Skip to main content
Erschienen in: Respiratory Research 1/2020

Open Access 01.12.2020 | Letter to the Editor

Laryngopharyngeal reflux in chronic obstructive pulmonary disease - a multi-centre study

verfasst von: Julia Sanchez, Desiree M. Schumann, Meropi Karakioulaki, Eleni Papakonstantinou, Frank Rassouli, Matthias Frasnelli, Martin Brutsche, Michael Tamm, Daiana Stolz

Erschienen in: Respiratory Research | Ausgabe 1/2020

Abstract

Reflux of gastric content has been associated with recurrent exacerbations of chronic obstructive pulmonary disease (COPD). We aimed to assess the prevalence of laryngopharyngeal reflux (LPR) in COPD and if LPR is a contributing factor to clinically relevant outcomes in COPD. We evaluated a total of 193 COPD patients (GOLD I-IV) with a 24-h laryngo-pharyngeal pΗ-monitor. LPR was observed in 65.8% of COPD patients and it was not significantly associated with clinically relevant outcomes of COPD. Treatment with PPI significantly decreased the upright RYAN score (p = 0.047) without improving lung function. Furthermore, the presence or severity of LPR cannot be diagnosed based solely on symptoms and questionnaires.
Begleitmaterial
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12931-020-01473-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AECOPD
Acute exacerbations of COPD
BODE index
Body mass, airflow obstruction, dyspnea and exercise capacity index
CI
Confidence interval
CAT
COPD Assessment Test
COPD
Chronic obstructive pulmonary disease
DLCO
Diffusing capacity of the lung for carbon monoxide
FEV1
Forced expiratory volume in 1 s
FVC
Forced vital capacity
GerdQ
Gastroesophageal reflux disease questionnaire
GERD
Gastroesophageal reflux disease
GOLD
Global initiative for chronic obstructive lung disease
LPR
Laryngopharyngeal reflux
PPI
Proton pump Inhibitors
RSI
Reflux symptom index
RV
Residual volume
TLC/RV
Residual volume to total lung capacity ratio
TLC
Total lung capacity

Background

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease and one of the leading causes of mortality worldwide [1]. The clinical severity of COPD is determined by comorbidities, one of which is the gastroesophageal reflux disease (GERD) [25]. GERD is a common cause of chronic cough [6] and a potential risk factor for exacerbations of COPD [710]. Frequent exacerbators have a high prevalence of GERD, however approximately 58% of these patients lack typical GERD symptoms [11, 12].
Laryngopharyngeal reflux (LPR) represents an extra-esophageal manifestation of GERD. The reflux of gastric contents is fundamental in both LPR and GERD, but the mechanism and the symptoms of the disorders are distinct [1315]. LPR occurs when gastric contents pass the upper esophageal sphincter and usually occurs during daytime in the upright position, while GERD occurs when gastric contents pass the lower esophageal sphincter and takes place more often in the supine position at night-time or during sleep [16]. LPR may be a contributing factor in patients with symptomatic COPD however, there are only a few studies analyzing the impact of LPR in patients with COPD [13, 17, 18]. In a large longitudinal study of COPD patients, self-reported GERD or use of PPIs was associated with a 20–60% increased risk of moderate-severe exacerbations and hospitalized exacerbations during 3 years of follow up [19]. Yet, this study was based on a subjective, self-reported history of a physician’s diagnosis of GERD and studies based on objective evaluations by laryngeal-pharyngeal pH monitoring in a large COPD cohort are still missing. Here, we investigated the prevalence of LPR and explored its association with clinically relevant outcomes of COPD.

Methods

We included 193 patients with mild to severe COPD (GOLD I-IV). All patients completed the GERD questionnaire (GerdQ) and the Reflux symptom index (RSI), in order to assess reflux symptoms and the Leicester cough questionnaire, in order to assess life quality disturbance due to cough. Additionally, patients were evaluated for the prevalence of LPR and its association with lung function. The presence of LPR was assessed by trained and certified study nurses. Participants were fitted with a pharyngeal probe (Restech pH probe, Respiratory Technology Corp.) for 24 h. The pH was measured twice per second and was transmitted wirelessly to a data recorder. The thresholds for detecting LPR were for the upright position: RYAN score > 9.41 and for the supine position: RYAN score > 6.81 [20].
A subgroup of 107 patients belonged to a prospective, multicenter study [PREVENT, ISRCTN 45572998 [21, 22]] and was longitudinally assessed for 2 years (median follow-up period of 12 months) for an association between LPR and clinically relevant outcomes of COPD. In this pre-defined cohort, 41 patients had 67 mild acute exacerbations of COPD (AECOPD), defined as an acute worsening of respiratory symptoms leading to a change in medication and 37 patients had 62 severe AECOPD, requiring hospitalization. Among these 107 patients, 34 patients agreed to undergo a second evaluation of LPR after 1 month on PPI treatment (Supplementary Figure 1).

