Skip to main content
Erschienen in: Drugs 5/2010

01.03.2010 | Leading Article

Intravenous Immunoglobulins as a Treatment for Alzheimer’s Disease

Rationale and Current Evidence

verfasst von: Prof. Dr Richard Dodel, Frauke Neff, Carmen Noelker, Refik Pul, Yansheng Du, Michael Bacher, Wolfgang Oertel

Erschienen in: Drugs | Ausgabe 5/2010

Einloggen, um Zugang zu erhalten

Abstract

Current treatment options for Alzheimer’s disease (AD) exert only a shortlived effect on disease symptoms. Active and passive immunotherapy have both been shown to be effective in clearing plaques, removing β-amyloid (Aβ) and improving behaviour in animal models of AD. Although the first active immunization trial in humans was discontinued because of severe adverse effects, several new approaches are currently being investigated in clinical trials. Recently, commercially available intravenous immunoglobulins (IVIG) have been used in small pilot trials for the treatment of patients with AD, based on the hypothesis that IVIG contains naturally occurring auto-antibodies (nAbs-Aβ) that specifically recognize and block the toxic effects of Ab. Furthermore, these nAbs-Aβ are reduced in AD patients compared with healthy controls, supporting the notion of replacement with IVIG. Beyond the occurrence of nAbs-Aβ, evidence for several other mechanisms associated with IVIG in AD has been reported in preclinical experiments and clinical studies. In 2009, a phase III clinical trial involving more than 360 AD patients was initiated and may provide conclusive evidence for the effect of IVIG as a treatment option for AD in 2011. In this article, we review the current knowledge and scientific rationale for using IVIG in patients with AD and other neurodegenerative disorders.
Literatur
1.
Zurück zum Zitat Stangel M, Pul R. Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol 2006; 253 Suppl. 5: V18–24PubMedCrossRef Stangel M, Pul R. Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol 2006; 253 Suppl. 5: V18–24PubMedCrossRef
2.
Zurück zum Zitat Gold R, Stangel M, Dalakas MC. Drug Insight: the use of intravenous immunoglobulin in neurology-therapeutic considerations and practical issues. Nat Clin Pract Neurol 2007; 3(1): 36–44PubMedCrossRef Gold R, Stangel M, Dalakas MC. Drug Insight: the use of intravenous immunoglobulin in neurology-therapeutic considerations and practical issues. Nat Clin Pract Neurol 2007; 3(1): 36–44PubMedCrossRef
3.
Zurück zum Zitat Elovaara I, Apostolski S, van Doorn P, et al. EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases: EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases. Eur J Neurol 2008; 15(9): 893–908PubMedCrossRef Elovaara I, Apostolski S, van Doorn P, et al. EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases: EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases. Eur J Neurol 2008; 15(9): 893–908PubMedCrossRef
4.
Zurück zum Zitat Neff F, Wei X, Nolker C, et al. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 2008; 7(6): 501–7PubMedCrossRef Neff F, Wei X, Nolker C, et al. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 2008; 7(6): 501–7PubMedCrossRef
5.
Zurück zum Zitat Mandelkow E, von Bergen M, Biernat J, et al. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 2007; 17(1): 83–90PubMedCrossRef Mandelkow E, von Bergen M, Biernat J, et al. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 2007; 17(1): 83–90PubMedCrossRef
6.
Zurück zum Zitat Hardy J. Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 2006; 3(1): 71–3PubMedCrossRef Hardy J. Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 2006; 3(1): 71–3PubMedCrossRef
7.
Zurück zum Zitat Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007; 69(16): 1622–34PubMedCrossRef Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007; 69(16): 1622–34PubMedCrossRef
8.
Zurück zum Zitat Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 2008; 31: 175–93PubMedCrossRef Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 2008; 31: 175–93PubMedCrossRef
9.
Zurück zum Zitat Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740): 173–7PubMedCrossRef Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740): 173–7PubMedCrossRef
10.
Zurück zum Zitat Morgan D, Diamond DM, Gottschall PE, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000; 408(6815): 982–5PubMedCrossRef Morgan D, Diamond DM, Gottschall PE, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000; 408(6815): 982–5PubMedCrossRef
