Skip to main content
Erschienen in: Nutrition & Metabolism 1/2013

Open Access 01.12.2013 | Research

Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy

verfasst von: Howard T Chang, Lawrence Karl Olson, Kenneth A Schwartz

Erschienen in: Nutrition & Metabolism | Ausgabe 1/2013

Abstract

Background

Recent studies in animal models, based on the hypothesis that malignant glioma cells are more dependent on glycolysis for energy generation, have shown promising results using ketogenic diet (KD) therapy as an alternative treatment strategy for malignant glioma, effectively starving glioma cells while providing ketone bodies as an energy source for normal neurons and glial cells. In order to test this treatment strategy in humans, we investigated the relative expression of several key enzymes involved in ketolytic and glycolytic metabolism in human anaplastic glioma (WHO grade III) and glioblastoma (GBM, WHO grade IV).

Methods

Immunohistochemistry was performed on formalin fixed paraffin embedded sections from 22 brain biopsies (17 GBM, 3 anaplastic astrocytoma and 2 anaplastic oligoastrocytoma) using antibodies raised against glycolytic and ketolytic enzymes. The glycolytic enzymes included hexokinase-II (HK2) and pyruvate kinase M2 isoform (PKM2). The ketone body metabolic enzymes included: succinyl CoA: 3-oxoacid CoA transferase (OXCT1), 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and BDH2), and acetyl-CoA acetyltransferase 1 (ACAT1). The immunoreactivities were graded using a semi-quantitative scale based on the percentage of positive cells: POS (>20%), LOW (5-20%), and very low (VLOW) (<5%). Focal non-neoplastic “normal” brain tissue within the biopsy specimens served as internal controls.

Results

The rate limiting mitochondrial ketolytic enzymes (OXCT1 and BDH1) were either LOW or VLOW, concordantly in 14 of the 17 GBMs and in 1 of 5 anaplastic gliomas, whereas at least one of the glycolytic enzymes was POS in 13 of these 17 GBMs and all 5 anaplastic gliomas. Cytosolic BDH2 and mitochondrial ACTAT1 were, surprisingly, POS in most of these tumors.

Conclusion

Our results showing that malignant gliomas have differential expression of ketolytic and glycolytic enzymes are consistent with previous studies that have shown that these are genetically heterogeneous tumors. It seems reasonable to hypothesize that patients with low or very low expression of key ketolytic enzymes in their malignant gliomas may respond better to the KD therapy than those patients with positive expression of these enzymes. Further studies in animal models and/or a large-scale clinical trial would be needed to test this hypothesis.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-7075-10-47) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KAS conceived of the study. KAS, LKO and HTC designed the experiments and reviewed the results. HTC wrote the first draft of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
AA
Anaplastic astrocytoma
AOA
Anaplastic oligoastrocytoma
ACAT1
Acetyl-CoA acetyltransferase 1
BDH1
3-hydroxybutyrate dehydrogenase 1
BDH2
3-hydroxybutyrate dehydrogenase 2
GBM
Glioblastoma
GFAP
Glial fibrillary acidic protein
GS
Gliosarcoma
HK2
Hexokinase-II
KD
ketogenic diet
LOW
low
OXCT1: Succinyl CoA:
3-oxoacid CoA transferase 1 (SCOT; EC 2.8.3.5; locus symbol OXCT)
PKM2
Pyruvate kinase M2 isoform
POS
Positive
VLOW
Very low
WHO
World Health Organization.