Results

The descriptive characteristics of the patients are presented in Table 1A. Risk categories were defined for 106 of the 107 patients from the pre-defined cohort as follows: 8 in GOLD A, 63 in GOLD B, 4 in GOLD C and 31 in GOLD D.
Table 1
[A]: Descriptive characteristics of the patients included in the study; [B]: Linear regression model for the effect of various parameters in the upright RYAN score in the pre-defined cohort with 2-year follow-up
[A]
Descriptive characteristics
All patients
n = 193
Pre-defined cohort with 2-year follow-up
n = 107
Age (years), mean (SD)
66.2 (8.8)
67.5 (8.4)
BMI (kg/m2), mean (SD)
27.1 (6.7)
27.8 (6.6)
Medical history of GERD, n (%)
33 (17)
16 (15)
Treated with PPI, n (%)
69 (37)
33 (30.8)
Gender, male (%)
119 (62)
75 (70)
Smoking status, n (%)
 Current
62 (34)
38 (36)
 Past
121 (66)
69 (64)
GOLD Stage, n (%)
 I
25 (14)
6 (6)
 II
82 (45)
58 (58)
 III
55 (30)
32 (32)
 IV
21 (11)
4 (4)
COPD Medication
 LABA
55 (28)
19 (18)
 LABA+ICS
151 (78)
102 (96)
 LAMA
129 (67)
81 (76)
 SABA
26 (13)
2 (2)
 SAMA
39 (20)
35 (33)
Lung Function (post-BD), mean (SD)
 FEV1%predicted
56.9 (21.8)
57.4 (16.4)
 RV % predicted
144.3 (49.4)
136.6 (46.7)
 TLC %predicted
110.5 (20.5)
107.9 (20.5)
 DLCO% predicted
61.0 (22.8)
57.7 (18.5)
 FEV1/FVC
46.9 (14.1)
46.9 (13.1)
Questionnaire scores, mean (SD)
 GerdQ
2.1 (3.3)
2.1 (3.2)
 Leicester cough
96.5 (38.0)
104.6 (27.1)
 RSI
10.0 (9.2)
10.1 (8.4)
[B]
Parameter
Pre-defined cohort with 2-year follow-up
(n = 107)
Beta
95% CI: Lower
95% CI: Upper
p-value
Age
0.239
0.006
0.050
0.013
6MWT
−0.073
−0.002
0.001
0.474
BODE Index
0.004
−0.099
0.103
0.969
Lung Function
 FEV1% predicted
−0.010
−0.013
0.012
0.923
 TLC % predicted
−0.182
−0.019
0.001
0.091
 RV % predicted
−0.142
−0.007
0.001
0.177
Νumber of exacerbations during the study
0.015
−0.175
0.205
0.877
Number of severe exacerbations during the study
−0.011
−0.305
0.272
0.911
Questionnaires
 GerdQ
−0.257
−0.139
− 0.022
0.008
 Leicester cough
0.012
−0.007
0.008
0.899
 RSI
−1.013
−0.034
0.011
0.314
95% CI 95% confidence interval, BMI body mass index, GERD gastroesophageal reflux disease, PPI proton pump inhibitors, GOLD Global Initiative for Chronic Obstructive Lung Disease, LABA long acting beta 2 agonist, LABA + ICS long-acting beta 2 agonist plus glucocorticosteroids, LAMA long-acting muscarinic antagonist, SABA short-acting beta 2 agonist, SAMA short-acting muscarinic antagonist, post-BD post-bronchodilator, FEV1 forced expiratory volume in 1 s, RV residual volume, TLC total lung capacity, DLCO diffusing capacity of the lung for carbon monoxide, GerdQ gastroesophageal reflux disease questionnaire, RSI Reflux symptom index, BODE Index Body mass, airflow obstruction, dyspnea and exercise capacity index, 6MWT 6-min walking test
The median (IQR) upright RYAN score was 37.01 (2.12–186.89) and the median (IQR) supine RYAN score was 2.17 (2.17–5.50). Totally, 65.8% (n = 127) of the patients had LPR, as detected by either a pathologic upright RYAN score (n = 85, 44.0%), or a pathologic supine RYAN score (n = 5, 2.6%), or both upright and supine pathologic RYAN scores (n = 37, 19.2%) (Fig. 1a).
There was no association between upright or supine RYAN score and lung function measurements (FEV1% predicted, p = 0.076 and p = 0.488, respectively; RV % predicted, p = 0.282 and p = 0.800, respectively; TLC % predicted, p = 0.054 and p = 0.559, respectively; Fig. 2a and b).
In the pre-defined cohort with 2-years follow-up, linear regression analysis revealed that there was no association between the upright RYAN score and COPD severity, as revealed by the 6-min walking test, the BODE index, and lung function (Table 1B). Furthermore, there was no association between the upright RYAN and COPD outcome as revealed by the number of exacerbations during the study (Table 1B). Similar results were also obtained for the supine RYAN score (Fig. 2b). However, there was a significant positive association between the upright RYAN score and age (Beta = 0.239, p = 0.013), and a negative association with GerdQ (Beta = − 0.257, p = 0.008) (Table 1B).
There were no significant differences between patients with positive LPR and patients with negative LPR in GerdQ score (1.9 ± 3.3 vs 2.1 ± 3.3, p = 0.177), Leicester cough score (93.9 ± 40.0 vs 103.3 ± 32.8, p = 0.227) and RSI (9.9 ± 9.0 vs 9.4 ± 9.6, p = 0.905).
Using Cox regression and adjusting the model for age and PPI therapy, we found no effect of upright RYAN score neither on time to exacerbation (Exp(B) 1.325, p = 0.369) nor on time to severe exacerbation (Exp(B) 1.195, p = 0.722).
Within the pre-defined cohort with 2-year follow-up, 34 COPD patients were reevaluated for LPR, after 1 month on PPI treatment. There was a significant decrease in the upright RYAN score after treatment (p = 0.047) but not in the supine RYAN score (p = 0.285) (Fig. 2b). Comparing lung function before and after 1 month on PPI treatment, we found no significant difference in lung function parameters, or in any of the questionnaire scores.

