Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2019

Open Access 01.12.2019 | Review

Inflammasome inhibitors: promising therapeutic approaches against cancer

verfasst von: Shengchao Xu, Xizhe Li, Yuanqi Liu, Yu Xia, Ruimin Chang, Chunfang Zhang

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2019

Abstract

Inflammation has long been accepted as a key component of carcinogenesis. During inflammation, inflammasomes are potent contributors to the activation of inflammatory cytokines that lead to an inflammatory cascade. Considering the contributing role of inflammasomes in cancer progression, inflammasome inhibitors seem to have a promising future in cancer treatment and prevention. Here, we summarize the structures and signaling pathways of inflammasomes and detail some inflammasome inhibitors used to treat various forms of cancer, which we expect to be used in novel anticancer approaches. However, the practical application of inflammasome inhibitors is limited in regard to specific types of cancer, and the associated clinical trials have not yet been completed. Therefore, additional studies are required to explore more innovative and effective medicines for future clinical treatment of cancer.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AIM2
Absent in melanoma 2
AOM
Azoxymethane
ASC
Apoptosis-associated speck-like protein containing a caspase recruitment domain
CARD
Caspase recruitment domain
CRID3
Cytokine release inhibitory drugs
DAMP
Danger-associated molecular pattern
dsDNA
Double-stranded DNA
DSS
Dextran sulfate sodium
FIIND
Function-to-find domain
GSTO1
Glutathione S-transferase omega 1
HIN
Hematopoietic interferon-inducible nuclear
ICE
Interleukin 1β converting enzyme
IL-18
Interleukin 18
IL-1β
Interleukin 1β
JNK
c-Jun N-terminal kinase
LPS
Lipopolysaccharide
LRR
Leucine-rich repeat
mtDNA
Mitochondrial DNA
MyD88
Myeloid differentiation factor 88
NACHT
N-terminus and a nucleotide-binding oligomerization domain
NAIP
NLR family, apoptosis inhibitory protein
NLRs
Nucleotide oligomerization domain-like receptors
NOD
Nucleotide oligomerization domain
PAMP
Pathogen-associated molecular pattern
PDAC
Pancreatic ductal adenocarcinoma
PYD
Pyrin domain
STAT
Signal transducers and activators of transcription

Background

Inflammasomes are multimeric proteins that promote immune responses and the programmed cell death process known as pyroptosis by the activation of caspase-1 in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The inflammasome was first described by the team of Dr. Jürg Tschopp in 2002 [1], and this group discovered the features of the inflammasome in cold-associated periodic syndromes, gout and type 2 diabetes in follow-up studies [2]. However, emerging evidence indicates that inflammation triggered by viral or microbial infection plays a crucial role in tumorigenesis [3]. Inflammation associated with cancer progression is triggered by innate immune cells, including dendritic cells, natural killer (NK) cells, and macrophages [4]. Immune cells activated by tumors or tumor components might lead to antitumor immune responses through the recruitment of cytotoxic T cells or the promotion of cancer development by creating a proinflammatory context [5]. A key mechanism inducing inflammation in immune cells is orchestrated by the inflammasome. The activation of the inflammasome leads to the production of interleukin 1β (IL-1β) and interleukin 18 (IL-18) and initiates the programmed cell death process known as pyroptosis [6]. In view of the correlation between the inflammasome and cancer development, inflammasome inhibitors have drawn worldwide attention in the development of novel approaches for cancer treatment.
Inflammasomes consist of NOD (nucleotide oligomerization domain)-like receptors (NLRs), an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1. The NLRs generally comprise a leucine-rich repeat (LRR) at the C-terminus, a caspase recruitment domain (CARD) or pyrin domain (PYD) at the N-terminus, and a nucleotide-binding oligomerization domain (NACHT) in the middle. The LRR domain is a sensor that receives signals from PAMPs and DAMPs, while the CARD or PYD interacts with the PYD domain in ASC [1]. Inflammasomes are categorized by their different NLRs such as NLRP1, NLRP3, NLRC4, and AIM2 for identification (Fig. 1). In comparison with NLRP3, NLRP1 has additional function-to-find domain (FIIND) and CARD domains at the N-terminus, which interact with caspase-5 [7]. Inflammasomes lacking a PYD, such as NLRC4, can directly bind with caspase-1 through the C-terminal CARD domain in an ASC-independent manner. However, it remains unclear how ASC interacts with the NLRC4 inflammasome complex [8, 9]. AIM2 consists of a C-terminal HIN domain and an N-terminal PYD, through which AIM2 can recruit ASC and caspase-1 to form the AIM2 inflammasome [10].
As a key regulator in inflammation, inflammasomes can activate inflammatory cytokines such as IL-1β and IL-18 in response to PAMPs or DAMPs [11]. The NLRP1 inflammasome is activated by muramyl dipeptide, Bacillus anthracis lethal toxin, and Toxoplasma gondii, and the NLRP3 inflammasome can be activated by the combination of mtDNA and cardiolipin. Recognition of NAIP family members induces the activation of the NLRC4 inflammasome, whereas the AIM2 inflammasome can be activated by direct binding with dsDNA via its HIN domain [12]. Inflammasome activation induces the production of IL-1β, which has been implicated in metabolic disorders. Studies have shown that IL-1β plays critical roles in type 2 diabetes and gout and that the blockade of IL-1β exhibits high efficacy in clinical trials [13, 14]. Moreover, the inflammasome is increasingly suspected of playing critical roles in autoinflammatory disorders, Alzheimer’s disease, and cancer [15].
In this review, we summarize the structures and functions of inflammasomes and the signaling pathway that activates inflammasomes, which induce inflammatory cascades. In this regard, multiple drugs that inhibit inflammasomes have been generalized as novel medications against various types of cancer, and some are worthy of further study. Finally, we list some inflammasome inhibitors whose anti-inflammatory activities are well proven. However, their antitumor activities remain to be discovered. Considering the correlation between inflammation and cancer development, these drugs are expected to be innovative therapeutics for cancer treatment.

Inflammasome signaling pathway

Canonical inflammasome activation requires two signals. The first signal, defined as priming, is the recognition of a DAMP or PAMP by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and NLRs, which initiate innate and adaptive immunity. Here, we focus on the role of NLRs due to their necessity in forming the inflammasome complex. In response to the recognition of a PAMP or DAMP, NLRs oligomerize into homo- or heteroproteins and activate NF-κB. The activation of NF-κB induces the mRNA and protein expression of pro-IL-1β and pro-IL-18 [16]. The second signal is triggered by diverse stimuli activating NLRs, leading to the assembly of inflammasomes via the CARD domain in ASC, which can recruit caspase-1 and interact with NLRPs [17]. When caspase-1 is associated with NLRPs and ASC, the inflammasome complex promotes autocatalytic cleavage of caspase-1, forming the active form of the caspase-1 enzyme [18]. Active caspase-1 can activate pro-IL-1β and pro-IL-18, which are inflammatory cytokines that generate inflammatory responses [19]. Moreover, active caspase-1 also leads to the programmed cell death process termed pyroptosis in certain circumstances. In contrast to apoptosis, pyroptosis results in the rupture of the plasma membrane and release of DAMP molecules such as ATP and IL-1α into the extracellular space, which recruits more immune cells and further promotes the inflammatory cascade [20].
In contrast to the canonical pathway, the noncanonical pathway engages caspase-11 or caspase-8. In response to pathogens such as Escherichia coli, Citrobacter rodentium, or Vibrio cholera, caspase-11 is activated, leading to caspase-1-independent macrophage cell death and caspase-1-dependent IL-1β and IL-18 secretion [21]. In addition, the combination of fungi, Mycobacteria, and the dectin-1 receptor can trigger the formation of the noncanonical inflammasome complex consisting of MALT1, caspase-8, and ASC, which induces the activation of pro-IL-1β and the maturation of IL-1β [22].
Both the priming and the activation of the inflammasome are regulated by a deubiquitination mechanism. The application of G5, an inhibitor of deubiquitination, suggests the involvement of a deubiquitinating enzyme in the activation of the NLRP3 inflammasome. BRCC3, a deubiquitinating enzyme, was identified to regulate NLRP3 ubiquitination by targeting the LRR domain [23]. Moreover, IL-1R-associated kinase (IRAK) plays a critical role in NLRP3 priming by regulating NLRP3 deubiquitination, as demonstrated by using deficient mouse models. IRAK1 and IRAK4 interact with MyD88 in the transcriptional priming phase, whereas IRAK1 regulates posttranslational NLRP3 activation via the TRIF pathway [24]. Notably, the involvement of mitochondrial reactive oxygen species (mtROS) continues to be debated [25]. The deubiquitination pathway mediated by MyD88 is demonstrated to be mtROS dependent and can be inhibited by antioxidants; however, signaling by ATP can also induce the deubiquitination of NLRP in an mtROS-independent manner [26].
There also exist two molecules—heat shock protein 90 (HSP90) and the ubiquitin ligase-associated protein SGT1—that are important for NLRP3 activation. Downregulation of SGT1 expression by siRNA or chemical inhibition of HSP90 can significantly decrease inflammasome activity, leading to repression of NLRP3-mediated gout-like inflammation in mice. Moreover, the interaction of these molecules with NLRP3 is suggested to maintain NLRP3 in an inactive state. Once activating signals are detected, HSP90 and SGT1 dissociate from NLRP3, allowing inflammasome oligomerization [27].
Mitochondrial dysfunction is also involved in inflammasome activation. After the recognition of activating signals such as ATP or LPS, mitochondrial DNA is released into the cytosol and then bound directly by the NLRP3 inflammasome, leading to the activation of the inflammasome and maturation of caspase-1 [28]. During the binding of mtDNA and NLRP3, mitochondrial antiviral signaling protein (MAVS) and mitofusin2 (Mfn2) are thought to be implicated in NLRP3 activation; however, the actual interactions and functions of these proteins are not yet known [29, 30].
Thus, inflammasomes are essential in the immune system, and their roles in the activation of inflammation are incontrovertible. During inflammation, the stimulated inflammasome rapidly produces activated caspase-1, leading to cell pyroptosis and the release of inflammatory cytokines. Inflammatory cytokines are believed to participate in the processes of angiogenesis, metastasis, and epithelial-to-mesenchymal transition activation, which substantially contributes to cancer development [31]. Concerning the relationship between inflammation and cancer, the inflammasome appears to play a detrimental role in cancer due to its proinflammatory activity. However, the direct effect of inflammasome activation on cancer promotion remains controversial.