Introduction/Background

Malignant gliomas including grade III (anaplastic) astrocytoma and grade IV astrocytoma (also known as glioblastoma, GBM) are among the leading causes of death from solid tumors in children and adults. Median survival with current standard treatments is between 12 and 18 months, and experimental therapies do not appear to be very effective, possibly due to genetic instability and heterogeneity of these tumors [13]. A promising novel approach has been demonstrated recently in rodents with orthotopically transplanted malignant glioma cells such that these rodents showed increased survival when fed a ketogenic diet (KD) [4, 5]. Recent studies in rodents also showed that glioma tumor cells are more dependent on glycolysis for energy generation [6], and that KD reduced reactive oxygen species production in tumor cells [7]. Despite several case reports of KD therapy in human glioma patients [8, 9], questions remained on whether KD may be applied effectively in humans. In order to better understand the metabolism of ketone bodies in human gliomas, we investigated the expression of several key enzymes involved in glucose and ketone body metabolism, using immunohistochemistry with specific antibodies, in human anaplastic glioma (WHO grade III) and glioblastoma (GBM, WHO grade IV) samples. Our results suggest that the differential expression of these enzymes could serve as potentially useful biomarkers to select human glioma patients who may or may not respond optimally to KD.

Materials and methods

Immunohistochemistry reactions were performed on formalin fixed paraffin embedded sections from brain biopsies, using antibodies raised against several glycolytic and ketolytic enzymes.

Glycolytic enzymes

Hexokinase-II (HK2): Hexokinases catalyze the essentially irreversible first step of the glycolytic pathway where glucose is phosphorylated to glucose-6-phosphate via phosphate transfer from ATP. Hexokinase-II (HK2) is bound to the outer membrane of mitochondria and constitutes the principal isoform in many cell types, and is increased in many cancers [10, 11].
Pyruvate kinase M2 isoform (PKM2), an alternatively spliced variant of pyruvate kinase, is a cytosolic glycolytic enzyme that catalyses the conversion of phosphoenolpyruvate to pyruvate, and has been shown to be essential for aerobic glycolysis in many tumors [12].

Ketone body metabolic enzymes

Succinyl CoA: 3-oxoacid CoA transferase 1 (OXCT1), encoded by the OXCT1 gene in human, is a mitochondrial enzyme that catalyzes the transfer of coenzyme A from succinyl-coenzyme A to acetoacetate, forming acetoacetyl-CoA, and is the key enzyme of ketone body utilization [6, 13, 14].
D-beta-hydroxybutyrate dehydrogenase (BDH1), encoded by the BDH1 gene in human, is a mitochondrial enzyme that catalyzes the interconversion of acetoacetate and (R)-3-hydroxybutyrate, the two major ketone bodies produced during fatty acid catabolism [6].
BDH2 is a cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from the mitochondrial BDH1, may have role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis [15].
Acetyl-CoA acetyltransferase (ACAT1), also known as acetoacetyl-CoA thiolase, encoded by the ACAT1 gene in human, is a mitochondrial enzyme that catalyzes the reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA [6].

Specimens

Archival de-identified formalin fixed paraffin embedded brain biopsy specimens were selected for this study. Preferences were given whenever possible to select blocks that contain both malignant tumor and small portions of adjacent relatively normal brain tissue that would serve as internal normal control for the immunohistochemistry reactions. These included 17 glioblastomas (GBM), 3 anaplastic astrocytomas (AA), and 2 anaplastic oligodendrogliomas (AO) (Table 1).
Table 1
List of patients, and summary of the immunohistochemical reaction results in this study
 