Discussion

To our knowledge, this is the largest study assessing LPR prevalence in a well-characterized COPD cohort. We assessed LPR by monitoring laryngopharyngeal pH [19] and we could demonstrate that the prevalence of LPR is high in COPD patients (65.8%). This is in agreement with the study of Hamdan et al. [13], where the RSI questionnaire was utilized to determine the presence of LPR in 27 COPD patients and 67% of them scored positive for LPR. In our study, there was no association between LPR and clinically relevant COPD outcomes within a 2-year follow-up period, contrary to the findings of Jung et al. [17], who found an association between the RSI score, the reflux finding score and severe exacerbations in 118 COPD patients. These discrepancies could be attributable to the fact that Jung et al. [17] refrained from objectively analyzing LPR prevalence and their diagnosis was based solely on symptoms. Additionally, as stated by Jung et al. [17], the respiratory symptoms of COPD, such as excess throat mucus, cough, throat clearing, and dysphonia, coincide with the measurements of the RSI questionnaire. Therefore, during an exacerbation of COPD, these symptoms would increase automatically, resulting in an increase in the RSI score, independently of LPR. Jung et al. [17] found no association between RSI, RFS, and COPD severity or any other lung function parameter, except between RFS and residual volume / total lung capacity (%).We found no association between the questionnaire results (GerdQ-Questionnaire, RSI to assess reflux symptoms and the Leicester cough questionnaire to assess lifetime quality disturbance due to cough) and RYAN score results which confirms findings in other studies [23, 24].
Currently, the main treatment for LPR is PPI. We found that in patients receiving PPI for 30 days, there was a significant decrease in the upright RYAN score but no improvement in lung function nor in symptoms, as assessed by the various questionnaires used. Further long-term investigations are required to clarify this finding though these results have been seen with GERD treatment [25] and LPR treatment for 2-months in COPD patients [18]. The findings are also in-line with the recent ERS guidelines on chronic cough, suggesting that PPI therapy is not beneficial for patients with reflux without dyspeptic symptoms [26].
Among the limitations of our study is the short follow-up period after PPI therapy. However, it was possible to determine a significant decrease in the upright RYAN score after 1 month on PPI. Within the strengths of our study is its multicentric design and the large well-characterised COPD cohort included.