Contrasting roles of inflammasomes in cancer

Previous studies have shown that the activated inflammasome plays contrasting roles in cancer promotion and therapy [32]. A protective role for the inflammasome has mainly been observed in colitis-associated cancer. Dextran sulfate sodium (DSS) and azoxymethane (AOM) plus DSS mouse models show increases in the incidences of acute and recurrent colitis-associated cancer in mice lacking inflammasome genes, which are correlated with the levels of IL-1β and IL-18 at the tumor site [3336]. Moreover, bone marrow reconstitution experiments have demonstrated increased inflammation and tumorigenesis in colitis-associated colon cancer in mice lacking NLRP1 [37]. Additionally, caspase-1-deficient mice have enhanced tumorigenesis as a result of increasing colonic epithelial cell proliferation in the early stage of cancer and reducing apoptosis in advanced colon cancer [38]. In other malignancies, NLRC4 suppresses the tumor growth of melanoma by stimulating tumor-associated macrophages and generating protective T cells [39]. In addition, elevating AIM2 expression by delivering an exogenous AIM2 promotor can significantly inhibit the proliferation and invasion of renal carcinoma [40]. Furthermore, the activation of NLRP1 by serine dipeptidases 8 (DPP8) and DPP9 mediates caspase-1-dependent pyroptosis in human acute myeloid leukemia [41]. This antitumor activity achieved by inhibiting NLRP1 is also exhibited in chronic myeloid leukemia [42].
However, the activation of the inflammasome can also facilitate tumor development. In a mouse model of intravenous injection of B16-F10 melanoma cells, researchers found that mice lacking NLRP3 had a significant decrease in lung metastases compared with wild-type mice and that the pathway was independent of caspase-1 and IL-1β [43]. An analysis of tissue-specific knockout mouse strains fully deficient in ASC used in a chemical-induced skin carcinogenesis model showed that ASC affected tumor proliferation in a dichotomous way: it favored tumor growth via a proinflammatory role in infiltrating cells, while it also limited keratinocyte proliferation and thus helped to suppress tumors [44]. However, ASC protein expression is repressed in metastatic melanoma compared with primary melanoma, and inflammasome-associated caspase-1 and IL-1β are inhibited when the ASC gene is inhibited in primary and metastatic melanoma cells [45]. Moreover, researchers have found that in animal and human breast cancer models, the inflammasome and IL-1β pathway promotes tumor proliferation and migration and that mice lacking inflammasome components exhibit notably suppressed tumor growth and lung metastasis [46]. Additionally, among risk factors for breast cancer, obesity has been associated with a poor clinical prognosis. Studies have found that the activation of the obesity-associated NLRC4 inflammasome drives breast cancer progression [47]. However, in pancreatic ductal adenocarcinoma, studies have demonstrated that the inhibition or deletion of NLRP3, ASC, or caspase-1 decreases tumor growth and metastasis by reprogramming innate and adaptive immunity in the tumor microenvironment [48]. A detrimental role for NLRP3 has also been observed in malignant mesothelioma [49]. AIM2, a subtype of inflammasome, was reported to be a cancer suppressor gene in early years. A recent study showed that AIM2 was highly expressed in non-small cell lung cancer (NSCLC) and promoted tumor development in an inflammasome-dependent manner [50]. As a molecule downstream of the inflammasome, IL-1β has been demonstrated to promote tumor progression by recruiting myeloid-derived suppressor cells, which might inhibit the antitumor immune response [51].
Considering the aforementioned findings, the inflammasome seems to play contrasting roles in cancer development. We hypothesize that different immune responses determine the role of the inflammasome in different types of cancer. In most malignancies, the activation of the inflammasome can lead to either immune surveillance against the tumor or an inflammatory response that promotes cancer development. In colon cancer, the activation of the inflammasome protects the epithelium from cancer invasion. A recent study found that mice deficient in IL-18 and IL-18 receptor but not wild-type mice are highly susceptible to AOM/DSS-induced colon cancer [52]. Considering that DSS induces mucosal damage in the intestinal epithelium, IL-18 secreted during inflammasome activation might be able to maintain the homeostasis of the epithelial barrier, which could account for its antitumor activity. On the other hand, this study showed that epithelial-derived IL-18 could directly interact with CD4 T cells, leading to the suppression of Th17 cell differentiation. However, IL-18 receptor is critical in Foxp3 Treg cells, which mediate the reduction in intestinal inflammation [53]. These findings suggest that the activation of the inflammasome induces the production of IL-18 and that IL-18 then reduces intestinal inflammation by repressing Th17 cells and elevating Treg function. The reduction in inflammation maintains the homeostasis of the intestinal epithelium, leading to the suppression of colon cancer. Further investigations are warranted to verify this hypothesis. The heterogeneity of the inflammasomes in various cancers suggests that inhibitor application should be tailored to the specific situation.

Antitumor effects of inflammasome inhibitors

As excessive inflammation induced by the inflammasome can be a detrimental factor in multiple types of cancer, inflammasome inhibitors appear to be a promising approach for cancer prevention and treatment. Currently, many drugs and molecules have been shown to regulate inflammasome activity. However, some of them target the noncanonical signaling pathway of the inflammasome or indirectly affect the functions of the inflammasome by targeting other molecules. Here, we have listed the drugs targeting the canonical signaling pathway of the inflammasome and the antagonists most investigated in cancer treatment (Fig. 2; Table 1).
Table 1
Studies and clinical trials of inflammasome inhibitors in cancer
Drug
Target
Effective cancer type
Clinical trials
Reference
Thalidomide
Caspase-1
Prostate cancer
Phase II
[54]
Multiple myeloma
Phase III
[55]
Anakinra
IL-1R
Melanoma
N/A
[56]
Breast cancer
[57]
Multiple myeloma
Phase II
[58]
P2X7R antagonist
P2X7R
Prostate cancer
N/A
[59]
Pancreatic ductal adenocarcinoma (PDAC)
[60, 61]
Osteosarcoma
[62]
Multiple myeloma
[63]
Head and neck squamous cell carcinoma
[64]
Colorectal cancer
[65]
Basal cell carcinoma
Phase I
[66]
Parthenolide
NF-κB
Gastric cancer
N/A
[67]
Colorectal cancer
[68]
Pancreatic adenocarcinoma
[69]
Nasopharyngeal carcinoma
[70]
Andrographolide
NF-κB
Insulinoma
N/A
[71]
Colorectal cancer
[7274]
Breast cancer
[75, 76]
Multiple myeloma
[77]
Canakinumab
IL-1β
Lung cancer
Phase III (undergoing)
[78]

Drugs already used in clinical applications

Thalidomide

In the past, thalidomide has mainly been used as a sedative or hypnotic drug to treat anxiety, insomnia, gastritis, and tension [79]. The antitumor activity of thalidomide was discovered when it was used for the treatment of erythema nodosum leprosum because of its antiangiogenic properties [80]. However, due to its potential to cause congenital defects, thalidomide analogs have mostly been applied to many types of cancer, including prostate cancer and multiple myeloma.
For the treatment of multiple myeloma, thalidomide has been approved for first-line therapy in combination with other chemotherapeutic drugs [81]. In patients with relapsed myeloma, few therapies are available. However, researchers have found that thalidomide has a practical antitumor effect on patients with advanced myeloma. According to statistics, 10% of patients experience complete or almost complete remission and 32% exhibit a decrease in serum or urine paraprotein levels. In most patients, the percentage of plasma cells in the bone marrow is reduced, and the hemoglobin level is elevated, indicating substantial antitumor activity against myeloma [55]. In a randomized phase II trial, the combination of thalidomide and docetaxel resulted in a significant reduction in the prostate-specific antigen level and an elevation of the median survival rate in patients with metastatic androgen-independent prostate cancer [54]. The mechanism of malignancy control with thalidomide might involve its antiangiogenic activity. Thalidomide was demonstrated to reduce the high levels of certain angiogenic factors, such as fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) [82]. Moreover, thalidomide enhances cell-mediated immunity by directly interacting with cytotoxic T cells, which are lethal to tumor cells [83].
However, the application of thalidomide in other carcinomas has not shown significant efficacy. In unresectable hepatocellular carcinoma, thalidomide is tolerated in most patients with gradual dose escalation, but its monotherapeutic activity is modest compared with that of the combined therapy [84]. In a randomized, double-blinded, placebo-controlled trial, 722 patients with advanced non-small cell lung cancer were treated with thalidomide in combination with gemcitabine and carboplatin. The results showed that this treatment regimen did not improve the survival rate but did increase the risk of thrombotic events [85]. Moreover, this outcome was also demonstrated in a phase III clinical trial performed in France, and neuropathy was the most common adverse event observed [86]. Additionally, in patients with metastatic melanoma, the combination of thalidomide and dacarbazine or temozolomide shows limited efficacy. Constipation, peripheral neuropathy, fatigue, edema, and rash are attributed to thalidomide [87, 88].
Overall, thalidomide is widely used in the treatment of multiple myeloma and prostate cancer. Especially in multiple myeloma, the combination of melphalan-prednisone-thalidomide is deemed a standard therapy for patients ineligible for stem cell transplantation [89]. However, its antitumor activity has a moderate effect on other types of cancer.