11.
Zurück zum Zitat Roskam S, Neff F, Schwarting R, et al. APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neurosci Biobehav Rev 2010; 34(4): 487–99PubMedCrossRef Roskam S, Neff F, Schwarting R, et al. APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neurosci Biobehav Rev 2010; 34(4): 487–99PubMedCrossRef
12.
Zurück zum Zitat Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1): 94–101PubMedCrossRef Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1): 94–101PubMedCrossRef
13.
Zurück zum Zitat Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 2002; 3(10): 824–8PubMedCrossRef Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 2002; 3(10): 824–8PubMedCrossRef
14.
Zurück zum Zitat Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553–62PubMedCrossRef Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553–62PubMedCrossRef
15.
Zurück zum Zitat Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634): 216–23PubMedCrossRef Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634): 216–23PubMedCrossRef
16.
Zurück zum Zitat Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547–54PubMedCrossRef Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547–54PubMedCrossRef
17.
Zurück zum Zitat Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916–9PubMedCrossRef Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916–9PubMedCrossRef
18.
Zurück zum Zitat Das P, Howard V, Loosbrock N, et al. Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma-/-knock-out mice. J Neurosci 2003; 23(24): 8532–8PubMed Das P, Howard V, Loosbrock N, et al. Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma-/-knock-out mice. J Neurosci 2003; 23(24): 8532–8PubMed
19.
Zurück zum Zitat Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9(4): 448–52PubMedCrossRef Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9(4): 448–52PubMedCrossRef
20.
Zurück zum Zitat Bacskai BJ, Kajdasz ST, Christie RH, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 2001; 7(3): 369–72PubMedCrossRef Bacskai BJ, Kajdasz ST, Christie RH, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 2001; 7(3): 369–72PubMedCrossRef
21.
Zurück zum Zitat Taguchi H, Planque S, Nishiyama Y, et al. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 2008; 283(8): 4714–22PubMedCrossRef Taguchi H, Planque S, Nishiyama Y, et al. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 2008; 283(8): 4714–22PubMedCrossRef
22.
Zurück zum Zitat DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(15): 8850–5PubMedCrossRef DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(15): 8850–5PubMedCrossRef
23.
Zurück zum Zitat Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423–33PubMedCrossRef Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423–33PubMedCrossRef
24.
Zurück zum Zitat Solomon B. Antibody-mediated immunotherapy for Alzheimer’s disease. Curr Opin Investig Drugs 2007; 8(7): 519–24PubMed Solomon B. Antibody-mediated immunotherapy for Alzheimer’s disease. Curr Opin Investig Drugs 2007; 8(7): 519–24PubMed
25.
Zurück zum Zitat Morgan C, Colombres M, Nunez MT, et al. Structure and function of amyloid in Alzheimer’s disease. Prog Neuro-biol 2004; 74(6): 323–49CrossRef Morgan C, Colombres M, Nunez MT, et al. Structure and function of amyloid in Alzheimer’s disease. Prog Neuro-biol 2004; 74(6): 323–49CrossRef
26.
Zurück zum Zitat Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837–42PubMedCrossRef Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837–42PubMedCrossRef
27.
Zurück zum Zitat Sarsoza F, Saing T, Kayed R, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol 2009; 118(4): 505–17PubMedCrossRef Sarsoza F, Saing T, Kayed R, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol 2009; 118(4): 505–17PubMedCrossRef
28.
Zurück zum Zitat Moretto N, Bolchi A, Rivetti C, et al. Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 2007; 282(15): 11436–45PubMedCrossRef Moretto N, Bolchi A, Rivetti C, et al. Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 2007; 282(15): 11436–45PubMedCrossRef
29.
Zurück zum Zitat Petkova AT, Ishii Y, Balbach JJ, et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99(26): 16742–7PubMedCrossRef Petkova AT, Ishii Y, Balbach JJ, et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99(26): 16742–7PubMedCrossRef
30.
Zurück zum Zitat Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002; 298(5597): 1379PubMedCrossRef Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002; 298(5597): 1379PubMedCrossRef