Conclusions

LPR is not significantly associated with clinically relevant outcomes of COPD. Treatment with PPI significantly decreased the upright RYAN score without improving lung function. Our results further indicate that the presence or severity of LPR cannot be diagnosed based solely on symptoms and questionnaires.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12931-020-01473-2.

Acknowledgments

Not applicable.

Guarantor statement

D. Stolz takes full responsibility for the content of the manuscript, including the data and the analysis thereof.
All patients consent to participate in the study. The study was approved by the ethics committee of the University Hospital, Basel (EKBB306/10).
All patients signed informed consents for publication of their data in the study.

Competing interests

All authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary information

Literatur
2.
Zurück zum Zitat Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–85.CrossRef Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–85.CrossRef
3.
Zurück zum Zitat Celli BR, MacNee W. ATS/ERS task force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.CrossRef Celli BR, MacNee W. ATS/ERS task force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.CrossRef
4.
Zurück zum Zitat Clini EM, Boschetto P, Lainscak M, Janssens W. Comorbidities in chronic obstructive pulmonary disease from assessment to treatment. Biomed Res Int. 2014;2014:414928. Clini EM, Boschetto P, Lainscak M, Janssens W. Comorbidities in chronic obstructive pulmonary disease from assessment to treatment. Biomed Res Int. 2014;2014:414928.
5.
Zurück zum Zitat Nussbaumer-Ochsner Y, Rabe KF. Systemic manifestations of COPD. Chest. 2011;139(1):165–73.CrossRef Nussbaumer-Ochsner Y, Rabe KF. Systemic manifestations of COPD. Chest. 2011;139(1):165–73.CrossRef
6.
Zurück zum Zitat Pratter MR. Overview of common causes of chronic cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):59S–62S.CrossRef Pratter MR. Overview of common causes of chronic cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):59S–62S.CrossRef
7.
Zurück zum Zitat Baumeler L, Papakonstantinou E, Milenkovic B, Lacoma A, Louis R, Aerts JG, et al. Therapy with proton-pump inhibitors for gastroesophageal reflux disease does not reduce the risk for severe exacerbations in COPD. Respirology. 2016;21(5):883–90.CrossRef Baumeler L, Papakonstantinou E, Milenkovic B, Lacoma A, Louis R, Aerts JG, et al. Therapy with proton-pump inhibitors for gastroesophageal reflux disease does not reduce the risk for severe exacerbations in COPD. Respirology. 2016;21(5):883–90.CrossRef
8.
Zurück zum Zitat Sakae TM, Pizzichini MM, Teixeira PJ, Silva RM, Trevisol DJ, EP. Exacerbations of COPD and symptoms of gastroesophageal reflux: a systematic review and meta-analysis. J Bras Pneumol. 2013;39(3):259–71.CrossRef Sakae TM, Pizzichini MM, Teixeira PJ, Silva RM, Trevisol DJ, EP. Exacerbations of COPD and symptoms of gastroesophageal reflux: a systematic review and meta-analysis. J Bras Pneumol. 2013;39(3):259–71.CrossRef
9.
Zurück zum Zitat Rascon-Aguilar IE, Pamer M, Wludyka P, Cury J, Coultas D, Lambiase LR, et al. Role of gastroesophageal reflux symptoms in exacerbations in COPD. Chest. 2006;130(4):1096–101.CrossRef Rascon-Aguilar IE, Pamer M, Wludyka P, Cury J, Coultas D, Lambiase LR, et al. Role of gastroesophageal reflux symptoms in exacerbations in COPD. Chest. 2006;130(4):1096–101.CrossRef
10.
Zurück zum Zitat Lin YH, Tsai CL, Chien LN, Chiou HY, Jeng C. Newly diagnosed gastroesophageal reflux disease increased the risk of acute exacerbation of chronic obstructive pulmonary disease during the first year following diagnosis - a nationwide population-based cohort study. Int J Clin Pract. 2015;69(3):350–7.CrossRef Lin YH, Tsai CL, Chien LN, Chiou HY, Jeng C. Newly diagnosed gastroesophageal reflux disease increased the risk of acute exacerbation of chronic obstructive pulmonary disease during the first year following diagnosis - a nationwide population-based cohort study. Int J Clin Pract. 2015;69(3):350–7.CrossRef