Anakinra

Anakinra is a recombinant form of interleukin-1 receptor antagonist (IL-1Ra), which is commonly applied in the treatment of rheumatoid arthritis and autoinflammatory disease [90].
Previous studies with myeloma cells have shown that anakinra can significantly reduce IL-6 levels but does not increase myeloma cell death. However, a combination therapy of anakinra and dexamethasone induces cell death in myeloma cells [91]. In a study of breast cancer mouse models, anakinra decreased the growth of tumors in the bone and reduced the number of mice with bone metastasis from 90% (placebo) to 40% (treatment) or 10% (preventative). This study indicated that anakinra fails to increase tumor cell death but represses cell proliferation and angiogenesis [57]. Melanoma, the most dangerous type of skin cancer, has a poor prognosis. A study found that anakinra increases M1 macrophage polarization and decreases myeloid-derived suppressor cell numbers in mice with melanoma [56]. In phase II clinical trials, researchers investigated the roles of anakinra and low-dose dexamethasone in patients with smoldering or indolent multiple myeloma. The results showed that anakinra targets the progressed myeloma fraction in vivo and decreases the proliferation of myeloma cells [58]. Then, the antitumor activity of anakinra was mainly mediated by reducing angiogenesis. The administration of anakinra alleviated the levels of CD34-positive blood vessels and significantly reduced the expression of the endothelin 1 gene [57]. Moreover, previous studies have shown that IL-1β elevates the expression of VEGF and VEGF represses the activities of IL-1β [92, 93]. The inhibition of IL-1β by anakinra could obviously suppress the activity of VEGF, leading to an antiangiogenic effect.
Anakinra is usually used as a second-line treatment in rheumatoid arthritis, and subcutaneous injection of anakinra has been approved by the US FDA [94]. However, the antitumor applications of anakinra await further studies.

Drugs studied in clinical trials

P2X7R antagonist

Previous studies have demonstrated that P2X7 is highly expressed in prostate cancer, pancreatic ductal adenocarcinoma (PDAC), head and neck squamous cell carcinoma, colorectal cancer, and papilloma. When the expression of PX27 is downregulated by siRNA, the metastasis and invasion of prostate cancer cells are notably reduced through the PI3K/AKT and ERK1/2 pathways [59]. In PDAC, P2X7R allosteric inhibitor-treated cells exhibited attenuated tumor proliferation and invasion compared to untreated control cells [60]. In addition, extracellular ATP and BzATP, which have relatively high affinities for P2X7R, further impact cell survival and the complex function of P2X7R [61]. Moreover, P2X7R plays an important role in bone tumor growth and functions [95]. In osteosarcoma, P2X7R was proven to facilitate the growth and matrix invasion of tumor cells, which indicates the potential of P2X7R as a therapeutic target [62]. In another bone cancer, multiple myeloma, the activation of P2X7R was also deemed to affect cell necrosis in the RPMI-8226 cell line [63]. Furthermore, the inhibition of P2X7R can lead to decreased invasiveness in A253 cells, which are derived from an epidermoid carcinoma [64]. Since chronic inflammation is a key factor leading to colorectal cancer, P2X7R has been documented as a regulator in inflammatory responses. In colorectal cancer patients, high expression of P2X7R is significantly associated with tumor size and lymph node metastasis [65]. High expression of P2X7 enhances cancer proliferation, migration, invasion, and angiogenesis. Cancer cells can downregulate the expression of P2X7 to avoid apoptosis and use ATP as an invasion-promoting signal [96]. The activation of P2X7 promotes cancer invasion by releasing cathepsin and MMP-9 [97, 98]. Moreover, the P2X7-dependent release of VEGF promotes angiogenesis and contributes to cancer development [99]. These findings suggest that P2X7R antagonists alter the context of tumor cells, leading to the suppression of cancer progression.
In clinical trials, the safety and tolerability of a P2X7 antagonist were assessed in an open-label, phase I study, in which approximately 65% of patients with basal cell carcinoma showed a decrease in lesion area and the most common adverse event was an allergic reaction occurring at the treatment site [66]. These properties warrant additional studies to evaluate the potential of P2X7 antagonists in the treatment of not only skin cancer but also other malignancies.

Parthenolide

Parthenolide is a sesquiterpene lactone compound found in the herb named feverfew, which is used as an anti-inflammatory medicine [100]. While NF-κB has been reported to be a key factor regulating a number of genes that are crucial for tumor invasion and metastasis, parthenolide is considered a potential antitumor therapeutic drug that functions by inhibiting the NF-κB signaling pathway [101]. In gastric cancer, parthenolide significantly inhibits tumor cell growth and downregulates the phosphorylation of NF-κB. During a study of combined therapy with parthenolide and paclitaxel, the survival time of patients with gastric cancer was notably prolonged [67]. In addition, in pancreatic adenocarcinoma, tumor cell growth can be inhibited by parthenolide in a dose-dependent manner. After a higher concentration of parthenolide treatment is administered, internucleosomal DNA fragmentation indicative of apoptosis can be observed [69]. In a study of colorectal cancer models, intraperitoneal injection of parthenolide notably inhibited tumor proliferation and angiogenesis. By focusing on the Bcl-2 family in cancer cells, a parthenolide-mediated cell death signaling pathway was investigated and confirmed to be associated with colorectal cancer cell death [68]. In nasopharyngeal carcinoma, parthenolide induces tumor cell death through the NF-κB/COX-2 pathway. Using COX-2 inhibitors or knocking down COX-2 expression with siRNA or shRNA suppresses cancer stem-like cell phenotypes. Parthenolide exerts an inhibitory effect on NF-κB by suppressing both the phosphorylation of IκB kinase and the degradation of IκBα [70]. The mechanisms involved in the antitumor activity of parthenolide, including the inhibition of NF-κB, activation of JNK, activation of p53, and suppression of STAT3, have attracted great interest. Parthenolide sensitizes cancer cells to TNF-α-induced apoptosis by inhibiting NF-κB and activating JNK [102]. The administration of parthenolide can activate p53, leading to a reduction in cancer cell proliferation [103]. Moreover, parthenolide can inhibit the activation of STAT proteins by blocking their tyrosine phosphorylation, which is indispensable for STAT translocation into the nucleus and target gene activation [104].
In practical use, the low solubility and bioavailability of parthenolide limit its potential [105]. However, creating synthetic analogs of parthenolide may be a novel way to address this problem [106]. Currently, a clinical trial of parthenolide is being performed in allergic contact dermatitis [107]. Therefore, additional studies are required to exploit parthenolide as a novel antitumor drug.

Canakinumab

Canakinumab is a human monoclonal antibody targeting IL-1β but not IL-1α. In 2009, canakinumab was authorized by the US Food and Drug Administration and European Medicines Agency as a treatment for cryopyrin-associated periodic syndromes [108]. A randomized, double-blinded trial found that compared with controls, canakinumab at a dosage of 150 mg every 3 months led to a notable reduction in the rate of recurrent cardiovascular events [109]. When cancer is considered, canakinumab still deserves recognition. During a randomized, double-blinded, placebo-controlled trial of patients with lung cancers and atherosclerosis, researchers found that canakinumab could significantly decrease lung cancer mortality by targeting the IL-1β innate immunity pathway. It is worth mentioning that this antitumor effect is mostly detected in patients with lung adenocarcinoma or poorly differentiated large cell cancer, whereas meaningful assessments of the effects on patients with small cell lung cancers or squamous cell carcinomas have rarely been performed [78]. The chronic use of aspirin can reduce mortality in colorectal cancer and lung adenocarcinomas due to its anti-inflammatory activity [110, 111], and canakinumab is theorized to combat cancer in a similar way, according to its function of inhibiting the inflammasome [78].
Currently, the application of canakinumab as an antitumor drug is mainly focused on lung cancer. Canakinumab is being studied in phase III clinical trials in non-small cell lung cancer to evaluate its tolerability and efficacy compared with those of a placebo. Consequently, the completion of the clinical trials is warranted to determine whether canakinumab can be used safely and effectively in cancer treatment.