31.
Zurück zum Zitat Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002; 5(5): 452–7PubMed Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002; 5(5): 452–7PubMed
32.
Zurück zum Zitat O'Nuallain B, Acero L, Williams AD, et al. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies. Biochemistry 2008; 47(47): 12254–6PubMedCrossRef O'Nuallain B, Acero L, Williams AD, et al. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies. Biochemistry 2008; 47(47): 12254–6PubMedCrossRef
33.
Zurück zum Zitat Mohajeri MH, Gaugler MN, Martinez J, et al. Assessment of the bioactivity of antibodies against beta-amyloid peptide in vitro and in vivo. Neurodegener Dis 2004; 1(4–5): 160–7PubMedCrossRef Mohajeri MH, Gaugler MN, Martinez J, et al. Assessment of the bioactivity of antibodies against beta-amyloid peptide in vitro and in vivo. Neurodegener Dis 2004; 1(4–5): 160–7PubMedCrossRef
34.
Zurück zum Zitat Wilcock DM, Rojiani A, Rosenthal A, et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 2004; 24(27): 6144–51PubMedCrossRef Wilcock DM, Rojiani A, Rosenthal A, et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 2004; 24(27): 6144–51PubMedCrossRef
35.
Zurück zum Zitat Kountouris D. Therapeutic effects of piracetam combined with intravenous immunoglobulin premature of Alzheimer type. J Neural Transm 2000; 107(5): 18 Kountouris D. Therapeutic effects of piracetam combined with intravenous immunoglobulin premature of Alzheimer type. J Neural Transm 2000; 107(5): 18
36.
Zurück zum Zitat Dodel R, Du Y, Depboylu C, et al. Intravenous Immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75: 1472–4PubMedCrossRef Dodel R, Du Y, Depboylu C, et al. Intravenous Immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75: 1472–4PubMedCrossRef
37.
Zurück zum Zitat Relkin NR, Szabo P, Adamiak B, et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009; 30(11): 1328–36CrossRef Relkin NR, Szabo P, Adamiak B, et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009; 30(11): 1328–36CrossRef
38.
Zurück zum Zitat Relkin N, Tsakanikas DI, Adamiak B, et al. A double blind, placebo-controlled, phase II clinical trial of intravenous immunoglobulin (IVIG) for treatment of Alzheimer’s disease [abstract]. Neurology 2008; 70(11): A393 Relkin N, Tsakanikas DI, Adamiak B, et al. A double blind, placebo-controlled, phase II clinical trial of intravenous immunoglobulin (IVIG) for treatment of Alzheimer’s disease [abstract]. Neurology 2008; 70(11): A393
39.
Zurück zum Zitat A phase 3 study evaluating safety and effectiveness of immune globulin intravenous (IGIV 10%) for the treatment of mild to moderate Alzheimer’s disease [Clinical-Trials.gov identifier NCT00818662]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Feb 10] A phase 3 study evaluating safety and effectiveness of immune globulin intravenous (IGIV 10%) for the treatment of mild to moderate Alzheimer’s disease [Clinical-Trials.gov identifier NCT00818662]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://​www.​clinicaltrials.​gov [Accessed 2010 Feb 10]
40.
Zurück zum Zitat Study of Octagam 10% on the treatment of mild to moderate Alzheimer’s patients [ClinicalTrials.gov identifier NCT00812565]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Feb 10] Study of Octagam 10% on the treatment of mild to moderate Alzheimer’s patients [ClinicalTrials.gov identifier NCT00812565]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://​www.​clinicaltrials.​gov [Accessed 2010 Feb 10]
41.
Zurück zum Zitat Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 2001; 57(5): 801–5PubMedCrossRef Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 2001; 57(5): 801–5PubMedCrossRef
42.
Zurück zum Zitat Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002; 52(2): 253–6PubMedCrossRef Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002; 52(2): 253–6PubMedCrossRef
43.
Zurück zum Zitat Weksler ME, Relkin N, Turkenich R, et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 2002; 37(7): 943–8PubMedCrossRef Weksler ME, Relkin N, Turkenich R, et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 2002; 37(7): 943–8PubMedCrossRef
44.
Zurück zum Zitat Shoenfeld Y, Gershwin ME, Meroni PL. Autoantibodies. Amsterdam: Elsevier, 2007 Shoenfeld Y, Gershwin ME, Meroni PL. Autoantibodies. Amsterdam: Elsevier, 2007
45.