11.
Zurück zum Zitat Casanova C., Baudet JS., del VAlle Velasco M., Martin JM., Aguirre-Jaime A., de Torres JP., et al. Increased gastro-oesophageal reflux disease in patients with severe COPD. Eur Respir J 2004;23(6):841–845. Casanova C., Baudet JS., del VAlle Velasco M., Martin JM., Aguirre-Jaime A., de Torres JP., et al. Increased gastro-oesophageal reflux disease in patients with severe COPD. Eur Respir J 2004;23(6):841–845.
12.
Zurück zum Zitat Iliaz S, Iliaz R, Onur ST, Arici S, Akyuz U, Karaca C, et al. Does gastroesophageal reflux increase chronic obstructive pulmonary disease exacerbations? Respir Med. 2006;115:20–5.CrossRef Iliaz S, Iliaz R, Onur ST, Arici S, Akyuz U, Karaca C, et al. Does gastroesophageal reflux increase chronic obstructive pulmonary disease exacerbations? Respir Med. 2006;115:20–5.CrossRef
13.
Zurück zum Zitat Hamdan AL, Ziade G, Turfe Z, Beydoun N, Sarieddine D, Kanj N. Laryngopharyngeal symptoms in patients with chronic obstructive pulmonary disease. Eur Arch Otorhinolaryngol. 2016;273:953–8.CrossRef Hamdan AL, Ziade G, Turfe Z, Beydoun N, Sarieddine D, Kanj N. Laryngopharyngeal symptoms in patients with chronic obstructive pulmonary disease. Eur Arch Otorhinolaryngol. 2016;273:953–8.CrossRef
14.
Zurück zum Zitat Oelschlager BK, Chang L, Pope CE 2nd., Pellegrini CA. Typical GERD Symptoms and esophageal pH monitoring are not enough to diagnose pharyngeal reflux. J Surg Res. 2005;128(1):55–60.CrossRef Oelschlager BK, Chang L, Pope CE 2nd., Pellegrini CA. Typical GERD Symptoms and esophageal pH monitoring are not enough to diagnose pharyngeal reflux. J Surg Res. 2005;128(1):55–60.CrossRef
15.
Zurück zum Zitat Hamdan AL, Jaffal H, Btaiche R, Turfe ZA, Bawab I, Kanj N, et al. Laryngopharyngeal symptoms in patients with asthma: a cross-sectional controlled study. Clin Respir J. 2016;10:40–7.CrossRef Hamdan AL, Jaffal H, Btaiche R, Turfe ZA, Bawab I, Kanj N, et al. Laryngopharyngeal symptoms in patients with asthma: a cross-sectional controlled study. Clin Respir J. 2016;10:40–7.CrossRef
16.
Zurück zum Zitat Ylitalo R, Thibeault SL. Relationship between time of exposure of laryngopharyngeal reflux and gene expression in laryngeal fibroblasts. Ann Otol Rhinol Laryngol. 2006;115(10):775–83.CrossRef Ylitalo R, Thibeault SL. Relationship between time of exposure of laryngopharyngeal reflux and gene expression in laryngeal fibroblasts. Ann Otol Rhinol Laryngol. 2006;115(10):775–83.CrossRef
17.
Zurück zum Zitat Jung YH, Lee DY, Kim DW, Park SS, Heo EY, Chung HS, et al. Clinical significance of laryngopharyngeal reflux in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1343–51.PubMedPubMedCentral Jung YH, Lee DY, Kim DW, Park SS, Heo EY, Chung HS, et al. Clinical significance of laryngopharyngeal reflux in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1343–51.PubMedPubMedCentral
18.
Zurück zum Zitat Eryuksel E, Dogan M, Olgun S, Kocak I, Celikel T. Incidence and treatment results of laryngopharyngeal reflux in chronic obstructive pulmonary disease. Eur Arch Otorhinolaryngol. 2009;266(8):1267–71.CrossRef Eryuksel E, Dogan M, Olgun S, Kocak I, Celikel T. Incidence and treatment results of laryngopharyngeal reflux in chronic obstructive pulmonary disease. Eur Arch Otorhinolaryngol. 2009;266(8):1267–71.CrossRef
19.
Zurück zum Zitat Benson VS, Mullerova H, Vestbo J, Wedzicha JA, Patel A, Hurst JR, et al. Associations between gastro-oesophageal reflux, its management and exacerbations of chronic obstructive pulmonary disease. Respir Med. 2015;109(9):1147–54.CrossRef Benson VS, Mullerova H, Vestbo J, Wedzicha JA, Patel A, Hurst JR, et al. Associations between gastro-oesophageal reflux, its management and exacerbations of chronic obstructive pulmonary disease. Respir Med. 2015;109(9):1147–54.CrossRef