Age/Gender
Diagnosis
GFAP
OXCT1
BDH1
BDH2
ACAT1
HK2
PKM2
1
66M
GBM
POS
VLOW
VLOW
POS
POS
POS
POS
2
62M
GBM
POS
VLOW
VLOW
POS
POS
POS
POS
3
67F
GBM
POS
VLOW
VLOW
POS
LOW
LOW
POS
4
78M
GBM
LOW
VLOW
VLOW
LOW
VLOW
LOW
POS
5
45M
GBM
POS
VLOW
VLOW
POS
POS
VLOW
POS
6
43M
GBM/GS
VLOW
VLOW
LOW
POS
POS
POS
POS
7
55M
GBM
POS
VLOW
VLOW
POS
POS
VLOW
POS
8
35F
GBM
LOW
VLOW
VLOW
POS
LOW
VLOW
LOW
9
38M
GBM
LOW
POS
LOW
POS
POS
LOW
POS
10
69F
GBM
LOW
POS
LOW
POS
POS
LOW
LOW
11
35M
GBM
LOW
POS
LOW
POS
POS
VLOW
POS
12
45M
GBM/GS
POS
LOW
LOW
POS
POS
LOW
POS
13
85M
GBM
LOW
VLOW
VLOW
POS
LOW
POS
POS
14
66M
GBM
POS
LOW
LOW
POS
POS
POS
POS
15
30M
GBM
LOW
VLOW
VLOW
VLOW
POS
VLOW
VLOW
16
41M
GBM
LOW
LOW
VLOW
LOW
POS
VLOW
VLOW
17
78M
GBM
POS
LOW
VLOW
POS
LOW
LOW
POS
18
39M
AA
LOW
POS
LOW
POS
POS
VLOW
POS
19
70F
AA
POS
POS
POS
POS
POS
LOW
POS
20
71M
AA
LOW
LOW
LOW
POS
POS
POS
POS
21
40F
AOA
POS
POS
VLOW
POS
POS
VLOW
POS
22
62M
AOA
POS
POS
LOW
POS
POS
LOW
POS

Immunohistochemistry procedures

Formalin-fixed, paraffin-embedded tissue sections (5 μm thick) mounted on glass slides were deparaffinized, rehydrated, and underwent heat induced epitope retrieval utilizing citrate buffer (pH 6.0) for 30 minutes at 100°C. The slides were rinsed in water, and then immersed in 3% hydrogen peroxide/methanol bath for 30 minutes to block endogenous peroxidase. Following these pretreatments, the slides were subjected to standard avidin-biotin complex immunohistochemistry staining reactions performed at room temperature in a Dako Autostainer utilizing two, two-minute rinses between each staining steps. The sections were incubated in the primary antibodies for 60 minutes, followed by appropriate biotinylated secondary antibodies for 30 minutes, the Vectastain Elite ABC Reagent (Vector) for 30 minutes, and then developed using Nova Red (Vector) Peroxidase substrate kit for 15 minutes. The slides were rinsed in distilled water, counterstained with hematoxylin, rinsed, dehydrated through ascending grades of ethanol, cleared through xylene, and coverslipped using Flotex permanent mounting media.
The primary antibodies used in this study were: rabbit polyclonal antibody to glial fibrillary acidic protein (GFAP, Dako Z0334, Carpinteria, CA), mouse monoclonal antibody to hexokinase II (HK2, Abcam ab104836, Cambridge, MA), rabbit monoclonal antibody to human pyruvate kinase M2 isoform (PKM2, Cell Signaling Technology D78A4, Danvers, MA), rabbit polyclonal antibody to OXCT1 (3-oxoacid-CoA transferase 1, Sigma HPA012047, St. Louis, MO), mouse monoclonal antibody to mitochondrial beta-hydroxybutyrate dehydrogenase (BDH1, clone 1A5, ProMab 30003, Richmond, CA), mouse monoclonal antibody to cytosolic beta-hydroxybutyrate dehydrogenase (BDH2, clone 2G1, OriGene TA501293, Rockville, MD), and rabbit polyclonal antibody to acetyl-CoA acetyltransferase (ACAT1, Sigma HPA007569).
Immunohistochemistry reactions were scored on a semi-quantitative basis: the tumor is considered positive (POS) if greater than 20% of tumor cells are positive, LOW if 5-20% of tumor cells are positive, and very low (VLOW) if less than 5% of tumor cells are positive. Internal controls, where possible, were represented by fragments of non-neoplastic brain tissue within the same sections in which the neurons would show positive granular labeling pattern for the metabolic enzymes (Figure 1), but negative for GFAP.