Zurück zum Zitat Fillit H, Hess G, Hill J, et al. IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 2009; 73(3): 180–5PubMedCrossRef Fillit H, Hess G, Hill J, et al. IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 2009; 73(3): 180–5PubMedCrossRef
46.
Zurück zum Zitat Misra N, Bayry J, Ephrem A, et al. Intravenous immunoglobulin in neurological disorders: a mechanistic perspective. J Neurol 2005; 252 Suppl. 1: I1–6PubMedCrossRef Misra N, Bayry J, Ephrem A, et al. Intravenous immunoglobulin in neurological disorders: a mechanistic perspective. J Neurol 2005; 252 Suppl. 1: I1–6PubMedCrossRef
47.
Zurück zum Zitat Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol 2008; 255 Suppl. 3: 3–6PubMedCrossRef Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol 2008; 255 Suppl. 3: 3–6PubMedCrossRef
48.
Zurück zum Zitat Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345(10): 747–55PubMedCrossRef Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345(10): 747–55PubMedCrossRef
49.
Zurück zum Zitat Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26: 513–33PubMedCrossRef Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26: 513–33PubMedCrossRef
50.
Zurück zum Zitat Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8(1): 34–47PubMedCrossRef Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8(1): 34–47PubMedCrossRef
52.
Zurück zum Zitat Bruhns P, Samuelsson A, Pollard JW, et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 2003; 18(4): 573–81PubMedCrossRef Bruhns P, Samuelsson A, Pollard JW, et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 2003; 18(4): 573–81PubMedCrossRef
53.
Zurück zum Zitat Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001; 291(5503): 484–6PubMedCrossRef Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001; 291(5503): 484–6PubMedCrossRef
54.
Zurück zum Zitat Teeling JL, Jansen-Hendriks T, Kuijpers TW, et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 2001; 98(4): 1095–9PubMedCrossRef Teeling JL, Jansen-Hendriks T, Kuijpers TW, et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 2001; 98(4): 1095–9PubMedCrossRef
55.
Zurück zum Zitat Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 2006; 12(6): 688–92PubMedCrossRef Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 2006; 12(6): 688–92PubMedCrossRef
56.
Zurück zum Zitat Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol 2006; 135(1): 97–100PubMedCrossRef Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol 2006; 135(1): 97–100PubMedCrossRef
57.
Zurück zum Zitat Akilesh S, Petkova S, Sproule TJ, et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 2004; 113(9): 1328–33PubMed Akilesh S, Petkova S, Sproule TJ, et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 2004; 113(9): 1328–33PubMed
58.
Zurück zum Zitat Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313(5787): 670–3PubMedCrossRef Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313(5787): 670–3PubMedCrossRef
59.
Zurück zum Zitat Anthony RM, Wermeling F, Karlsson MC, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008; 105(50): 19571–8PubMedCrossRef Anthony RM, Wermeling F, Karlsson MC, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008; 105(50): 19571–8PubMedCrossRef
60.
Zurück zum Zitat Konrad S, Baumann U, Schmidt RE, et al. Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 2006; 134(3): 345–7PubMedCrossRef Konrad S, Baumann U, Schmidt RE, et al. Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 2006; 134(3): 345–7PubMedCrossRef
61.
Zurück zum Zitat Frank MM, Basta M, Fries LF. The effects of intravenous immune globulin on complement-dependent immune damage of cells and tissues. Clin Immunol Immunopathol 1992; 62 (1 Pt 2): S82–6PubMedCrossRef Frank MM, Basta M, Fries LF. The effects of intravenous immune globulin on complement-dependent immune damage of cells and tissues. Clin Immunol Immunopathol 1992; 62 (1 Pt 2): S82–6PubMedCrossRef
62.
Zurück zum Zitat Mollnes TE, Hogasen K, De Carolis C, et al. High-dose intravenous immunoglobulin treatment activates complement in vivo. Scand J Immunol 1998; 48(3): 312–7PubMedCrossRef Mollnes TE, Hogasen K, De Carolis C, et al. High-dose intravenous immunoglobulin treatment activates complement in vivo. Scand J Immunol 1998; 48(3): 312–7PubMedCrossRef
63.
Zurück zum Zitat Lutz HU, Stammler P, Jelezarova E, et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88(1): 184–93PubMed Lutz HU, Stammler P, Jelezarova E, et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88(1): 184–93PubMed
64.
