Skip to main content
Erschienen in: Basic Research in Cardiology 6/2016

Open Access 01.11.2016 | Invited Editorial

Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation?

verfasst von: Friederike Cuello, Kristina Lorenz

Erschienen in: Basic Research in Cardiology | Ausgabe 6/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
This comment refers to the article available at: http://​dx.​doi.​org/​10.​1007/​s00395-016-0581-2.
During the past decade, calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as a central culprit in the development of cardiac arrhythmia and heart failure. This has been supported by a plethora of studies using transgenic mouse models and pharmacological CaMKII inhibitors and peptides. However, the final proof that CaMKII inhibition improves dysfunction of a failing heart is still pending. In this issue, Kreusser et al. [19] demonstrated that knockdown of the two key cardiac CaMKII isoforms after the onset of hemodynamic stress succeeds to reverse maladaptive cardiac remodeling processes. Their study is an important step in translating CaMKII inhibition from bench to bedside for heart failure therapy.
CaMKII is a multifunctional protein kinase that plays a pivotal role in cardiac (patho) physiology [27, 40]. It represents a nodal point in the regulation of intracellular Ca2+ handling, ion channels and gene transcription. As the description “multifunctional” and “nodal point” implies, this kinase is intertwined into a complex cellular signaling network and thus tricky to manipulate therapeutically: CaMKII activity is regulated by posttranslational modifications that allow maintenance of kinase activity independently of Ca2+/calmodulin-binding. Amongst those autophosphorylation [16, 26, 45], oxidation [2, 7, 13, 32, 45], O-linked N-acetylglucosamination [9] and S-nitrosylation [8, 12] have been described to date. CaMKII has various cellular targets in Ca2+ homeostasis some of which are the ryanodine receptor [26, 34, 39, 41], phospholamban [5, 18] and cardiac myosin-binding protein C [37]. Furthermore, CaMKII impacts on L-type Ca2+ channel (LTCC) currents and LTCC expression [40], on expression of the Na+/Ca2+ exchanger [10, 23] and the sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) [5, 23, 42] as well as on gene transcription via the regulation of calcineurin and class II histone deacetylase isoforms [3, 24]. CaMKII is ubiquitously expressed, with α and β as predominant isoforms in the brain, where they are important for neuronal function and cognitive memory. CaMKIIγ and δ are the key isoforms expressed in the heart. Particular attention has been paid to two CaMKIIδ splice variants in the heart, CaMKIIδB and CaMKIIδC. CaMKIIδB has an 11 amino acid nuclear localization sequence that is absent in CaMKIIδC. Studies performed in splice-variant-specific knockout mouse models have attributed a protective functional role to CaMKIIδB. Thus, cellular localization seems to participate in CaMKII isoform-specific pathophysiological roles [4, 5, 28, 44].
Despite of the physiological importance of CaMKII, for e.g,. excitation–contraction coupling, isoproterenol-induced heart rate adaptation, cognitive memory and neural plasticity functions, inhibition of CaMKII as a therapeutic strategy in different forms of cardiac disease increasingly solidifies. Cardiac expression and activity of CaMKII have been shown to be increased in cardiac disease and more importantly also augments the incidence of cardiac disease, particularly arrhythmia, atrial fibrillation and progressive cardiac remodeling [6, 15, 17, 21, 27, 29, 42, 43]. Proof-of-concept studies in mice and isolated human cardiac myocytes have successfully demonstrated the benefit of CaMKIIδ and CaMKIIγ inhibition in several pathological cardiac conditions. However, translation of these convincing preclinical “prevention” studies into therapeutic strategies or even a preclinical “therapy/rescue” study seems rather challenging.