Andrographolide

Andrographolide is a labdane diterpenoid that has been isolated from the stem and leaves of Andrographis paniculata [112]. Numerous studies have validated the facts that andrographolide can inhibit cell invasion and induce cell death in various types of cancer cells. A recent study showed that andrographolide significantly reduces tumor cell proliferation at both the early stage and advanced stage of insulinoma by targeting the TLR4/NF-κB signaling pathway [71]. In addition, in colon cancer, andrographolide represses cell proliferation, elevates cell apoptosis, and activates caspase-3/9 in SW620 human colon cancer cells by inhibiting NF-κB, TLR4, MyD88, and MMP-9 signaling activation [72]. Among chemotherapeutic drugs, 5-fluorouracil (5-Fu) is the one most commonly used in colorectal cancer. Andrographolide can promote the 5-Fu-induced antitumor effect by repressing the level of phosphorylated cellular-mesenchymal to epithelial transition factor [73]. In colitis-associated cancer, andrographolide inhibits the NLRP3 inflammasome, protecting mice against dextran sulfate sodium-induced colon carcinogenesis [74]. In breast cancer, andrographolide suppresses breast cancer-induced osteolysis by inhibiting the NF-κB and ERK signaling pathway at a relatively low dose and by promoting apoptosis at a relatively high dose. Its antitumor activity correlates with the downregulation of the NF-κB signaling pathway [75, 76]. Moreover, andrographolide reduces proliferation and increases cell apoptosis by downregulating the protein expression of TLR4 and NF-κB in multiple myeloma [77]. The antitumor mechanisms of andrographolide include the inhibition of the NF-κB pathway [113], suppression of cyclins and cyclin-dependent kinases [114], and activation of the p53 protein [114], leading to reductions in cancer cell proliferation, invasion, and angiogenesis.
Clinical trials of andrographolide have mainly focused on inflammatory diseases such as acute upper respiratory tract infections [115, 116], and its antitumor activity has been demonstrated only in vitro. Therefore, more studies are required to investigate its application in cancer treatment.
Overall, clinical application was limited to only anakinra and thalidomide, and other drugs are still under assessment in clinical trials. All of these drugs inhibit the production and activation of inflammasome-associated molecules such as P2X7R, IL-1, NF-κB, and caspase-1, leading to the suppression of the inflammasome. As mentioned above, the antitumor mechanisms of these drugs involve the regulation of the expression of p53, NF-κB, STAT, and VEGF, leading to the suppression of tumor cell proliferation, metastasis, invasion, and angiogenesis. However, the direct interactions of inflammasome inhibitors involved in repressing cancer development are not yet known. Further studies are needed to explore the mechanisms in a more explicit way.

Potential antitumor drugs

Considering the correlation between inflammation and tumorigenesis, it is rational to expect that antagonists that inhibit the initiation of inflammation could be explored as potential antitumor drugs. In the inflammasome signaling pathway, there are many steps that could be targeted, such as the assembly and activation of inflammasomes, the synthesis of IL-1, and the generation of caspase-1. Several inhibitors targeting the above processes hold promise in developing novel drugs against cancer and are described below.

Glyburide

Glyburide is an antidiabetic drug in a class of medications known as sulfonylureas, which are commonly used in the therapy of type 2 diabetes [117]. Glyburide was demonstrated to block ATP-sensitive potassium channels in pancreatic B cells [118]. In placental inflammation-associated diseases, trophoblasts can secrete IL-1β through the NLRP3 pathway, which plays an important role in inflammation-associated pregnancy complications, and glyburide offers considerable therapeutic promise as an inhibitor of the NLRP3 inflammasome [119]. Moreover, glyburide was beneficial in human melioidosis in a study of 1160 patients with gram-negative sepsis due to its inhibitory effect on the inflammasome and subsequent suppression of the inflammatory response. Considering the role of the NLRP3 inflammasome in endotoxemia, the data suggest that glyburide can delay lipopolysaccharide (LPS)-induced lethality in mice [120].
However, since glyburide specifically inhibits the NLRP3 inflammasome in vitro, treatment requires the administration of a high dose in vivo, which causes hypoglycemia and is beyond its pharmacological action in type 2 diabetes. A recent finding suggests that the small molecule 16673-34-0, which is an intermediate substrate in the synthesis of glyburide, disrupts the synthesis of the NLRP3 inflammasome and limits infarct size in mouse models of myocardial infarction without affecting glucose metabolism [121]. Therefore, this substrate, which exhibits pharmacodynamics similar to those of glyburide, may be a novel inhibitor of the inflammasome with fewer side effects than glyburide.

CRID3/MCC950

The cytokine release inhibitory drugs (CRID3), also known as MCC950, are diarylsulfonylurea-containing compounds that inhibit the activation of the NLRP3 inflammasome both in mice in vivo and in human cells in vitro [122]. Researchers have found that CRID3 inhibits the secretion of IL-1β and caspase-1 in response to the NLRP3 and AIM2 inflammasomes but not in response to the NLRC4 inflammasome. In contrast to the NLRP3 inhibitors glyburide and parthenolide, CRID3 can prevent AIM2-dependent pyroptosis. Moreover, the potential target of CRID3 was identified as glutathione S-transferase omega 1 (GSTO1), a protein that has been demonstrated to interact with ASC [123, 124]. In a study of a spontaneous chronic colitis mouse model, MCC950 resulted in significant suppression of IL-1β secretion and activation of caspase-1, indicating a potential novel avenue for treatment of human colonic inflammation diseases [125].

Pralnacasan

Pralnacasan is an orally absorbed nonpeptide compound that inhibits interleukin 1β converting enzyme (ICE), which is also known as caspase-1 [126]. ICE exists in the plasma membrane of monocytic cells where it activates the precursors of IL-1β and IL-18 into their active forms. This process is considered to be downstream in the inflammasome signaling pathway [127, 128]. In a collagenase-induced osteoarthritis mouse model, pralnacasan has been demonstrated to reduce joint damage, indicating its potential as a disease-modifying drug for the therapy of osteoarthritis [129]. In dextran sulfate sodium (DSS)-induced murine colitis models, pralnacasan is able to ameliorate dextran sulfate sodium-induced colitis with almost no side effects. This process is probably mediated by the repression of the inflammatory cytokines IL-1β and IL-18 [130]. Researchers found that IL-18 mRNA and TNF-α mRNA levels were elevated in DSS-induced colitis, and the administration of pralnacasan significantly reduced the expression of IL-18 mRNA but did not affect the expression of TNF-α mRNA. Therefore, the therapeutic approach of combining TNF-α expression-reducing substances with pralnacasan appears to be a promising idea [131].

VX-765

VX-765, also known as belnacasan, is an inhibitor that decreases the activity of caspase-1. A study showed that the administration of VX-765 in rat models significantly reduced the number of seizures and delayed the time to seizure onset [132]. The same anticonvulsant effect of VX-765 has been exhibited in mice models in a dose-dependent manner [133]. Moreover, the application of VX-765 stops the accumulating deposition of amyloid β, indicating its potent therapeutic activity in Alzheimer’s disease [134]. In addition to its inhibitory effect on nervous system disease, VX-765 has also been proven to reduce infarct size in a rat model of myocardial infarction. In combination with an antiplatelet P2Y12 inhibitor, VX-765 exhibited a highly protective function when myocardial infarction occurred [135, 136].
Currently, clinical trials of VX-765 are mainly studying the treatment of epilepsy. A randomized, double-blinded, placebo-controlled phase II study of VX-765 in patients with treatment-resistant partial epilepsy was completed, and the results showed no statistically significant difference between the VX-765 group and the placebo group [137]. Consequently, a longer duration study is warranted to measure the clinical efficacy of VX-765.

Ac-YVAD-CHO

Ac-YVAD-CHO is a polypeptide with a sequence homologous to the known sequences of caspase substrates, which accounts for its ability to inhibit the activation of caspase-1 [138, 139]. Researchers have used Ac-YVAD-CHO as a therapeutic intervention in pancreatic carcinoma cells, and they found that the inhibition of caspase-1 leads to cell apoptosis. Moreover, according to their observations, caspase-1 was directly involved in antiapoptotic processes in pancreatic cancer [140]. Additionally, the administration of Ac-YVAD-CHO has been demonstrated to induce remission in rats with endotoxemia by decreasing the secretion of IL-1β and IL-18 [141].
Overall, caspase-1 and IL-1β, molecules downstream of the inflammasome, play major roles in the generation of inflammation, and the drugs mentioned above are commonly used in the treatment of inflammation-associated disease because they can reduce the functions of caspase-1 and IL-1β. However, their applications in cancer therapy remain unknown. Thus, further investigations are warranted to characterize the antitumor activities of these potent inflammasome inhibitors.

Conclusions

The role of the inflammasome in cancer development has received increasing attention in recent years. During the progression of cancer, excessive inflammation stimulated by the inflammasome is the generally accepted hypothesis explaining the detrimental effect of inflammasomes on multiple forms of cancer. In the downstream course of the inflammasome pathway, IL-1β and IL-18 are activated by caspase-1 to generate an inflammatory response. Therefore, drugs that can downregulate the functions of these cytokines seem to have therapeutic activities in inflammation-associated diseases.
In various in vitro experiments, inflammasome inhibitors have been shown to attenuate the proliferation and invasion of cancer cells. However, their antitumor activities are limited to specific types of cancer. In terms of practical applications, the clinical trials studying inflammasome inhibitors have mainly focused on multiple myeloma, in which thalidomide and anakinra are well studied. Otherwise, inflammasome inhibitors are mostly utilized in inflammatory diseases such as osteoarthritis, rheumatoid arthritis, and colon colitis. Considering the limited application of inflammasome inhibitors in cancer treatment, we are looking forward to more broad-spectrum and effective antitumor drugs. Several of the inflammasome inhibitors detailed above have been demonstrated to have the function of reducing inflammatory responses, indicating that inflammasome inhibitors could be novel candidates for the treatment of malignancies in which inflammation is involved as a major contributor.
The correlation between inflammasomes and cancer provides a promising approach for cancer therapy. The contrasting roles of inflammasomes in different cancers suggest the need for specific strategies when inhibitors are applied in cancer treatment. However, the inappropriate administration of inflammasome inhibitors might result in the repression of antitumor immunity and enhanced infection susceptibility and deterioration in autoinflammatory diseases. Consequently, the application of inflammasome inhibitors must be tailored to the specific type of cancer, and further studies are warranted to characterize the antitumor effects of these drugs.