Zurück zum Zitat Basta M, Van Goor F, Luccioli S, et al. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 2003; 9(4): 431–8PubMedCrossRef Basta M, Van Goor F, Luccioli S, et al. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 2003; 9(4): 431–8PubMedCrossRef
65.
Zurück zum Zitat Rissmann A, Pieper S, Adams I, et al. Increased blood plasma concentrations of TGF-beta1 and TGF-beta2 after treatment with intravenous immunoglobulins in childhood autoimmune diseases. Pediatr Allergy Immunol 2009; 20(3): 261–5PubMedCrossRef Rissmann A, Pieper S, Adams I, et al. Increased blood plasma concentrations of TGF-beta1 and TGF-beta2 after treatment with intravenous immunoglobulins in childhood autoimmune diseases. Pediatr Allergy Immunol 2009; 20(3): 261–5PubMedCrossRef
66.
Zurück zum Zitat Stangel M, Schumacher HC, Ruprecht K, et al. Immunoglobulins for intravenous use inhibit TNF alpha cytotoxicity in vitro. Immunol Invest 1997; 26(5-7): 569–78PubMedCrossRef Stangel M, Schumacher HC, Ruprecht K, et al. Immunoglobulins for intravenous use inhibit TNF alpha cytotoxicity in vitro. Immunol Invest 1997; 26(5-7): 569–78PubMedCrossRef
67.
Zurück zum Zitat Wu KH, Wu WM, Lu MY, et al. Inhibitory effect of pooled human immunoglobulin on cytokine production in peripheral blood mononuclear cells. Pediatr Allergy Immunol 2006; 17(1): 60–8PubMedCrossRef Wu KH, Wu WM, Lu MY, et al. Inhibitory effect of pooled human immunoglobulin on cytokine production in peripheral blood mononuclear cells. Pediatr Allergy Immunol 2006; 17(1): 60–8PubMedCrossRef
68.
Zurück zum Zitat Ghio M, Contini P, Negrini S, et al. sHLA-I contaminating molecules as novel mechanism of ex vivo/in vitro transcriptional and posttranscriptional modulation of transforming growth factor-beta in CD8+ T lymphocytes and neutrophils after intravenous immunoglobulin treatment. Transfusion. Epub 2009 Nov 9 Ghio M, Contini P, Negrini S, et al. sHLA-I contaminating molecules as novel mechanism of ex vivo/in vitro transcriptional and posttranscriptional modulation of transforming growth factor-beta in CD8+ T lymphocytes and neutrophils after intravenous immunoglobulin treatment. Transfusion. Epub 2009 Nov 9
69.
Zurück zum Zitat Kekow J, Reinhold D, Pap T, et al. Intravenous immunoglobulins and transforming growth factor beta. Lancet 1998; 351(9097): 184–5PubMedCrossRef Kekow J, Reinhold D, Pap T, et al. Intravenous immunoglobulins and transforming growth factor beta. Lancet 1998; 351(9097): 184–5PubMedCrossRef
70.
Zurück zum Zitat Park-Min KH, Serbina NV, Yang W, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 2007; 26(1): 67–78PubMedCrossRef Park-Min KH, Serbina NV, Yang W, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 2007; 26(1): 67–78PubMedCrossRef
71.
Zurück zum Zitat Gaskin F, Finley J, Fang Q, et al. Human antibodies reactive with beta-amyloid protein in Alzheimer’s disease. J Exp Med 1993; 177(4): 1181–6PubMedCrossRef Gaskin F, Finley J, Fang Q, et al. Human antibodies reactive with beta-amyloid protein in Alzheimer’s disease. J Exp Med 1993; 177(4): 1181–6PubMedCrossRef
72.
Zurück zum Zitat Gaskin F, Kingsley BS, Fu SM. Autoantibodies to neuro-fibrillary tangles and brain tissue in Alzheimer’s disease. Establishment of Epstein-Barr virus-transformed antibody-producing cell lines. J Exp Med 1987; 165(1): 245–50 Gaskin F, Kingsley BS, Fu SM. Autoantibodies to neuro-fibrillary tangles and brain tissue in Alzheimer’s disease. Establishment of Epstein-Barr virus-transformed antibody-producing cell lines. J Exp Med 1987; 165(1): 245–50
73.
Zurück zum Zitat Du Y, Wei X, Dodel R, et al. Human anti-beta-amyloid antibodies block beta-amyloid fibril formation and prevent beta-amyloid-induced neurotoxicity. Brain 2003; 126 (Pt 9): 1935–9PubMedCrossRef Du Y, Wei X, Dodel R, et al. Human anti-beta-amyloid antibodies block beta-amyloid fibril formation and prevent beta-amyloid-induced neurotoxicity. Brain 2003; 126 (Pt 9): 1935–9PubMedCrossRef
74.
Zurück zum Zitat Xu S, Gaskin F. Increased incidence of anti-beta-amyloid autoantibodies secreted by Epstein-Barr virus transformed B cell lines from patients with Alzheimer’s disease. Mech Ageing Dev 1997; 94(1–3): 213–22PubMedCrossRef Xu S, Gaskin F. Increased incidence of anti-beta-amyloid autoantibodies secreted by Epstein-Barr virus transformed B cell lines from patients with Alzheimer’s disease. Mech Ageing Dev 1997; 94(1–3): 213–22PubMedCrossRef
75.