Difficult hurdles that have to be envisaged to selectively target disease-specific kinase functions [22, 38] to ultimately achieve clinical translatability are the design of (1) appropriate cardiac-specific gene therapy approaches for the expression of inhibitory peptides, proteins or knockdown-vectors or (2) isoform-specific, orally administrable, non-CNS penetrating small compound inhibitors. The peptides and compounds that have been developed thus far have been shown to exert off-target effects, which include the inhibition of potassium channels (KN-93; [14]), blockade of anchoring proteins and substrates (CaMKIIN and CaMKIINtides; [25, 30]) and in case of ATP-competitive compounds the inhibition of other kinases (SMP-114; [30]), or they are orally not bioavailable [30].
Pharmacological CaMKII inhibitors as well as the transgenic mouse models have been extremely valuable for dissecting the functional roles of CaMKII in cells and in vivo, but they remain experimental tools (reviewed in [29, 30, 42]). And, the question, whether CaMKII inhibition—in an ideal “off-target free” setting—has the potential to ameliorate cardiac remodeling and cardiac function after the onset of heart failure, is still unanswered. With the tools available, this question was not yet appropriately addressable. Kreusser et al. [19] have now developed genetic mouse models with inducible CaMKIIδ and γ knockdown to address exactly this issue: “Is CaMKII inhibition able and sufficient to rescue a failing heart?” And the answer from this mouse study is “Yes”! This is the first time that CaMKII inhibition has been tested in a “therapy/rescue” situation.
In their study, the authors use mouse models that are based on a cardiac-specific conditional knockdown of CaMKIIδ and γ by tamoxifen or by Cre-recombinase overexpression via adeno-associated viral vectors. In both approaches, the development of interstitial fibrosis and contractile defects in response to chronic left ventricular pressure overload (induced by transverse aortic constriction) was decelerated and even slightly reversed. This study shows convincingly that inhibition of cardiac CaMKII expression is a promising goal for the improvement of chronic heart failure therapy. Thus, the effort has to be taken and to be enforced to realistically name CaMKII a clinically relevant target.
However, it will still be a long and arduous way to implement clinical CaMKII inhibition for heart failure therapy. Due to the high homology between existing CaMKII isoforms and their physiological roles, CaMKII targeting strategies have to take cardiac and isoform specificity into account. In this context, the establishment of a gene therapy approach seems “easier” than the development of pharmacological inhibitors. Also, gene therapy studies in large animals or even patients have already been tested for S100A1, SERCA2a and adenylyl cyclase 6 [1, 11, 20, 31, 33, 35, 36]. SERCA2a gene therapy has already reached clinical phase IIb studies, but then failed due to insufficient delivery of viral particles to the heart. Nevertheless, these studies delivered proof of the general concept, and have at the same time revealed the difficulties that still need to be overcome. For the development of small pharmacological compounds, even more challenges have to be faced: As mentioned before, the CaMKII family comprises highly homologous isoforms and splice variants, which makes selective pharmacological targeting of a specific isoform or splice variant rather impossible. At this point, the manipulation of certain downstream targets of CaMKII comes into play. Thus far, however, it is not clear, which of the targets has the major impact on cardiac disease progression or if there are even targets of different importance in different cardiac diseases. It will be a major effort to dissect the impact of the CaMKII-mediated molecular effects in different disease scenarios to really be able to predict the therapeutic benefit of target specific CaMKII inhibition. To promote the design of an appropriate pharmacological compound, we will certainly have to disentangle physiological from the pathological CaMKII functions. With their study Kreusser et al. [19] have clearly demonstrated that CaMKII inhibition is the right avenue to tread for significant benefit in heart failure therapy in the future.