Acknowledgements

Not applicable
Not applicable
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
2.
Zurück zum Zitat Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):5–12.PubMedCrossRef Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):5–12.PubMedCrossRef
3.
4.
Zurück zum Zitat de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.PubMedCrossRef de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.PubMedCrossRef
7.
Zurück zum Zitat Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12(12):e1006052.PubMedPubMedCentralCrossRef Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12(12):e1006052.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu F, et al. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One. 2016;11(10):e0164135.PubMedPubMedCentralCrossRef Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu F, et al. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One. 2016;11(10):e0164135.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe. 2010;8(6):471–83.PubMedPubMedCentralCrossRef Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe. 2010;8(6):471–83.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Jin T, Perry A, Smith P, Jiang J, Xiao TS. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. The Journal of biological chemistry. 2013;288(19):13225–35.PubMedPubMedCentralCrossRef Jin T, Perry A, Smith P, Jiang J, Xiao TS. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. The Journal of biological chemistry. 2013;288(19):13225–35.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–8.PubMedCrossRef Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–8.PubMedCrossRef
13.
Zurück zum Zitat Malozowski S, Sahlroot JT. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;357(3):302–3 author reply 3.PubMedCrossRef Malozowski S, Sahlroot JT. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;357(3):302–3 author reply 3.PubMedCrossRef
15.
16.
18.
Zurück zum Zitat Wu D, Pan P, Su X, Zhang L, Qin Q, Tan H, et al. Interferon regulatory factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock. 2016;46(3):329–38.PubMedPubMedCentralCrossRef Wu D, Pan P, Su X, Zhang L, Qin Q, Tan H, et al. Interferon regulatory factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock. 2016;46(3):329–38.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Garaude J, Kent A, van Rooijen N, Blander JM. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med. 2012;4(120):120ra16.PubMedCrossRef Garaude J, Kent A, van Rooijen N, Blander JM. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med. 2012;4(120):120ra16.PubMedCrossRef
20.
Zurück zum Zitat Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.PubMedCrossRef Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.PubMedCrossRef
21.
Zurück zum Zitat Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRef Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRef
22.
Zurück zum Zitat Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–54.PubMedCrossRef Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–54.PubMedCrossRef
23.
Zurück zum Zitat Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49(2):331–8.PubMedCrossRef Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013;49(2):331–8.PubMedCrossRef
24.
Zurück zum Zitat Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol. 2013;191(8):3995–9.PubMedCrossRef Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol. 2013;191(8):3995–9.PubMedCrossRef
25.
Zurück zum Zitat Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011;187(2):613–7.PubMedCrossRef Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011;187(2):613–7.PubMedCrossRef
26.
Zurück zum Zitat Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.PubMedPubMedCentralCrossRef Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007;8(5):497–503.PubMedCrossRef Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007;8(5):497–503.PubMedCrossRef
28.
Zurück zum Zitat Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.PubMedPubMedCentralCrossRef Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A. 2013;110(44):17963–8.PubMedPubMedCentralCrossRef Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A. 2013;110(44):17963–8.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153(2):348–61.PubMedPubMedCentralCrossRef Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153(2):348–61.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43(3):374–9.PubMedCrossRef Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43(3):374–9.PubMedCrossRef
33.
Zurück zum Zitat Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32(3):367–78.PubMedCrossRef Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32(3):367–78.PubMedCrossRef
34.
Zurück zum Zitat Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.PubMedPubMedCentralCrossRef Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 2015;43(4):751–63.PubMedCrossRef Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 2015;43(4):751–63.PubMedCrossRef
36.
Zurück zum Zitat Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–20.PubMedCrossRef Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–20.PubMedCrossRef
37.
Zurück zum Zitat Williams TM, Leeth RA, Rothschild DE, Coutermarsh-Ott SL, McDaniel DK, Simmons AE, et al. The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J Immunol. 2015;194(7):3369–80.PubMedCrossRef Williams TM, Leeth RA, Rothschild DE, Coutermarsh-Ott SL, McDaniel DK, Simmons AE, et al. The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J Immunol. 2015;194(7):3369–80.PubMedCrossRef
38.
Zurück zum Zitat Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A. 2010;107(50):21635–40.PubMedPubMedCentralCrossRef Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A. 2010;107(50):21635–40.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126(10):3917–28.PubMedPubMedCentralCrossRef Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126(10):3917–28.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Chai D, Liu N, Li H, Wang G, Song J, Fang L, et al. H1/pAIM2 nanoparticles exert anti-tumour effects that is associated with the inflammasome activation in renal carcinoma. J Cell Mol Med. 2018;22(11):5670–81.PubMedPubMedCentralCrossRef Chai D, Liu N, Li H, Wang G, Song J, Fang L, et al. H1/pAIM2 nanoparticles exert anti-tumour effects that is associated with the inflammasome activation in renal carcinoma. J Cell Mol Med. 2018;22(11):5670–81.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;24(8):1151–6.PubMedPubMedCentralCrossRef Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;24(8):1151–6.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1alpha/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol. 2018;101:377–85.PubMedCrossRef Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1alpha/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol. 2018;101:377–85.PubMedCrossRef
43.
Zurück zum Zitat Chow MT, Sceneay J, Paget C, Wong CS, Duret H, Tschopp J, et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72(22):5721–32.PubMedCrossRef Chow MT, Sceneay J, Paget C, Wong CS, Duret H, Tschopp J, et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72(22):5721–32.PubMedCrossRef
44.
Zurück zum Zitat Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci U S A. 2012;109(45):18384–9.PubMedPubMedCentralCrossRef Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci U S A. 2012;109(45):18384–9.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Liu W, Luo Y, Dunn JH, Norris DA, Dinarello CA, Fujita M. Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol. 2013;133(2):518–27.PubMedCrossRef Liu W, Luo Y, Dunn JH, Norris DA, Dinarello CA, Fujita M. Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol. 2013;133(2):518–27.PubMedCrossRef
47.
Zurück zum Zitat Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 2016;7:13007.PubMedPubMedCentralCrossRef Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 2016;7:13007.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Daley D, Mani VR, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214(6):1711–24.PubMedPubMedCentralCrossRef Daley D, Mani VR, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214(6):1711–24.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Thompson JK, Shukla A, Leggett AL, Munson PB, Miller JM, MacPherson MB, et al. Extracellular signal regulated kinase 5 and inflammasome in progression of mesothelioma. Oncotarget. 2018;9(1):293–305.PubMedCrossRef Thompson JK, Shukla A, Leggett AL, Munson PB, Miller JM, MacPherson MB, et al. Extracellular signal regulated kinase 5 and inflammasome in progression of mesothelioma. Oncotarget. 2018;9(1):293–305.PubMedCrossRef
50.
Zurück zum Zitat Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, et al. AIM2 promotes non-small-cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol. 2019. Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, et al. AIM2 promotes non-small-cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol. 2019.
51.
Zurück zum Zitat Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26.PubMedPubMedCentralCrossRef Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207(8):1625–36.PubMedPubMedCentralCrossRef Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207(8):1625–36.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Harrison OJ, Srinivasan N, Pott J, Schiering C, Krausgruber T, Ilott NE, et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3(+) Treg cell function in the intestine. Mucosal Immunol. 2015;8(6):1226–36.PubMedPubMedCentralCrossRef Harrison OJ, Srinivasan N, Pott J, Schiering C, Krausgruber T, Ilott NE, et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3(+) Treg cell function in the intestine. Mucosal Immunol. 2015;8(6):1226–36.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Dahut WL, Gulley JL, Arlen PM, Liu Y, Fedenko KM, Steinberg SM, et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2532–9.PubMedCrossRef Dahut WL, Gulley JL, Arlen PM, Liu Y, Fedenko KM, Steinberg SM, et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2532–9.PubMedCrossRef