Results

Twenty two de-identified patients were studied (Table 1). The mean age was 55 with 5 females and 17 males. Each specimen was evaluated for the expression of 4 ketolytic and 2 glycolytic enzymes (Figure 2). The mitochondrial enzymes OXCT1 and BDH1 were concordantly decreased in 15 of the 22 (68%). The cytoplasmic ketolytic enzyme BDH2 along with the mitochondrial ketolytic enzyme ACAT1 were concordantly POS in 15 of the 22 (68%). Only one patient (Case #4) had all 4 ketolytic enzymes scored as LOW or VLOW.
The 2 glycolytic enzymes, HK2, and PKM2, were variably expressed in these tumors. The mitochondria-associated HK2 was often decreased (16 of 22, 72%, were either LOW or VLOW,) while the cytosolic PKM2 was more often POS (18 of 22, 81%). Of the 15 patients with concordantly decreased mitochondrial ketolytic enzymes OXCT1 and BDH1, 11 had positive expression of either one or both of their glycolytic enzymes, HK2 or PKM2. This was the most common ketolytic and glycolytic enzymatic profile observed.

Discussion

The present results show that the ketolytic and glycolytic enzymatic profiles of malignant brain tumors were different from the normal non-neoplastic brain tissue. The most common enzymatic profile was a decrease in the mitochondrial enzymes OXCT1 and BDH1 coupled with positive expression of the glycolytic enzymes HK2 and/or PKM2. These findings support the notion that many high grade brain tumors in humans have aberrant metabolism of ketones, and may preferentially use glucose for their energy needs.
The mitochondrial ketolytic enzymes OXCT1 and BDH1 were scored as decreased (LOW or VLOW) in 15 of the 22 (68%) specimens. The mitochondria-associated glycolytic enzyme HK2 was also often decreased (16 of 22, 72%), whereas the cytosolic ketolytic (BDH2) and glycolytic (PKM2) enzymes both showed positive reactions in most of the tumors. These results suggest that many of these tumors have alterations in mitochondrial metabolism. On the other hand, the positive expression of ACAT1, also a mitochondrial enzyme, in most tumors suggests that the observed decreases of OXCT1 and BDH1 do not necessarily reflect a complete loss or absence of mitochondria enzymes in these tumors.

Limitations of the present study

Due to limited sample size, our data cannot determine conclusively the relationships, if any, between the expression of these enzymes with respect to the tumor grades, patients’ age and gender, recent treatments or medications (e.g., steroid), other co-morbidities, or survival. Our results also cannot address the issue of whether the enzyme measurements obtained from a biopsy sample would be representative of activity in the entire tumor since the histoarchitecture of GBM can often vary significantly from one region to the next. Nevertheless, our results showing that GBMs from different patients have different expression of these enzymes are consistent with previous molecular genetic studies showing that these are genetically heterogeneous tumors [13]. Our results are also consistent with a recent study showing variable but positive expression of the ketone body metabolizing enzymes in several human glioma cell lines [6].

Metabolic therapy for malignant gliomas

Recent studies in animal models have shown promising results using either non-caloric restricted KD [5, 6] or calorie restriction therapy [16, 17] as alternative treatment strategy for malignant gliomas. While it is well known that calorie restriction can lead to the production of ketone bodies, calorie restriction is also known to activate protective genes [4, 18]. On the other hand, ketone bodies, in addition to providing alternative energy source to normal brain tissue, can also serve to activate genes that promote survival [6]. Indeed, recent studies have shown that altered tumor metabolism and epigenetic mechanisms are intimately related in the maintenance of gliomas [19].

