Jancke D (2016) Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci 36:1902–1913PubMedPubMedCentralCrossRef Rekauzke S, Nortmann N, Staadt R, Hock HS, Schoner G, Jancke D (2016) Temporal asymmetry in dark-bright processing initiates propagating activity across primary visual cortex. J Neurosci 36:1902–1913PubMedPubMedCentralCrossRef
Zurück zum Zitat Roberts DR, Vincent DJ, Speer AM, Bohning DE, Cure J, Young J, George MS (1997) Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation. Short Commun J Neural Transm 104:833–843CrossRef Roberts DR, Vincent DJ, Speer AM, Bohning DE, Cure J, Young J, George MS (1997) Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation. Short Commun J Neural Transm 104:833–843CrossRef
Zurück zum Zitat Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–1534PubMedCrossRef Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–1534PubMedCrossRef
Zurück zum Zitat Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci USA 103:12586–12591PubMedPubMedCentralCrossRef Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci USA 103:12586–12591PubMedPubMedCentralCrossRef
Zurück zum Zitat Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? J Neurosci 30:8692–8697PubMedPubMedCentralCrossRef Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? J Neurosci 30:8692–8697PubMedPubMedCentralCrossRef
Zurück zum Zitat Rose T, Jaepel J, Hubener M, Bonhoeffer T (2016) Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352:1319–1322PubMedCrossRef Rose T, Jaepel J, Hubener M, Bonhoeffer T (2016) Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352:1319–1322PubMedCrossRef
Zurück zum Zitat Rosier AM, Arckens L, Demeulemeester H, Orban GA, Eysel UT, Wu YJ, Vandesande F (1995) Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J Comp Neurol 359:476–489PubMedCrossRef Rosier AM, Arckens L, Demeulemeester H, Orban GA, Eysel UT, Wu YJ, Vandesande F (1995) Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J Comp Neurol 359:476–489PubMedCrossRef
Zurück zum Zitat Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d’Orio P, Cattani A, Francione S, Tassi L, Bassetti CLA, Lo Russo G, Nobili L, Sartori I, Massimini M (2021) Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. Neuroimage 234:117964PubMedCrossRef Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d’Orio P, Cattani A, Francione S, Tassi L, Bassetti CLA, Lo Russo G, Nobili L, Sartori I, Massimini M (2021) Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. Neuroimage 234:117964PubMedCrossRef
Zurück zum Zitat Sammons RP, Keck T (2015) Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol 35:136–141PubMedCrossRef Sammons RP, Keck T (2015) Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol 35:136–141PubMedCrossRef
Zurück zum Zitat Schuett S, Bonhoeffer T, Hubener M (2001) Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32:325–337PubMedCrossRef Schuett S, Bonhoeffer T, Hubener M (2001) Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32:325–337PubMedCrossRef
Zurück zum Zitat Sczesny-Kaiser M, Bauknecht A, Hoffken O, Tegenthoff M, Dinse HR, Jancke D, Funke K, Schwenkreis P (2014) Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. BMC Neurosci 15:46PubMedPubMedCentralCrossRef Sczesny-Kaiser M, Bauknecht A, Hoffken O, Tegenthoff M, Dinse HR, Jancke D, Funke K, Schwenkreis P (2014) Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans. BMC Neurosci 15:46PubMedPubMedCentralCrossRef
Zurück zum Zitat Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Hoffken O (2016) Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behav Neurosci 10:116PubMedPubMedCentralCrossRef Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Hoffken O (2016) Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behav Neurosci 10:116PubMedPubMedCentralCrossRef
Zurück zum Zitat Sharon D, Grinvald A (2002) Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295:512–515PubMedCrossRef Sharon D, Grinvald A (2002) Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295:512–515PubMedCrossRef
Zurück zum Zitat Siebner HR et al (2009) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80PubMedCrossRef Siebner HR et al (2009) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80PubMedCrossRef
Zurück zum Zitat Siebner HR et al (2022) Transcranial magnetic stimulation of the brain: What is stimulated? A consensus and critical position paper. Clin Neurophysiol 140:59–97PubMedPubMedCentralCrossRef Siebner HR et al (2022) Transcranial magnetic stimulation of the brain: What is stimulated? A consensus and critical position paper. Clin Neurophysiol 140:59–97PubMedPubMedCentralCrossRef
