Skip to main content
Erschienen in: Clinical and Translational Oncology 11/2017

21.07.2017 | Research Article

Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells

verfasst von: J. Zhang, L. Hou, D. Zhao, M. Pan, Z. Wang, H. Hu, J. He

Erschienen in: Clinical and Translational Oncology | Ausgabe 11/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To explore the inhibitory effect and mechanism of MSCs on melanoma proliferation.

Methods

The inhibitory effect of MSCs on melanoma A375 cells was detected by co-culture and conditioned medium (CM) experiments using MTT method. The cell cycle was analyzed by flow cytometry. Then, Western Blot experiment detected the expression of proteins related to NF-κB signaling in A375 cells. The expression of IL-1Ra in MSCs was proved by RT-PCR. The over-expression and silencing vector pcDNA3.1-EGFP-IL-1Ra and pGPH1-IL-1R were constructed and transfected into MSCs cells. After that, the changes of inhibitory effect and cell cycle from MSCs-S and MSCs-O CM on A375 cells were explored. The expression of proteins related to NF-κB signaling in A375 cells after MSCs-S or MSCs-O CM treatment was detected by Western Blot. MSCs, MSCs-S, or MSCs-O and A375 cells were co-injected into nude mice under the arms, the growth of tumor was observed, the frozen sections were made, and H&E staining of tumor tissue was performed.

Results

The proliferation of A375 cells was inhibited and the cell cycle of A375 was arrested by MSCs. The expressions of cytokines related to NF-κB signaling were down-regulated. Over-expression and silence of Interleukin 1 receptor antagonist (IL-1Ra), specifically blocking activation of NF-κB signaling, indicated that inhibitory effect from MSCs was enhanced or weakened respectively, which suggested that IL-1Ra was involved in the inhibitory effect. In vivo, tumor initiation and growth were significantly inhibited when A375 cells were co-injected with MSCs into nude mice, which were related to the expression level of IL-1Ra.