20.
Zurück zum Zitat Ayazi S, Lipham JC, Hagen JA, Tang AL, Zehetner J, Leers JM, et al. A new technique for measurement of pharyngeal pH: normal values and discriminating pH threshold. J Gastrointest Surg. 2009;13(8):1422–9.CrossRef Ayazi S, Lipham JC, Hagen JA, Tang AL, Zehetner J, Leers JM, et al. A new technique for measurement of pharyngeal pH: normal values and discriminating pH threshold. J Gastrointest Surg. 2009;13(8):1422–9.CrossRef
21.
Zurück zum Zitat Stolz D, Papakonstantinou E, Grize L, Schilter D, Strobel W, Louis R, et al. Time-course of upper respiratory tract viral infection and COPD exacerbation. Eur Respir J. 2019;54(4):1900407. Stolz D, Papakonstantinou E, Grize L, Schilter D, Strobel W, Louis R, et al. Time-course of upper respiratory tract viral infection and COPD exacerbation. Eur Respir J. 2019;54(4):1900407.
22.
Zurück zum Zitat Stolz D, Hirsch HH, Schilter D, Louis R, Rakic J, Boeck L, et al. Intensified therapy with inhaled corticosteroids and long-acting β(2)-agonists at the onset of upper respiratory tract infection to Prevent chronic obstructive pulmonary disease exacerbations. A multicenter, randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1136–46.CrossRef Stolz D, Hirsch HH, Schilter D, Louis R, Rakic J, Boeck L, et al. Intensified therapy with inhaled corticosteroids and long-acting β(2)-agonists at the onset of upper respiratory tract infection to Prevent chronic obstructive pulmonary disease exacerbations. A multicenter, randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1136–46.CrossRef
23.
Zurück zum Zitat Kilic M, Ozturk F, Kirmemis O, Atmaca S, Guner SN, Caltepe G, et al. Impact of laryngopharyngeal and gastroesophageal reflux on asthma control in children. Int J Pediatr Otorhinolaryngol. 2013;77(3):341–5.CrossRef Kilic M, Ozturk F, Kirmemis O, Atmaca S, Guner SN, Caltepe G, et al. Impact of laryngopharyngeal and gastroesophageal reflux on asthma control in children. Int J Pediatr Otorhinolaryngol. 2013;77(3):341–5.CrossRef
24.
Zurück zum Zitat Wang G, Qu C, Wang L, Liu H, Han H, Xu B, et al. Utility of 24-hour pharyngeal pH monitoring and clinical feature in laryngopharyngeal reflux disease. Acta Otolaryngol. 2019;139(3):299–303.CrossRef Wang G, Qu C, Wang L, Liu H, Han H, Xu B, et al. Utility of 24-hour pharyngeal pH monitoring and clinical feature in laryngopharyngeal reflux disease. Acta Otolaryngol. 2019;139(3):299–303.CrossRef
25.
Zurück zum Zitat Broers C, Tack J, Pauwels A. Review article: gastro-oesophageal reflux disease in asthma and chronic obstructive pulmonary disease. Aliment Pharmacol Ther. 2018;47(2):176–91.CrossRef Broers C, Tack J, Pauwels A. Review article: gastro-oesophageal reflux disease in asthma and chronic obstructive pulmonary disease. Aliment Pharmacol Ther. 2018;47(2):176–91.CrossRef
26.
Zurück zum Zitat Morice AH, Millqvist E, Bieksiene K, Birring SS, Dicpinigaitis P, Domingo Ribas C, et al. ERS guidelines on the diagnosis and treatment of chronic cough in adults and children. Eur Respir J. 2020;55(1):1901136. Morice AH, Millqvist E, Bieksiene K, Birring SS, Dicpinigaitis P, Domingo Ribas C, et al. ERS guidelines on the diagnosis and treatment of chronic cough in adults and children. Eur Respir J. 2020;55(1):1901136.
Metadaten
Titel
Laryngopharyngeal reflux in chronic obstructive pulmonary disease - a multi-centre study
verfasst von
Julia Sanchez
Desiree M. Schumann
Meropi Karakioulaki
Eleni Papakonstantinou
Frank Rassouli
Matthias Frasnelli
Martin Brutsche
Michael Tamm
Daiana Stolz
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2020
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01473-2

Weitere Artikel der Ausgabe 1/2020

Respiratory Research 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.