Acknowledgments

This work was supported by the German Ministry of Research and Education (German Centre for Cardiovascular Research, F.C.; Comprehensive Heart Failure Center Würzburg, K.L.), the Deutsche Forschungsgemeinschaft (CU 53/2-1 to F.C.; Sonderforschungsbereich SFB688, TPA17 to K.L.), the Werner-Otto-Stiftung (F.C.), and by the Ministry for Innovation, Science and Research of the Federal State of North Rhine-Westphalia (K.L.).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Aguero J, Ishikawa K, Hadri L, Santos-Gallego CG, Fish KM, Kohlbrenner E, Hammoudi N, Kho C, Lee A, Ibáñez B, García-Alvarez A, Zsebo K, Maron BA, Plataki M, Fuster V, Leopold JA, Hajjar RJ (2016) Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension. JACC 67:2032–2046. doi:10.1016/j.jacc.2016.02.049 CrossRefPubMed Aguero J, Ishikawa K, Hadri L, Santos-Gallego CG, Fish KM, Kohlbrenner E, Hammoudi N, Kho C, Lee A, Ibáñez B, García-Alvarez A, Zsebo K, Maron BA, Plataki M, Fuster V, Leopold JA, Hajjar RJ (2016) Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension. JACC 67:2032–2046. doi:10.​1016/​j.​jacc.​2016.​02.​049 CrossRefPubMed
4.
Zurück zum Zitat Bell JR, Raaijmakers AJA, Curl CL, Reichelt ME, Harding TW, Bei A, Ng DCH, Erickson JR, Petroff MV, Harrap SB, Delbridge LMD (2015) Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfused heart. Int J Cardiol 181:288–296. doi:10.1016/j.ijcard.2014.11.159 CrossRefPubMed Bell JR, Raaijmakers AJA, Curl CL, Reichelt ME, Harding TW, Bei A, Ng DCH, Erickson JR, Petroff MV, Harrap SB, Delbridge LMD (2015) Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfused heart. Int J Cardiol 181:288–296. doi:10.​1016/​j.​ijcard.​2014.​11.​159 CrossRefPubMed
5.
Zurück zum Zitat Chu G, Kranias EG (2002) Functional interplay between dual site phospholambam phosphorylation: insights from genetically altered mouse models. Basic Res Cardiol 97(Suppl 1):I43–I48PubMed Chu G, Kranias EG (2002) Functional interplay between dual site phospholambam phosphorylation: insights from genetically altered mouse models. Basic Res Cardiol 97(Suppl 1):I43–I48PubMed
7.
Zurück zum Zitat Erickson JR, Joiner M-LA, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham A-JL, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474. doi:10.1016/j.cell.2008.02.048 CrossRefPubMedPubMedCentral Erickson JR, Joiner M-LA, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham A-JL, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474. doi:10.​1016/​j.​cell.​2008.​02.​048 CrossRefPubMedPubMedCentral
9.
11.
Zurück zum Zitat Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure. JACC Heart Fail 2:84–92. doi:10.1016/j.jchf.2013.09.008 CrossRefPubMed Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA, Rudy JJ, Wagner K, Hajjar RJ (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure. JACC Heart Fail 2:84–92. doi:10.​1016/​j.​jchf.​2013.​09.​008 CrossRefPubMed
12.
13.
Zurück zum Zitat He BJ, Joiner M-LA, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618. doi:10.1038/nm.2506 CrossRefPubMedPubMedCentral He BJ, Joiner M-LA, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618. doi:10.​1038/​nm.​2506 CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Heijman J, Dobrev D (2015) Irregular rhythm and atrial metabolism are key for the evolution of proarrhythmic atrial remodeling in atrial fibrillation. Basic Res Cardiol 110:1–5. doi:10.1007/s00395-015-0498-1 CrossRef Heijman J, Dobrev D (2015) Irregular rhythm and atrial metabolism are key for the evolution of proarrhythmic atrial remodeling in atrial fibrillation. Basic Res Cardiol 110:1–5. doi:10.​1007/​s00395-015-0498-1 CrossRef
18.
Zurück zum Zitat Iwasa T, Inoue N, Miyamoto E (1985) Identification of a calmodulin-dependent protein kinase in the cardiac cytosol, which phosphorylates phospholamban in the sarcoplasmic reticulum. J Biochem 98(2):577–580PubMed Iwasa T, Inoue N, Miyamoto E (1985) Identification of a calmodulin-dependent protein kinase in the cardiac cytosol, which phosphorylates phospholamban in the sarcoplasmic reticulum. J Biochem 98(2):577–580PubMed
19.
Zurück zum Zitat Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, Gröne H-J, Müller OJ, Katus HA, Backs J (2016) Inducible cardiomyocyte-specific deletion of CaM Kinase II protects from pressure-overload-induced heart failure. Basic Res Cardiol. doi:10.1007/s00395-016-0581-2 PubMed Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, Gröne H-J, Müller OJ, Katus HA, Backs J (2016) Inducible cardiomyocyte-specific deletion of CaM Kinase II protects from pressure-overload-induced heart failure. Basic Res Cardiol. doi:10.​1007/​s00395-016-0581-2 PubMed
21.
Zurück zum Zitat Lenski M, Schleider G, Kohlhaas M, Adrian L, Adam O, Tian Q, Kaestner L, Lipp P, Lehrke M, Maack C, Böhm M, Laufs U (2015) Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol 110:1–19. doi:10.1007/s00395-015-0497-2 CrossRef Lenski M, Schleider G, Kohlhaas M, Adrian L, Adam O, Tian Q, Kaestner L, Lipp P, Lehrke M, Maack C, Böhm M, Laufs U (2015) Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol 110:1–19. doi:10.​1007/​s00395-015-0497-2 CrossRef
25.