Zurück zum Zitat Geylis V, Kourilov V, Meiner Z, et al. Human monoclonal antibodies against amyloid-beta from healthy adults. Neurobiol Aging 2005; 26(5): 597–606PubMedCrossRef Geylis V, Kourilov V, Meiner Z, et al. Human monoclonal antibodies against amyloid-beta from healthy adults. Neurobiol Aging 2005; 26(5): 597–606PubMedCrossRef
76.
Zurück zum Zitat Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006; 84(2): 434–43PubMedCrossRef Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006; 84(2): 434–43PubMedCrossRef
77.
Zurück zum Zitat Schaffer C, Blanché-Ganter E. Qualität polyvalenter Immunglobuline. Krankenhauspharmazie 1998; 19: 280–6 Schaffer C, Blanché-Ganter E. Qualität polyvalenter Immunglobuline. Krankenhauspharmazie 1998; 19: 280–6
78.
Zurück zum Zitat Pul R, Nguyen D, Schmitz U, et al. Comparison of intravenous immunoglobulin preparations on microglial function in vitro: more potent immunomodulatory capacity of an IgM/IgA-enriched preparation. Clin Neuropharmacol 2002; 25(5): 254–9PubMedCrossRef Pul R, Nguyen D, Schmitz U, et al. Comparison of intravenous immunoglobulin preparations on microglial function in vitro: more potent immunomodulatory capacity of an IgM/IgA-enriched preparation. Clin Neuropharmacol 2002; 25(5): 254–9PubMedCrossRef
79.
Zurück zum Zitat Kellner A, Matschke J, Bernreuther C, et al. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 2009; 65(1): 24–31PubMedCrossRef Kellner A, Matschke J, Bernreuther C, et al. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 2009; 65(1): 24–31PubMedCrossRef
80.
Zurück zum Zitat Tampellini D, Magrane J, Takahashi RH, et al. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 2007; 282(26): 18895–906PubMedCrossRef Tampellini D, Magrane J, Takahashi RH, et al. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 2007; 282(26): 18895–906PubMedCrossRef
81.
Zurück zum Zitat Moir RD, Tseitlin KA, Soscia S, et al. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer’s disease patients. J Biol Chem 2005; 280(17): 17458–63PubMedCrossRef Moir RD, Tseitlin KA, Soscia S, et al. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer’s disease patients. J Biol Chem 2005; 280(17): 17458–63PubMedCrossRef
82.
Zurück zum Zitat Song MS, Mook-Jung I, Lee HJ, et al. Serum anti-amyloid-beta antibodies and Alzheimer’s disease in elderly Korean patients. J Int Med Res 2007; 35(3): 301–6PubMed Song MS, Mook-Jung I, Lee HJ, et al. Serum anti-amyloid-beta antibodies and Alzheimer’s disease in elderly Korean patients. J Int Med Res 2007; 35(3): 301–6PubMed
83.
Zurück zum Zitat Sohn JH, So JO, Hong HJ, et al. Identification of auto-antibody against beta-amyloid peptide in the serum of elderly. Front Biosci 2009; 14: 3879–83PubMedCrossRef Sohn JH, So JO, Hong HJ, et al. Identification of auto-antibody against beta-amyloid peptide in the serum of elderly. Front Biosci 2009; 14: 3879–83PubMedCrossRef
84.
Zurück zum Zitat Jianping L, Zhibing Y, Wei Q, et al. Low avidity and level of serum anti-Abeta antibodies in Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20(3): 127–32PubMedCrossRef Jianping L, Zhibing Y, Wei Q, et al. Low avidity and level of serum anti-Abeta antibodies in Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20(3): 127–32PubMedCrossRef
85.
Zurück zum Zitat Brettschneider S, Morgenthaler NG, Teipel SJ, et al. Decreased serum amyloid beta(1–42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1–42) peptide. Biol Psychiatry 2005; 57(7): 813–6PubMedCrossRef Brettschneider S, Morgenthaler NG, Teipel SJ, et al. Decreased serum amyloid beta(1–42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1–42) peptide. Biol Psychiatry 2005; 57(7): 813–6PubMedCrossRef
86.
Zurück zum Zitat Hansson SF, Andreasson U, Wall M, et al. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis 2009; 16(2): 389–97PubMed Hansson SF, Andreasson U, Wall M, et al. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis 2009; 16(2): 389–97PubMed
87.
Zurück zum Zitat Nath A, Hall E, Tuzova M, et al. Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolec Med 2003; 3(1): 29–39CrossRef Nath A, Hall E, Tuzova M, et al. Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolec Med 2003; 3(1): 29–39CrossRef
88.
Zurück zum Zitat Gruden MA, Davudova TB, Malisauskas M, et al. Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement Geriatr Cogn Disord 2004; 18(2): 165–71PubMedCrossRef Gruden MA, Davudova TB, Malisauskas M, et al. Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement Geriatr Cogn Disord 2004; 18(2): 165–71PubMedCrossRef