Conclusion

MSCs could inhibit the proliferation and tumor initiation of melanoma A375 cells through NF-κB signaling. MSCs could secret IL-1Ra and inhibit expressions of NF-κB signaling-related factors of tumor cells, and cause cell cycle arrest in G1 phase.
Literatur
1.
Zurück zum Zitat Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefPubMed Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.CrossRefPubMed
2.
Zurück zum Zitat Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32(29):6995–7005.CrossRefPubMed Hung CN, Mar K, Chang HC, Chiang YL, Hu HY, Lai CC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials. 2011;32(29):6995–7005.CrossRefPubMed
3.
Zurück zum Zitat Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.CrossRefPubMed Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10.CrossRefPubMed
4.
Zurück zum Zitat Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.CrossRefPubMed Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.CrossRefPubMed
5.
Zurück zum Zitat Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.CrossRefPubMed Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.CrossRefPubMed
6.
Zurück zum Zitat Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.CrossRefPubMed Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307(11):1169–77.CrossRefPubMed
7.
8.
Zurück zum Zitat Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.CrossRefPubMed Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.CrossRefPubMed
9.
Zurück zum Zitat Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef
10.
Zurück zum Zitat Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015;6(1):1–11.CrossRef Zhang L, Su XS, Ye JS, Wang YY, Guan Z, Yin YF. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015;6(1):1–11.CrossRef
11.
Zurück zum Zitat Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.CrossRefPubMedPubMedCentral Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8(4):e62844.CrossRefPubMedPubMedCentral Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8(4):e62844.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin. 2008;29(3):333–40.CrossRefPubMed Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin. 2008;29(3):333–40.CrossRefPubMed
14.
Zurück zum Zitat Lynn V, Rudi B. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol. 2014;92(4):519–29.CrossRef Lynn V, Rudi B. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol. 2014;92(4):519–29.CrossRef
15.
Zurück zum Zitat DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.CrossRefPubMed DiDonato JA, Mercurio F, Karin M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.CrossRefPubMed
16.
17.
Zurück zum Zitat Bernard WS, Christopher PW. World cancer report 2014. France: International Agency for Research on Cancer; 2014. ISBN 978-92-832-0432-9. Bernard WS, Christopher PW. World cancer report 2014. France: International Agency for Research on Cancer; 2014. ISBN 978-92-832-0432-9.
18.
Zurück zum Zitat Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2013;467(7315):596–9.CrossRef Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2013;467(7315):596–9.CrossRef
19.
Zurück zum Zitat Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMed Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMed
20.
Zurück zum Zitat Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–9.PubMed Seckinger P, Lowenthal JW, Williamson K, Dayer JM, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–9.PubMed
21.
Zurück zum Zitat Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun. 1991;178(3):913–20.CrossRefPubMed Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun. 1991;178(3):913–20.CrossRefPubMed
22.
Zurück zum Zitat Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.CrossRefPubMed Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.CrossRefPubMed
23.
Zurück zum Zitat Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia. Glia. 2006;53(5):551–6.CrossRefPubMed Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia. Glia. 2006;53(5):551–6.CrossRefPubMed
24.
Zurück zum Zitat Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11(1):43–50.PubMed Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11(1):43–50.PubMed
25.
Zurück zum Zitat Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 2003;63(18):597–661. Weinreich DM, Elaraj DM, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 2003;63(18):597–661.
26.
Zurück zum Zitat Helena KS. Proteomic techniques for characterization of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.CrossRef Helena KS. Proteomic techniques for characterization of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.CrossRef
27.
Zurück zum Zitat Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J Immunol. 2003;171(7):3426–34.CrossRefPubMed Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J Immunol. 2003;171(7):3426–34.CrossRefPubMed
28.
Zurück zum Zitat Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Co-transplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following non-myeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.CrossRefPubMed Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Co-transplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following non-myeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.CrossRefPubMed
29.
Zurück zum Zitat Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54.CrossRefPubMed Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54.CrossRefPubMed
30.
Zurück zum Zitat Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15(1):237.CrossRefPubMedPubMedCentral Niess H, von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, et al. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer. 2015;15(1):237.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101(12):2554–60.CrossRefPubMed Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101(12):2554–60.CrossRefPubMed
32.
Zurück zum Zitat Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007;254(2):255–64.CrossRefPubMed Sasser AK, Mundy BL, Smith KM, Studebaker AW, Axel AE, Haidet AM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett. 2007;254(2):255–64.CrossRefPubMed
33.
Zurück zum Zitat Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.PubMedPubMedCentral Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7–8):579–87.PubMedPubMedCentral
34.
Zurück zum Zitat Santamaria-Martiínez A, Barguinero J, Barbosa-Desongles A, Hurtado A, Pinós T, Seoane J, et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res. 2009;315(7):3004–13.CrossRef Santamaria-Martiínez A, Barguinero J, Barbosa-Desongles A, Hurtado A, Pinós T, Seoane J, et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res. 2009;315(7):3004–13.CrossRef
35.
Zurück zum Zitat Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.CrossRefPubMedPubMedCentral Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Tyciakova S, Matuskova M, Bohovic R, Kucerova L. Mesenchymal stromal cells producing TNFα lack inhibitory effect against A375 experimental lung metastases. Neoplasma. 2017;64(2):222–7.CrossRefPubMed Tyciakova S, Matuskova M, Bohovic R, Kucerova L. Mesenchymal stromal cells producing TNFα lack inhibitory effect against A375 experimental lung metastases. Neoplasma. 2017;64(2):222–7.CrossRefPubMed
37.
Zurück zum Zitat Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 2014;25(3):303–14.CrossRefPubMed Wang J, Ma D, Li Y, Yang Y, Hu X, Zhang W, et al. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles. Anticancer Drugs. 2014;25(3):303–14.CrossRefPubMed
38.
Zurück zum Zitat Keishi O, Shonit D, Sandra DH, Sadiga KQ, Sunita B, Jahar B. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.CrossRef Keishi O, Shonit D, Sandra DH, Sadiga KQ, Sunita B, Jahar B. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.CrossRef
39.
Zurück zum Zitat Lacerda L, Debeb BG, Smith D, Larson R, Solley T, Xu W, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015;17(1):42.CrossRefPubMedPubMedCentral Lacerda L, Debeb BG, Smith D, Larson R, Solley T, Xu W, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015;17(1):42.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent anti-tumorigenic effects in model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.CrossRefPubMedPubMedCentral Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent anti-tumorigenic effects in model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226(7):186–7. Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226(7):186–7.
42.
Zurück zum Zitat Gavriele M, Claudio DU, Giusy G, Giuseppe P, Paolo AA. NF-κB as potential target in the treatment of melanoma. J Transl Med. 2012;10:53.CrossRef Gavriele M, Claudio DU, Giusy G, Giuseppe P, Paolo AA. NF-κB as potential target in the treatment of melanoma. J Transl Med. 2012;10:53.CrossRef
43.
Zurück zum Zitat Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol. 2004;22(4):617–23.CrossRefPubMed Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, et al. NF-kappa B in the vascular progression of melanoma. J Clin Oncol. 2004;22(4):617–23.CrossRefPubMed
44.
Zurück zum Zitat Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappa B function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19(4):2690–8.CrossRefPubMedPubMedCentral Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappa B function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19(4):2690–8.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.CrossRefPubMedPubMedCentral Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Bruserud O, Aasen I, Akselsen PE, Bergheim J, Rasmussen G, Nesthus I. Interleukin 1 receptor antagonist (IL-1Ra) in acute leukaemia: IL-1Ra is both secreted spontaneously by myelogenous leukemia blasts and is a part of the acute phase reaction in patients with chemotherapy-induced leucopenia. Eur J Haematol. 1996;57(1):87–95.CrossRefPubMed Bruserud O, Aasen I, Akselsen PE, Bergheim J, Rasmussen G, Nesthus I. Interleukin 1 receptor antagonist (IL-1Ra) in acute leukaemia: IL-1Ra is both secreted spontaneously by myelogenous leukemia blasts and is a part of the acute phase reaction in patients with chemotherapy-induced leucopenia. Eur J Haematol. 1996;57(1):87–95.CrossRefPubMed
47.
Zurück zum Zitat Gherardi RK, Bélec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of pro-inflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMed Gherardi RK, Bélec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of pro-inflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMed
48.
Zurück zum Zitat Iwagaki H, Hizuta A, Tanaka N. Inteleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.CrossRefPubMed Iwagaki H, Hizuta A, Tanaka N. Inteleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.CrossRefPubMed
49.
Zurück zum Zitat Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1966–72.CrossRef Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomark Prev. 2007;16(10):1966–72.CrossRef
50.
Zurück zum Zitat Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14(3):257–65.CrossRefPubMedPubMedCentral Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14(3):257–65.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.CrossRefPubMed Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.CrossRefPubMed
Metadaten
Titel
Inhibitory effect and mechanism of mesenchymal stem cells on melanoma cells
verfasst von
J. Zhang
L. Hou
D. Zhao
M. Pan
Z. Wang
H. Hu
J. He
Publikationsdatum
21.07.2017
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 11/2017
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-017-1677-3

Weitere Artikel der Ausgabe 11/2017

Clinical and Translational Oncology 11/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.