55.
Zurück zum Zitat Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–71.PubMedCrossRef Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–71.PubMedCrossRef
56.
Zurück zum Zitat Triozzi PL, Aldrich W. Effects of interleukin-1 receptor antagonist and chemotherapy on host-tumor interactions in established melanoma. Anticancer Res. 2010;30(2):345–54.PubMed Triozzi PL, Aldrich W. Effects of interleukin-1 receptor antagonist and chemotherapy on host-tumor interactions in established melanoma. Anticancer Res. 2010;30(2):345–54.PubMed
57.
Zurück zum Zitat Holen I, Lefley DV, Francis SE, Rennicks S, Bradbury S, Coleman RE, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7(46):75571–84.PubMedPubMedCentralCrossRef Holen I, Lefley DV, Francis SE, Rennicks S, Bradbury S, Coleman RE, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7(46):75571–84.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Lust JA, Lacy MQ, Zeldenrust SR, Dispenzieri A, Gertz MA, Witzig TE, et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc. 2009;84(2):114–22.PubMedPubMedCentralCrossRef Lust JA, Lacy MQ, Zeldenrust SR, Dispenzieri A, Gertz MA, Witzig TE, et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc. 2009;84(2):114–22.PubMedPubMedCentralCrossRef
59.
60.
Zurück zum Zitat Giannuzzo A, Pedersen SF, Novak I. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer. 2015;14:203.PubMedPubMedCentralCrossRef Giannuzzo A, Pedersen SF, Novak I. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer. 2015;14:203.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139(11):2540–52.PubMedPubMedCentralCrossRef Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139(11):2540–52.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, et al. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 2010;24(9):3393–404.PubMedCrossRef Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, et al. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 2010;24(9):3393–404.PubMedCrossRef
63.
Zurück zum Zitat Farrell AW, Gadeock S, Pupovac A, Wang B, Jalilian I, Ranson M, et al. P2X7 receptor activation induces cell death and CD23 shedding in human RPMI 8226 multiple myeloma cells. Biochim Biophys Acta. 2010;1800(11):1173–82.PubMedCrossRef Farrell AW, Gadeock S, Pupovac A, Wang B, Jalilian I, Ranson M, et al. P2X7 receptor activation induces cell death and CD23 shedding in human RPMI 8226 multiple myeloma cells. Biochim Biophys Acta. 2010;1800(11):1173–82.PubMedCrossRef
64.
Zurück zum Zitat Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget. 2017;8(30):48972–82.PubMedPubMedCentralCrossRef Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget. 2017;8(30):48972–82.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Fei Q, Xiao J, Hu B, Sun N, Wei Y, Zhu J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Human Pathol. 2017;64:61–8.CrossRef Fei Q, Xiao J, Hu B, Sun N, Wei Y, Zhu J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Human Pathol. 2017;64:61–8.CrossRef
66.
Zurück zum Zitat Gilbert SM, Gidley Baird A, Glazer S, Barden JA, Glazer A, Teh LC, et al. A phase I clinical trial demonstrates that nfP2X7-targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol. 2017;177(1):117–24.PubMedCrossRef Gilbert SM, Gidley Baird A, Glazer S, Barden JA, Glazer A, Teh LC, et al. A phase I clinical trial demonstrates that nfP2X7-targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol. 2017;177(1):117–24.PubMedCrossRef
67.
Zurück zum Zitat Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, et al. Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genomics Proteomics. 2011;8(1):39–47.PubMed Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, et al. Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genomics Proteomics. 2011;8(1):39–47.PubMed
68.
Zurück zum Zitat Kim SL, Trang KT, Kim SH, Kim IH, Lee SO, Lee ST, et al. Parthenolide suppresses tumor growth in a xenograft model of colorectal cancer cells by inducing mitochondrial dysfunction and apoptosis. Int J Oncol. 2012;41(4):1547–53.PubMedCrossRef Kim SL, Trang KT, Kim SH, Kim IH, Lee SO, Lee ST, et al. Parthenolide suppresses tumor growth in a xenograft model of colorectal cancer cells by inducing mitochondrial dysfunction and apoptosis. Int J Oncol. 2012;41(4):1547–53.PubMedCrossRef
69.
Zurück zum Zitat Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, et al. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res. 2010;29:108.PubMedPubMedCentralCrossRef Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, et al. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res. 2010;29:108.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Liao K, Xia B, Zhuang QY, Hou MJ, Zhang YJ, Luo B, et al. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-kappaB/COX-2 pathway. Theranostics. 2015;5(3):302–21.PubMedPubMedCentralCrossRef Liao K, Xia B, Zhuang QY, Hou MJ, Zhang YJ, Luo B, et al. Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-kappaB/COX-2 pathway. Theranostics. 2015;5(3):302–21.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Zhang QQ, Ding Y, Lei Y, Qi CL, He XD, Lan T, et al. Andrographolide suppress tumor growth by inhibiting TLR4/NF-kappaB signaling activation in insulinoma. Int J Biol Sci. 2014;10(4):404–14.PubMedPubMedCentralCrossRef Zhang QQ, Ding Y, Lei Y, Qi CL, He XD, Lan T, et al. Andrographolide suppress tumor growth by inhibiting TLR4/NF-kappaB signaling activation in insulinoma. Int J Biol Sci. 2014;10(4):404–14.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Zhang R, Zhao J, Xu J, Jiao DX, Wang J, Gong ZQ, et al. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-kappaB/MMP-9 signaling pathway. Oncol Lett. 2017;14(4):4305–10.PubMedPubMedCentralCrossRef Zhang R, Zhao J, Xu J, Jiao DX, Wang J, Gong ZQ, et al. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-kappaB/MMP-9 signaling pathway. Oncol Lett. 2017;14(4):4305–10.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Su M, Qin B, Liu F, Chen Y, Zhang R. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway. Drug Des Devel Ther. 2017;11:3333–41.PubMedPubMedCentralCrossRef Su M, Qin B, Liu F, Chen Y, Zhang R. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway. Drug Des Devel Ther. 2017;11:3333–41.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Guo W, Sun Y, Liu W, Wu X, Guo L, Cai P, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy. 2014;10(6):972–85.PubMedPubMedCentralCrossRef Guo W, Sun Y, Liu W, Wu X, Guo L, Cai P, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy. 2014;10(6):972–85.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhai Z, Qu X, Yan W, Li H, Liu G, Liu X, et al. Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res Treat. 2014;144(1):33–45.PubMedCrossRef Zhai Z, Qu X, Yan W, Li H, Liu G, Liu X, et al. Andrographolide prevents human breast cancer-induced osteoclastic bone loss via attenuated RANKL signaling. Breast Cancer Res Treat. 2014;144(1):33–45.PubMedCrossRef
76.
Zurück zum Zitat Zhai Z, Qu X, Li H, Ouyang Z, Yan W, Liu G, et al. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Mol Med Rep. 2015;11(2):1139–45.PubMedCrossRef Zhai Z, Qu X, Li H, Ouyang Z, Yan W, Liu G, et al. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Mol Med Rep. 2015;11(2):1139–45.PubMedCrossRef
77.
Zurück zum Zitat Gao H, Wang J. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2016;13(2):1827–32.PubMedCrossRef Gao H, Wang J. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2016;13(2):1827–32.PubMedCrossRef
78.
Zurück zum Zitat Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2017;390(10105):1833–42.CrossRef Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2017;390(10105):1833–42.CrossRef
79.
Zurück zum Zitat Miller MT. Thalidomide embryopathy: a model for the study of congenital incomitant horizontal strabismus. Trans Am Ophthalmol Soc. 1991;89:623–74.PubMedPubMedCentral Miller MT. Thalidomide embryopathy: a model for the study of congenital incomitant horizontal strabismus. Trans Am Ophthalmol Soc. 1991;89:623–74.PubMedPubMedCentral
80.
Zurück zum Zitat Peng HL, Yi YF, Zhou SK, Xie SS, Zhang GS. Thalidomide effects in patients with hereditary hemorrhagic telangiectasia during therapeutic treatment and in Fli-EGFP transgenic zebrafish model. Chin Med J (Engl). 2015;128(22):3050–4.PubMedPubMedCentralCrossRef Peng HL, Yi YF, Zhou SK, Xie SS, Zhang GS. Thalidomide effects in patients with hereditary hemorrhagic telangiectasia during therapeutic treatment and in Fli-EGFP transgenic zebrafish model. Chin Med J (Engl). 2015;128(22):3050–4.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Breitkreutz I, Anderson KC. Thalidomide in multiple myeloma--clinical trials and aspects of drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2008;4(7):973–85.PubMedCrossRef Breitkreutz I, Anderson KC. Thalidomide in multiple myeloma--clinical trials and aspects of drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2008;4(7):973–85.PubMedCrossRef
82.
Zurück zum Zitat Figg WD, Kruger EA, Price DK, Kim S, Dahut WD. Inhibition of angiogenesis: treatment options for patients with metastatic prostate cancer. Invest New Drugs. 2002;20(2):183–94.PubMedCrossRef Figg WD, Kruger EA, Price DK, Kim S, Dahut WD. Inhibition of angiogenesis: treatment options for patients with metastatic prostate cancer. Invest New Drugs. 2002;20(2):183–94.PubMedCrossRef
83.
Zurück zum Zitat Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–92.PubMedPubMedCentralCrossRef Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–92.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Lin AY, Brophy N, Fisher GA, So S, Biggs C, Yock TI, et al. Phase II study of thalidomide in patients with unresectable hepatocellular carcinoma. Cancer. 2005;103(1):119–25.PubMedCrossRef Lin AY, Brophy N, Fisher GA, So S, Biggs C, Yock TI, et al. Phase II study of thalidomide in patients with unresectable hepatocellular carcinoma. Cancer. 2005;103(1):119–25.PubMedCrossRef