89.
Zurück zum Zitat Mruthinti S, Buccafusco JJ, Hill WD, et al. Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging 2004; 25(8): 1023–32PubMedCrossRef Mruthinti S, Buccafusco JJ, Hill WD, et al. Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging 2004; 25(8): 1023–32PubMedCrossRef
90.
Zurück zum Zitat Hyman BT, Smith C, Buldyrev I, et al. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol 2001; 49(6): 808–10PubMedCrossRef Hyman BT, Smith C, Buldyrev I, et al. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol 2001; 49(6): 808–10PubMedCrossRef
91.
Zurück zum Zitat Baril L, Nicolas L, Croisile B, et al. Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer’s disease and control subjects. Neurosci Lett 2004; 355(3): 226–30PubMedCrossRef Baril L, Nicolas L, Croisile B, et al. Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer’s disease and control subjects. Neurosci Lett 2004; 355(3): 226–30PubMedCrossRef
92.
Zurück zum Zitat Weber A, Engelmaier A, Teschner H, et al. Intravenous immunoglobulin (IVIG) Gammagard Liquid contains anti-RAGE IGG and SLRP. ICAD Abstract 2009; P3: 43 Weber A, Engelmaier A, Teschner H, et al. Intravenous immunoglobulin (IVIG) Gammagard Liquid contains anti-RAGE IGG and SLRP. ICAD Abstract 2009; P3: 43
93.
Zurück zum Zitat Dalakas MC, Späth PJ. Intravenous immunoglobulins in the third millennium. New York: Parthenon Publishing Group, 2004 Dalakas MC, Späth PJ. Intravenous immunoglobulins in the third millennium. New York: Parthenon Publishing Group, 2004
94.
Zurück zum Zitat Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002; 59 (12 Suppl. 6): S13–21PubMedCrossRef Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002; 59 (12 Suppl. 6): S13–21PubMedCrossRef
95.
Zurück zum Zitat Quan Y, Moller T, Weinstein JR. Regulation of Fcgamma receptors and immunoglobulin G-mediated phagocytosis in mouse microglia. Neurosci Lett 2009; 464(1): 29–33PubMedCrossRef Quan Y, Moller T, Weinstein JR. Regulation of Fcgamma receptors and immunoglobulin G-mediated phagocytosis in mouse microglia. Neurosci Lett 2009; 464(1): 29–33PubMedCrossRef
96.
Zurück zum Zitat Sewell WA, North ME, Cambronero R, et al. In vivo modulation of cytokine synthesis by intravenous immunoglobulin. Clin Exp Immunol 1999; 116(3): 509–15PubMedCrossRef Sewell WA, North ME, Cambronero R, et al. In vivo modulation of cytokine synthesis by intravenous immunoglobulin. Clin Exp Immunol 1999; 116(3): 509–15PubMedCrossRef
97.
Zurück zum Zitat World Health Organization. Appropriate uses of human immunoglobulin in clinical practice: memorandum from an IUIS/WHO meeting. WHO Bulletin 1982; 60: 43–7 World Health Organization. Appropriate uses of human immunoglobulin in clinical practice: memorandum from an IUIS/WHO meeting. WHO Bulletin 1982; 60: 43–7
98.
99.
Zurück zum Zitat Gelfand EW. Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 2006; 6(4): 592–9PubMedCrossRef Gelfand EW. Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 2006; 6(4): 592–9PubMedCrossRef
100.
Zurück zum Zitat Martin TD. IGIV: contents, properties, and methods of industrial production-evolving closer to a more physiologic product. Int Immunopharmacol 2006; 6(4): 517–22PubMedCrossRef Martin TD. IGIV: contents, properties, and methods of industrial production-evolving closer to a more physiologic product. Int Immunopharmacol 2006; 6(4): 517–22PubMedCrossRef
101.
Zurück zum Zitat Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm 2005; 62 (16 Suppl. 3): S5–11PubMedCrossRef Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm 2005; 62 (16 Suppl. 3): S5–11PubMedCrossRef
102.
Zurück zum Zitat Relkin NR, Szabo P, Rotondi M, et al. Antibodies in the dimer fraction of IVIG have the capacity to bind beta amyloid. ICAD Abstract 2009: 43 Relkin NR, Szabo P, Rotondi M, et al. Antibodies in the dimer fraction of IVIG have the capacity to bind beta amyloid. ICAD Abstract 2009: 43
103.
Zurück zum Zitat Safavi A. Comparison of several human immunoglobulin products for anti-Aβ 1–42 titer [abstract]. Alzheimer’s Dementia 2006; 2 (3 Suppl. 1): S591CrossRef Safavi A. Comparison of several human immunoglobulin products for anti-Aβ 1–42 titer [abstract]. Alzheimer’s Dementia 2006; 2 (3 Suppl. 1): S591CrossRef
104.
Zurück zum Zitat Balakrishnan K, Andrei-Selmer L, Selmer T, et al. Comparison of intravenous immunoglobulins for naturally occurring antibodies against β-amyloid. J Alzheimers Dis. In press Balakrishnan K, Andrei-Selmer L, Selmer T, et al. Comparison of intravenous immunoglobulins for naturally occurring antibodies against β-amyloid. J Alzheimers Dis. In press