Conclusions

Our results suggest that the variable ketolytic and glycolytic enzyme expression profiles in malignant gliomas potentially may be useful as biomarkers to sort patients in clinical trials of KD therapy. It seems reasonable to hypothesize that patients with low or very low expression of key ketolytic enzymes (e.g., OXCT1, BDH1) in their malignant gliomas may respond better to the KD therapy than those patients with positive expression of these enzymes. Further studies in animal models and/or a large-scale clinical trial would be needed to test this hypothesis. A better understanding of the modulation of the epigenetics by metabolic enzymes in gliomas is also needed to design future therapeutic strategies.

Acknowledgements

This study was supported in part by a grant from the Blue Cross Blue Shield of Michigan Foundation. The glioma tumor specimens were selected from the Michigan State University-Sparrow Hospital Neuropathology Specimens Archive. We thank the staff of MSU Histopathology Laboratory for their excellent technical assistance.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KAS conceived of the study. KAS, LKO and HTC designed the experiments and reviewed the results. HTC wrote the first draft of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Westermark B: Glioblastoma–a moving target. Ups J Med Sci. 2012, 117: 251-256. 10.3109/03009734.2012.676574.CrossRef Westermark B: Glioblastoma–a moving target. Ups J Med Sci. 2012, 117: 251-256. 10.3109/03009734.2012.676574.CrossRef
2.
Zurück zum Zitat Weller M, Stupp R, Hegi M, Wick W: Individualized targeted therapy for glioblastoma: fact or fiction?. Cancer J. 2012, 18: 40-44. 10.1097/PPO.0b013e318243f6c9.CrossRef Weller M, Stupp R, Hegi M, Wick W: Individualized targeted therapy for glioblastoma: fact or fiction?. Cancer J. 2012, 18: 40-44. 10.1097/PPO.0b013e318243f6c9.CrossRef
3.
Zurück zum Zitat Mrugala MM, Adair JE, Kiem HP: Outside the box–novel therapeutic strategies for glioblastoma. Cancer J. 2012, 18: 51-58. 10.1097/PPO.0b013e318243f785.CrossRef Mrugala MM, Adair JE, Kiem HP: Outside the box–novel therapeutic strategies for glioblastoma. Cancer J. 2012, 18: 51-58. 10.1097/PPO.0b013e318243f785.CrossRef
4.
Zurück zum Zitat Seyfried TN, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P: Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?. Epilepsy Res. 2012, 100: 310-326. 10.1016/j.eplepsyres.2011.06.017.CrossRef Seyfried TN, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P: Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?. Epilepsy Res. 2012, 100: 310-326. 10.1016/j.eplepsyres.2011.06.017.CrossRef
5.
Zurück zum Zitat Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC: The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012, 7: e36197. 10.1371/journal.pone.0036197.CrossRef Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC: The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012, 7: e36197. 10.1371/journal.pone.0036197.CrossRef
6.
Zurück zum Zitat Maurer GD, Brucker DP, Bahr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J: Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011, 11: 315. 10.1186/1471-2407-11-315.CrossRef Maurer GD, Brucker DP, Bahr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J: Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011, 11: 315. 10.1186/1471-2407-11-315.CrossRef
7.
Zurück zum Zitat Scheck AC, Abdelwahab MG, Fenton KE, Stafford P: The ketogenic diet for the treatment of glioma: Insights from genetic profiling. Epilepsy Res. 2012, 100: 327-337. 10.1016/j.eplepsyres.2011.09.022.CrossRef Scheck AC, Abdelwahab MG, Fenton KE, Stafford P: The ketogenic diet for the treatment of glioma: Insights from genetic profiling. Epilepsy Res. 2012, 100: 327-337. 10.1016/j.eplepsyres.2011.09.022.CrossRef
8.
Zurück zum Zitat Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995, 14: 202-208.CrossRef Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995, 14: 202-208.CrossRef
9.