85.
Zurück zum Zitat Lee SM, Rudd R, Woll PJ, Ottensmeier C, Gilligan D, Price A, et al. Randomized double-blind placebo-controlled trial of thalidomide in combination with gemcitabine and Carboplatin in advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(31):5248–54.PubMedCrossRef Lee SM, Rudd R, Woll PJ, Ottensmeier C, Gilligan D, Price A, et al. Randomized double-blind placebo-controlled trial of thalidomide in combination with gemcitabine and Carboplatin in advanced non-small-cell lung cancer. J Clin Oncol. 2009;27(31):5248–54.PubMedCrossRef
86.
Zurück zum Zitat Pujol JL, Breton JL, Gervais R, Tanguy ML, Quoix E, David P, et al. Phase III double-blind, placebo-controlled study of thalidomide in extensive-disease small-cell lung cancer after response to chemotherapy: an intergroup study FNCLCC cleo04 IFCT 00-01. J Clin Oncol. 2007;25(25):3945–51.PubMedCrossRef Pujol JL, Breton JL, Gervais R, Tanguy ML, Quoix E, David P, et al. Phase III double-blind, placebo-controlled study of thalidomide in extensive-disease small-cell lung cancer after response to chemotherapy: an intergroup study FNCLCC cleo04 IFCT 00-01. J Clin Oncol. 2007;25(25):3945–51.PubMedCrossRef
87.
Zurück zum Zitat Ott PA, Chang JL, Oratz R, Jones A, Farrell K, Muggia F, et al. Phase II trial of dacarbazine and thalidomide for the treatment of metastatic melanoma. Chemotherapy. 2009;55(4):221–7.PubMedCrossRef Ott PA, Chang JL, Oratz R, Jones A, Farrell K, Muggia F, et al. Phase II trial of dacarbazine and thalidomide for the treatment of metastatic melanoma. Chemotherapy. 2009;55(4):221–7.PubMedCrossRef
88.
Zurück zum Zitat Laber DA, Okeke RI, Arce-Lara C, Taft BS, Schonard CL, McMasters KM, et al. A phase II study of extended dose temozolomide and thalidomide in previously treated patients with metastatic melanoma. J Cancer Res Clin Oncol. 2006;132(9):611–6.PubMedCrossRef Laber DA, Okeke RI, Arce-Lara C, Taft BS, Schonard CL, McMasters KM, et al. A phase II study of extended dose temozolomide and thalidomide in previously treated patients with metastatic melanoma. J Cancer Res Clin Oncol. 2006;132(9):611–6.PubMedCrossRef
89.
Zurück zum Zitat Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371(10):906–17.PubMedCrossRef Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371(10):906–17.PubMedCrossRef
90.
Zurück zum Zitat Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.PubMedCrossRef Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.PubMedCrossRef
91.
Zurück zum Zitat Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol Oncol Clin North Am. 1999;13(6):1117–25.PubMedCrossRef Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol Oncol Clin North Am. 1999;13(6):1117–25.PubMedCrossRef
92.
Zurück zum Zitat Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood. 2001;97(5):1427–34.PubMedCrossRef Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood. 2001;97(5):1427–34.PubMedCrossRef
93.
Zurück zum Zitat Nie L, Lyros O, Medda R, Jovanovic N, Schmidt JL, Otterson MF, et al. Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1beta and TGF-beta2. Am J Physiol Cell Physiol. 2014;307(9):C859–77.PubMedPubMedCentralCrossRef Nie L, Lyros O, Medda R, Jovanovic N, Schmidt JL, Otterson MF, et al. Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1beta and TGF-beta2. Am J Physiol Cell Physiol. 2014;307(9):C859–77.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Singh JA, Hossain A, Tanjong Ghogomu E, Kotb A, Christensen R, Mudano AS, et al. Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2016;5:CD012183. Singh JA, Hossain A, Tanjong Ghogomu E, Kotb A, Christensen R, Mudano AS, et al. Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2016;5:CD012183.
95.
Zurück zum Zitat Agrawal A, Gartland A. P2X7 receptors: role in bone cell formation and function. J Mol Endocrinol. 2015;54(2):R75–88.PubMedCrossRef Agrawal A, Gartland A. P2X7 receptors: role in bone cell formation and function. J Mol Endocrinol. 2015;54(2):R75–88.PubMedCrossRef
96.
Zurück zum Zitat Roger S, Pelegrin P. P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs. 2011;20(7):875–80.PubMedCrossRef Roger S, Pelegrin P. P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs. 2011;20(7):875–80.PubMedCrossRef
97.
Zurück zum Zitat Lopez-Castejon G, Theaker J, Pelegrin P, Clifton AD, Braddock M, Surprenant A. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J Immunol. 2010;185(4):2611–9.PubMedCrossRef Lopez-Castejon G, Theaker J, Pelegrin P, Clifton AD, Braddock M, Surprenant A. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J Immunol. 2010;185(4):2611–9.PubMedCrossRef
98.
Zurück zum Zitat Gu BJ, Wiley JS. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood. 2006;107(12):4946–53.PubMedCrossRef Gu BJ, Wiley JS. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood. 2006;107(12):4946–53.PubMedCrossRef
99.
Zurück zum Zitat Hill LM, Gavala ML, Lenertz LY, Bertics PJ. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185(5):3028–34.PubMedCrossRef Hill LM, Gavala ML, Lenertz LY, Bertics PJ. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185(5):3028–34.PubMedCrossRef
100.
Zurück zum Zitat Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol. 2001;8(8):759–66.PubMedCrossRef Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol. 2001;8(8):759–66.PubMedCrossRef
102.
Zurück zum Zitat Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM. Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis. 2004;25(11):2191–9.PubMedCrossRef Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM. Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis. 2004;25(11):2191–9.PubMedCrossRef
103.
Zurück zum Zitat Gopal YN, Chanchorn E, Van Dyke MW. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther. 2009;8(3):552–62.PubMedCrossRef Gopal YN, Chanchorn E, Van Dyke MW. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther. 2009;8(3):552–62.PubMedCrossRef
104.
Zurück zum Zitat Sobota R, Szwed M, Kasza A, Bugno M, Kordula T. Parthenolide inhibits activation of signal transducers and activators of transcription (STATs) induced by cytokines of the IL-6 family. Biochem Biophys Res Commun. 2000;267(1):329–33.PubMedCrossRef Sobota R, Szwed M, Kasza A, Bugno M, Kordula T. Parthenolide inhibits activation of signal transducers and activators of transcription (STATs) induced by cytokines of the IL-6 family. Biochem Biophys Res Commun. 2000;267(1):329–33.PubMedCrossRef
105.
Zurück zum Zitat Curry EA 3rd, Murry DJ, Yoder C, Fife K, Armstrong V, Nakshatri H, et al. Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004;22(3):299–305.PubMedCrossRef Curry EA 3rd, Murry DJ, Yoder C, Fife K, Armstrong V, Nakshatri H, et al. Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004;22(3):299–305.PubMedCrossRef
106.
Zurück zum Zitat Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110(13):4427–35.PubMedPubMedCentralCrossRef Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110(13):4427–35.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Sur R, Martin K, Liebel F, Lyte P, Shapiro S, Southall M. Anti-inflammatory activity of parthenolide-depleted Feverfew (Tanacetum parthenium). Inflammopharmacology. 2009;17(1):42–9.PubMedCrossRef Sur R, Martin K, Liebel F, Lyte P, Shapiro S, Southall M. Anti-inflammatory activity of parthenolide-depleted Feverfew (Tanacetum parthenium). Inflammopharmacology. 2009;17(1):42–9.PubMedCrossRef
108.
Zurück zum Zitat Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360(23):2416–25.PubMedCrossRef Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360(23):2416–25.PubMedCrossRef
109.
Zurück zum Zitat Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef
110.
Zurück zum Zitat Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10(5):501–7.PubMedCrossRef Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10(5):501–7.PubMedCrossRef
111.
Zurück zum Zitat Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet (London, England). 2011;377(9759):31–41.CrossRef Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet (London, England). 2011;377(9759):31–41.CrossRef
112.
Zurück zum Zitat Chakravarti RN, Chakravarti D. Andrographolide, the active constituent of Andrographis paniculata Nees; a preliminary communication. Ind Med Gaz. 1951;86(3):96–7.PubMedPubMedCentral Chakravarti RN, Chakravarti D. Andrographolide, the active constituent of Andrographis paniculata Nees; a preliminary communication. Ind Med Gaz. 1951;86(3):96–7.PubMedPubMedCentral
113.
Zurück zum Zitat Bao Z, Guan S, Cheng C, Wu S, Wong SH, Kemeny DM, et al. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway. Am J Respir Crit Care Med. 2009;179(8):657–65.PubMedCrossRef Bao Z, Guan S, Cheng C, Wu S, Wong SH, Kemeny DM, et al. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway. Am J Respir Crit Care Med. 2009;179(8):657–65.PubMedCrossRef
114.
Zurück zum Zitat Shi MD, Lin HH, Lee YC, Chao JK, Lin RA, Chen JH. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact. 2008;174(3):201–10.PubMedCrossRef Shi MD, Lin HH, Lee YC, Chao JK, Lin RA, Chen JH. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact. 2008;174(3):201–10.PubMedCrossRef
115.
Zurück zum Zitat Chang J, Zhang RM, Zhang Y, Chen ZB, Zhang ZM, Xu Q, et al. Andrographolide drop-pill in treatment of acute upper respiratory tract infection with external wind-heat syndrome: a multicenter and randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2008;6(12):1238–45.PubMedCrossRef Chang J, Zhang RM, Zhang Y, Chen ZB, Zhang ZM, Xu Q, et al. Andrographolide drop-pill in treatment of acute upper respiratory tract infection with external wind-heat syndrome: a multicenter and randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2008;6(12):1238–45.PubMedCrossRef
116.