Zurück zum Zitat Sit YF, Chen Y, Geisler WS, Mikkulainen R, Seidemann E (2009) Complex dynamics of V1 population responses explained by a simple gain-control model. Neuron 64:943–956PubMedPubMedCentralCrossRef Sit YF, Chen Y, Geisler WS, Mikkulainen R, Seidemann E (2009) Complex dynamics of V1 population responses explained by a simple gain-control model. Neuron 64:943–956PubMedPubMedCentralCrossRef
Zurück zum Zitat Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schuz A, Augath M, Inhoffen W, Wandell BA, Logothetis NK (2005) Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–307PubMedCrossRef Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schuz A, Augath M, Inhoffen W, Wandell BA, Logothetis NK (2005) Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–307PubMedCrossRef
Zurück zum Zitat Suppa A, Quartarone A, Siebner H, Chen R, Di LV, Del GP, Paulus W, Rothwell JC, Ziemann U, Classen J (2017) The associative brain at work: evidence from paired associative stimulation studies in humans. Clin Neurophysiol 128:2140–2164PubMedCrossRef Suppa A, Quartarone A, Siebner H, Chen R, Di LV, Del GP, Paulus W, Rothwell JC, Ziemann U, Classen J (2017) The associative brain at work: evidence from paired associative stimulation studies in humans. Clin Neurophysiol 128:2140–2164PubMedCrossRef
Zurück zum Zitat Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362PubMedPubMedCentralCrossRef Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362PubMedPubMedCentralCrossRef
Zurück zum Zitat Teo JT, Swayne OB, Cheeran B, Greenwood RJ, Rothwell JC (2011) Human theta burst stimulation enhances subsequent motor learning and increases performance variability. Cereb Cortex 21:1627–1638PubMedCrossRef Teo JT, Swayne OB, Cheeran B, Greenwood RJ, Rothwell JC (2011) Human theta burst stimulation enhances subsequent motor learning and increases performance variability. Cereb Cortex 21:1627–1638PubMedCrossRef
Zurück zum Zitat Thompson B, Mansouri B, Koski L, Hess RF (2008) Brain plasticity in the adult: modulation of function in amblyopia with rTMS. Curr Biol 18:1067–1071PubMedCrossRef Thompson B, Mansouri B, Koski L, Hess RF (2008) Brain plasticity in the adult: modulation of function in amblyopia with rTMS. Curr Biol 18:1067–1071PubMedCrossRef
Zurück zum Zitat Walsh V, Cowey A (1998) Magnetic stimulation studies of visual cognition. Trends Cogn Sci 2:103–110PubMedCrossRef Walsh V, Cowey A (1998) Magnetic stimulation studies of visual cognition. Trends Cogn Sci 2:103–110PubMedCrossRef
Zurück zum Zitat Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79PubMedCrossRef Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79PubMedCrossRef
Zurück zum Zitat Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597PubMedPubMedCentralCrossRef Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597PubMedPubMedCentralCrossRef
Zurück zum Zitat Wessel MJ, Park CH, Beanato E, Cuttaz EA, Timmermann JE, Schulz R, Morishita T, Koch PJ, Hummel FC (2021) Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci Rep 11:1756PubMedPubMedCentralCrossRef Wessel MJ, Park CH, Beanato E, Cuttaz EA, Timmermann JE, Schulz R, Morishita T, Koch PJ, Hummel FC (2021) Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci Rep 11:1756PubMedPubMedCentralCrossRef
Zurück zum Zitat Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA (2014) Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci 17:312–321PubMedPubMedCentralCrossRef Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA (2014) Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci 17:312–321PubMedPubMedCentralCrossRef
Zurück zum Zitat Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD (2009) Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64:719–729PubMedPubMedCentralCrossRef Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD (2009) Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64:719–729PubMedPubMedCentralCrossRef
Zurück zum Zitat Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC (2013) Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol 73:10–15PubMedCrossRef Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC (2013) Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol 73:10–15PubMedCrossRef
Metadaten
Titel
Induction of excitatory brain state governs plastic functional changes in visual cortical topology
verfasst von
Ulf T. Eysel
Dirk Jancke
Publikationsdatum
02.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 3/2024
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-023-02730-y

Weitere Artikel der Ausgabe 3/2024

Brain Structure and Function 3/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.