Zurück zum Zitat Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN: Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond). 2010, 7: 33. 10.1186/1743-7075-7-33.CrossRef Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN: Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond). 2010, 7: 33. 10.1186/1743-7075-7-33.CrossRef
10.
Zurück zum Zitat Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007, 39: 211-222. 10.1007/s10863-007-9094-x.CrossRef Pedersen PL: Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007, 39: 211-222. 10.1007/s10863-007-9094-x.CrossRef
11.
Zurück zum Zitat Mathupala SP, Ko YH, Pedersen PL: Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol. 2009, 19: 17-24. 10.1016/j.semcancer.2008.11.006.CrossRef Mathupala SP, Ko YH, Pedersen PL: Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol. 2009, 19: 17-24. 10.1016/j.semcancer.2008.11.006.CrossRef
12.
Zurück zum Zitat Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452: 230-233. 10.1038/nature06734.CrossRef Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452: 230-233. 10.1038/nature06734.CrossRef
13.
Zurück zum Zitat Song XQ, Fukao T, Watanabe H, Shintaku H, Hirayama K, Kassovska-Bratinova S, Kondo N, Mitchell GA: Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat. 1998, 12: 83-88. 10.1002/(SICI)1098-1004(1998)12:2<83::AID-HUMU2>3.0.CO;2-P.CrossRef Song XQ, Fukao T, Watanabe H, Shintaku H, Hirayama K, Kassovska-Bratinova S, Kondo N, Mitchell GA: Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat. 1998, 12: 83-88. 10.1002/(SICI)1098-1004(1998)12:2<83::AID-HUMU2>3.0.CO;2-P.CrossRef
14.
Zurück zum Zitat Fredericks M, Ramsey RB: 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978, 31: 1529-1531. 10.1111/j.1471-4159.1978.tb06581.x.CrossRef Fredericks M, Ramsey RB: 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978, 31: 1529-1531. 10.1111/j.1471-4159.1978.tb06581.x.CrossRef
15.
Zurück zum Zitat Guo K, Lukacik P, Papagrigoriou E, Meier M, Lee WH, Adamski J, Oppermann U: Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. J Biol Chem. 2006, 281: 10291-10297. 10.1074/jbc.M511346200.CrossRef Guo K, Lukacik P, Papagrigoriou E, Meier M, Lee WH, Adamski J, Oppermann U: Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. J Biol Chem. 2006, 281: 10291-10297. 10.1074/jbc.M511346200.CrossRef
16.
Zurück zum Zitat Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298.CrossRef Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-1621. 10.1038/sj.bjc.6600298.CrossRef
17.
Zurück zum Zitat Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P: Influence of caloric restriction on constitutive expression of NF-kappaB in an experimental mouse astrocytoma. PLoS One. 2011, 6: e18085. 10.1371/journal.pone.0018085.CrossRef Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P: Influence of caloric restriction on constitutive expression of NF-kappaB in an experimental mouse astrocytoma. PLoS One. 2011, 6: e18085. 10.1371/journal.pone.0018085.CrossRef
18.
Zurück zum Zitat Maroon J, Bost J, Amos A, Zuccoli G: Restricted Calorie Ketogenic Diet for the Treatment of Glioblastoma Multiforme. J Child Neurol. 2013, May 13. [Epub ahead of print] Maroon J, Bost J, Amos A, Zuccoli G: Restricted Calorie Ketogenic Diet for the Treatment of Glioblastoma Multiforme. J Child Neurol. 2013, May 13. [Epub ahead of print]
19.
Zurück zum Zitat Venneti S, Thompson CB: Metabolic modulation of epigenetics in gliomas. Brain Pathol. 2013, 23: 217-221. 10.1111/bpa.12022.CrossRef Venneti S, Thompson CB: Metabolic modulation of epigenetics in gliomas. Brain Pathol. 2013, 23: 217-221. 10.1111/bpa.12022.CrossRef
Metadaten
Titel
Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy
verfasst von
Howard T Chang
Lawrence Karl Olson
Kenneth A Schwartz
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Nutrition & Metabolism / Ausgabe 1/2013
Elektronische ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-10-47

Weitere Artikel der Ausgabe 1/2013

Nutrition & Metabolism 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.