Zurück zum Zitat Gabrielian ES, Shukarian AK, Goukasova GI, Chandanian GL, Panossian AG, Wikman G, et al. A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine. 2002;9(7):589–97.PubMedCrossRef Gabrielian ES, Shukarian AK, Goukasova GI, Chandanian GL, Panossian AG, Wikman G, et al. A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine. 2002;9(7):589–97.PubMedCrossRef
117.
Zurück zum Zitat Riddle MC. Editorial: sulfonylureas differ in effects on ischemic preconditioning--is it time to retire glyburide? J Clin Endocrinol Metab. 2003;88(2):528–30.PubMedCrossRef Riddle MC. Editorial: sulfonylureas differ in effects on ischemic preconditioning--is it time to retire glyburide? J Clin Endocrinol Metab. 2003;88(2):528–30.PubMedCrossRef
118.
Zurück zum Zitat Serrano-Martin X, Payares G, Mendoza-Leon A. Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrobial agents and chemotherapy. 2006;50(12):4214–6.PubMedPubMedCentralCrossRef Serrano-Martin X, Payares G, Mendoza-Leon A. Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrobial agents and chemotherapy. 2006;50(12):4214–6.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Tamura K, Ishikawa G, Yoshie M, Ohneda W, Nakai A, Takeshita T, et al. Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1beta secretion in human trophoblasts. J Pharmacol Sci. 2017;135(2):89–95.PubMedCrossRef Tamura K, Ishikawa G, Yoshie M, Ohneda W, Nakai A, Takeshita T, et al. Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1beta secretion in human trophoblasts. J Pharmacol Sci. 2017;135(2):89–95.PubMedCrossRef
120.
Zurück zum Zitat Koh GC, Maude RR, Schreiber MF, Limmathurotsakul D, Wiersinga WJ, Wuthiekanun V, et al. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis. 2011;52(6):717–25.PubMedPubMedCentralCrossRef Koh GC, Maude RR, Schreiber MF, Limmathurotsakul D, Wiersinga WJ, Wuthiekanun V, et al. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis. 2011;52(6):717–25.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol. 2014;63(4):316–22.PubMedPubMedCentralCrossRef Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol. 2014;63(4):316–22.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small molecule inhibitior of the NLRP3 inflammasome is a potential therapeutic for inflammatory diseases. Nature Medicine. 2015;21(3):248.PubMedPubMedCentralCrossRef Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small molecule inhibitior of the NLRP3 inflammasome is a potential therapeutic for inflammatory diseases. Nature Medicine. 2015;21(3):248.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Coll RC, Robertson A, Butler M, Cooper M, O'Neill LA. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One. 2011;6(12):e29539.PubMedPubMedCentralCrossRef Coll RC, Robertson A, Butler M, Cooper M, O'Neill LA. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One. 2011;6(12):e29539.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, et al. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chema. 2003;278(19):16567–78.CrossRef Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, et al. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chema. 2003;278(19):16567–78.CrossRef
125.
Zurück zum Zitat Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep. 2018;8(1):8618.PubMedPubMedCentralCrossRef Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep. 2018;8(1):8618.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Randle JC, Harding MW, Ku G, Schönharting M, Kurrle R. ICE/Caspase-1 inhibitors as novel anti-inflammatory drugs. Expert Opin Investig Drugs. 2001;10(7):1207.PubMedCrossRef Randle JC, Harding MW, Ku G, Schönharting M, Kurrle R. ICE/Caspase-1 inhibitors as novel anti-inflammatory drugs. Expert Opin Investig Drugs. 2001;10(7):1207.PubMedCrossRef
127.
Zurück zum Zitat Ayala JM, Yamin TT, Egger LA, Chin J, Kostura MJ, Miller DK. IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol. 1994;153(6):2592.PubMed Ayala JM, Yamin TT, Egger LA, Chin J, Kostura MJ, Miller DK. IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol. 1994;153(6):2592.PubMed
128.
Zurück zum Zitat Kronheim SR, Mumma A, ., Greenstreet T, ., Glackin PJ, van Ness K , March CJ, et al. Purification of interleukin-1 beta \converting enzyme, the protease that cleaves the interleukin-1 beta precursor. Arch Biochem Biophys. 1992;296(2):698-703.PubMedCrossRef Kronheim SR, Mumma A, ., Greenstreet T, ., Glackin PJ, van Ness K , March CJ, et al. Purification of interleukin-1 beta \converting enzyme, the protease that cleaves the interleukin-1 beta precursor. Arch Biochem Biophys. 1992;296(2):698-703.PubMedCrossRef
129.
Zurück zum Zitat Rudolphi K, Gerwin N, Verzijl N, Kraan PVD, Berg WVD. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage. 2003;11(10):738–46.PubMedCrossRef Rudolphi K, Gerwin N, Verzijl N, Kraan PVD, Berg WVD. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage. 2003;11(10):738–46.PubMedCrossRef
130.
Zurück zum Zitat Florian L, Christian B, Nikola L, Kathrin S, Britta S, Hans Anton L, et al. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J Pharmacol Exp Ther. 2004;308(2):583–90. Florian L, Christian B, Nikola L, Kathrin S, Britta S, Hans Anton L, et al. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J Pharmacol Exp Ther. 2004;308(2):583–90.
131.
Zurück zum Zitat Bauer C, Loher F, Dauer M, Mayer C, Lehr HA, Schönharting M, et al. The ICE inhibitor pralnacasan prevents DSS-induced colitis in C57BL/6 mice and suppresses IP-10 mRNA but not TNF-α mRNA expression. Dig Dis Sci. 2007;52(7):1642–52.PubMedCrossRef Bauer C, Loher F, Dauer M, Mayer C, Lehr HA, Schönharting M, et al. The ICE inhibitor pralnacasan prevents DSS-induced colitis in C57BL/6 mice and suppresses IP-10 mRNA but not TNF-α mRNA expression. Dig Dis Sci. 2007;52(7):1642–52.PubMedCrossRef
132.
Zurück zum Zitat Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, et al. Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8(2):304–15.PubMedPubMedCentralCrossRef Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, et al. Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 2011;8(2):304–15.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noe F, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia. 2006;47(7):1160–8.PubMedCrossRef Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noe F, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia. 2006;47(7):1160–8.PubMedCrossRef
134.
Zurück zum Zitat Flores J, Noel A, Foveau B, Lynham J, Lecrux C, LeBlanc AC. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun. 2018;9(1):3916.PubMedPubMedCentralCrossRef Flores J, Noel A, Foveau B, Lynham J, Lecrux C, LeBlanc AC. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun. 2018;9(1):3916.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Yang XM, Downey JM, Cohen MV, Housley NA, Alvarez DF, Audia JP. The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor. J Cardiovasc Pharmacol Ther. 2017;22(6):574–8.PubMedPubMedCentralCrossRef Yang XM, Downey JM, Cohen MV, Housley NA, Alvarez DF, Audia JP. The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor. J Cardiovasc Pharmacol Ther. 2017;22(6):574–8.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O'Donnell K, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol. 2018;113(5):32.PubMedCrossRefPubMedCentral Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O'Donnell K, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol. 2018;113(5):32.PubMedCrossRefPubMedCentral
137.
Zurück zum Zitat Younus I, Reddy DS. A resurging boom in new drugs for epilepsy and brain disorders. Expert Rev Clin Pharmacol. 2018;11(1):27–45.PubMedCrossRef Younus I, Reddy DS. A resurging boom in new drugs for epilepsy and brain disorders. Expert Rev Clin Pharmacol. 2018;11(1):27–45.PubMedCrossRef
138.
Zurück zum Zitat Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272(29):17907–11.PubMedCrossRef Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272(29):17907–11.PubMedCrossRef
139.
Zurück zum Zitat Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, et al. Substrate specificities of caspase family proteases. The Journal of biological chemistry. 1997;272(15):9677–82.PubMedCrossRef Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, et al. Substrate specificities of caspase family proteases. The Journal of biological chemistry. 1997;272(15):9677–82.PubMedCrossRef
140.
Zurück zum Zitat Schlosser S, Gansauge F, Ramadani M, Beger HG, Gansauge S. Inhibition of caspase-1 induces cell death in pancreatic carcinoma cells and potentially modulates expression levels of bcl-2 family proteins. Febs Letters. 2001;491(1):104–8.PubMedCrossRef Schlosser S, Gansauge F, Ramadani M, Beger HG, Gansauge S. Inhibition of caspase-1 induces cell death in pancreatic carcinoma cells and potentially modulates expression levels of bcl-2 family proteins. Febs Letters. 2001;491(1):104–8.PubMedCrossRef
141.
Zurück zum Zitat Boost K, Hoegl S, Hofstetter C, Flondor M, Stegewerth K, Platacis I, Pfeilschifter J, et al. Targeting caspase-1 by inhalation-therapy: effects of Ac-YVAD-CHO on IL-1 beta, IL-18 and downstream proinflammatory parameters as detected in rat endotoxaemia. Intensive Care Med. 2007;33(5):863.PubMedCrossRef Boost K, Hoegl S, Hofstetter C, Flondor M, Stegewerth K, Platacis I, Pfeilschifter J, et al. Targeting caspase-1 by inhalation-therapy: effects of Ac-YVAD-CHO on IL-1 beta, IL-18 and downstream proinflammatory parameters as detected in rat endotoxaemia. Intensive Care Med. 2007;33(5):863.PubMedCrossRef
Metadaten
Titel
Inflammasome inhibitors: promising therapeutic approaches against cancer
verfasst von
Shengchao Xu
Xizhe Li
Yuanqi Liu
Yu Xia
Ruimin Chang
Chunfang Zhang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2019
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0755-0

Weitere Artikel der Ausgabe 1/2019

Journal of Hematology & Oncology 1/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.