105.
Zurück zum Zitat Hamrock DJ. Adverse events associated with intravenous immunoglobulin therapy. Int Immunopharmacol 2006; 6(4): 535–42PubMedCrossRef Hamrock DJ. Adverse events associated with intravenous immunoglobulin therapy. Int Immunopharmacol 2006; 6(4): 535–42PubMedCrossRef
106.
Zurück zum Zitat Katz U, Achiron A, Sherer Y, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257–9PubMedCrossRef Katz U, Achiron A, Sherer Y, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257–9PubMedCrossRef
107.
Zurück zum Zitat Ballow M. Safety of IGIV therapy and infusion-related adverse events. Immunol Res 2007; 38(1-3): 122–32PubMedCrossRef Ballow M. Safety of IGIV therapy and infusion-related adverse events. Immunol Res 2007; 38(1-3): 122–32PubMedCrossRef
108.
Zurück zum Zitat Stangel M, Kiefer R, Pette M, et al. Side effects of intravenous immunoglobulins in neurological autoimmune disorders—a prospective study. J Neurol 2003; 250(7): 818–21PubMedCrossRef Stangel M, Kiefer R, Pette M, et al. Side effects of intravenous immunoglobulins in neurological autoimmune disorders—a prospective study. J Neurol 2003; 250(7): 818–21PubMedCrossRef
109.
Zurück zum Zitat Brannagan 3rd TH, Nagle KJ, Lange DJ, et al. Complications of intravenous immune globulin treatment in neurologic disease. Neurology 1996; 47(3): 674–7PubMedCrossRef Brannagan 3rd TH, Nagle KJ, Lange DJ, et al. Complications of intravenous immune globulin treatment in neurologic disease. Neurology 1996; 47(3): 674–7PubMedCrossRef
110.
Zurück zum Zitat Wittstock M, Benecke R, Zettl UK. Therapy with intravenous immunoglobulins: complications and side-effects. Eur Neurol 2003; 50(3): 172–5PubMedCrossRef Wittstock M, Benecke R, Zettl UK. Therapy with intravenous immunoglobulins: complications and side-effects. Eur Neurol 2003; 50(3): 172–5PubMedCrossRef
111.
Zurück zum Zitat Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2007; 101(3): 749–56PubMedCrossRef Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2007; 101(3): 749–56PubMedCrossRef
112.
Zurück zum Zitat Shankle WR. Longitudinal measure of IVIG treatment effect in patients with Alzheimer’s and Lewy body disease. ICAD Abstract 2009; P3: 43 Shankle WR. Longitudinal measure of IVIG treatment effect in patients with Alzheimer’s and Lewy body disease. ICAD Abstract 2009; P3: 43
113.
Zurück zum Zitat Rosenmann H, Meiner Z, Geylis V, et al. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neurosci Lett 2006; 410(2): 90–3PubMedCrossRef Rosenmann H, Meiner Z, Geylis V, et al. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neurosci Lett 2006; 410(2): 90–3PubMedCrossRef
114.
Zurück zum Zitat Wei X, He Y, Tan J, et al. Human anti-prion protein antibodies block A117V PrProtein fibril formation and prevent A117V prion protein peptide-induced neurotoxicity. Eur Psychiatry 2008; 23: S39–SCrossRef Wei X, He Y, Tan J, et al. Human anti-prion protein antibodies block A117V PrProtein fibril formation and prevent A117V prion protein peptide-induced neurotoxicity. Eur Psychiatry 2008; 23: S39–SCrossRef
115.
Zurück zum Zitat Bayry J, Kazatchkine MD, Kaveri SV. Shortage of human intravenous immunoglobulin-reasons and possible solutions. Nat Clin Pract Neurol 2007; 3(3): 120–1PubMedCrossRef Bayry J, Kazatchkine MD, Kaveri SV. Shortage of human intravenous immunoglobulin-reasons and possible solutions. Nat Clin Pract Neurol 2007; 3(3): 120–1PubMedCrossRef
116.
Zurück zum Zitat Boulis A, Goold S, Ubel PA. Responding to the immunoglobulin shortage: a case study. J Health Polit Policy Law 2002; 27(6): 977–99PubMedCrossRef Boulis A, Goold S, Ubel PA. Responding to the immunoglobulin shortage: a case study. J Health Polit Policy Law 2002; 27(6): 977–99PubMedCrossRef
Metadaten
Titel
Intravenous Immunoglobulins as a Treatment for Alzheimer’s Disease
Rationale and Current Evidence
verfasst von
Prof. Dr Richard Dodel
Frauke Neff
Carmen Noelker
Refik Pul
Yansheng Du
Michael Bacher
Wolfgang Oertel
Publikationsdatum
01.03.2010
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 5/2010
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/11533070-000000000-00000

Weitere Artikel der Ausgabe 5/2010

Drugs 5/2010 Zur Ausgabe

Adis Drug Profile

Raltegravir

Review Article

Nomegestrol Acetate

Adis Drug Profile

Histrelin