Zurück zum Zitat Magupalli VG, Mochida S, Yan J, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels. J Biol Chem 288:4637–4648. doi:10.1074/jbc.M112.369058 CrossRefPubMed Magupalli VG, Mochida S, Yan J, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels. J Biol Chem 288:4637–4648. doi:10.​1074/​jbc.​M112.​369058 CrossRefPubMed
32.
Zurück zum Zitat Purohit A, Purohit A, Rokita AG, Rokita AG, Guan X, Guan X, Chen B, Chen B, Koval OM, Koval OM, Voigt N, Voigt N, Neef S, Neef S, Sowa T, Sowa T, Gao Z, Gao Z, Luczak ED, Luczak ED, Stefansdottir H, Stefansdottir H, Behunin AC, Behunin AC, Li N, Li N, El-Accaoui RN, El-Accaoui RN, Yang B, Yang B, Swaminathan PD, Swaminathan PD, Weiss RM, Weiss RM, Wehrens XHT, Wehrens XHT, Song L-S, Song LS, Dobrev D, Dobrev D, Maier LS, Maier LS, Anderson ME, Anderson ME (2013) Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 128:1748–1757. doi:10.1161/CIRCULATIONAHA.113.003313 CrossRefPubMed Purohit A, Purohit A, Rokita AG, Rokita AG, Guan X, Guan X, Chen B, Chen B, Koval OM, Koval OM, Voigt N, Voigt N, Neef S, Neef S, Sowa T, Sowa T, Gao Z, Gao Z, Luczak ED, Luczak ED, Stefansdottir H, Stefansdottir H, Behunin AC, Behunin AC, Li N, Li N, El-Accaoui RN, El-Accaoui RN, Yang B, Yang B, Swaminathan PD, Swaminathan PD, Weiss RM, Weiss RM, Wehrens XHT, Wehrens XHT, Song L-S, Song LS, Dobrev D, Dobrev D, Maier LS, Maier LS, Anderson ME, Anderson ME (2013) Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 128:1748–1757. doi:10.​1161/​CIRCULATIONAHA.​113.​003313 CrossRefPubMed
34.
Zurück zum Zitat Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600. doi:10.1074/jbc.C301180200 CrossRefPubMed Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600. doi:10.​1074/​jbc.​C301180200 CrossRefPubMed
35.
Zurück zum Zitat Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K, Most P (2015) Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1’s triple action in cardiovascular pathophysiology. Future Cardiology 11:309–321. doi:10.2217/fca.15.18 CrossRefPubMed Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K, Most P (2015) Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1’s triple action in cardiovascular pathophysiology. Future Cardiology 11:309–321. doi:10.​2217/​fca.​15.​18 CrossRefPubMed
37.
Zurück zum Zitat Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J (2011) A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res 109:141–150. doi:10.1161/CIRCRESAHA.111.242560 CrossRefPubMedPubMedCentral Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J (2011) A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res 109:141–150. doi:10.​1161/​CIRCRESAHA.​111.​242560 CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Schmid E, Neef S, Berlin C, Tomasovic A, Kahlert K, Nordbeck P, Deiss K, Denzinger S, Herrmann S, Wettwer E, Weidendorfer M, Becker D, Schäfer F, Wagner N, Süleymann E, Schmitt JP, Katus HA, Weidemann F, Ravens U, Maack C, Hein L, Ertl G, Müller OJ, Maier LS, Lohse MJ, Lorenz K (2015) Cardiac RKIP induces a beneficial β-adrenoceptor-dependent positive inotropy. Nat Med. doi:10.1038/nm.3972 PubMedCentral Schmid E, Neef S, Berlin C, Tomasovic A, Kahlert K, Nordbeck P, Deiss K, Denzinger S, Herrmann S, Wettwer E, Weidendorfer M, Becker D, Schäfer F, Wagner N, Süleymann E, Schmitt JP, Katus HA, Weidemann F, Ravens U, Maack C, Hein L, Ertl G, Müller OJ, Maier LS, Lohse MJ, Lorenz K (2015) Cardiac RKIP induces a beneficial β-adrenoceptor-dependent positive inotropy. Nat Med. doi:10.​1038/​nm.​3972 PubMedCentral
39.
Zurück zum Zitat Uchinoumi H, Yang Y, Oda T, Li N, Alsina KM, Puglisi JL, Chen-Izu Y, Cornea RL, Wehrens XHT, Bers DM (2016) CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol 98:62–72. doi:10.1016/j.yjmcc.2016.06.007 CrossRefPubMed Uchinoumi H, Yang Y, Oda T, Li N, Alsina KM, Puglisi JL, Chen-Izu Y, Cornea RL, Wehrens XHT, Bers DM (2016) CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol 98:62–72. doi:10.​1016/​j.​yjmcc.​2016.​06.​007 CrossRefPubMed
40.
Zurück zum Zitat Wang W-Y, Hao L-Y, Minobe E, Saud ZA, Han D-Y, Kameyama M (2009) CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca2+ channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 59:283–290. doi:10.1007/s12576-009-0033-y CrossRefPubMed Wang W-Y, Hao L-Y, Minobe E, Saud ZA, Han D-Y, Kameyama M (2009) CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca2+ channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 59:283–290. doi:10.​1007/​s12576-009-0033-y CrossRefPubMed
45.
Zurück zum Zitat Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao C-M, Xiao R-P (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182. doi:10.1038/nm.4017 CrossRefPubMed Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao C-M, Xiao R-P (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182. doi:10.​1038/​nm.​4017 CrossRefPubMed
Metadaten
Titel
Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation?
verfasst von
Friederike Cuello
Kristina Lorenz
Publikationsdatum
01.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Basic Research in Cardiology / Ausgabe 6/2016
Print ISSN: 0300-8428
Elektronische ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-016-0582-1

Weitere Artikel der Ausgabe 6/2016

Basic Research in Cardiology 6/2016 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.