Skip to main content
Erschienen in: Langenbeck's Archives of Surgery 4/2022

Open Access 31.01.2022 | How-I-Do-It articles

Left renal vein graft and in situ hepatic perfusion in hepatectomy for complete tumor invasion of hepatic veins: hemodynamic optimization and surgical technique

verfasst von: Víctor Lopez-Lopez, Jose Garcia-Lopez, Dilmurodjon Eshmuminov, Roberto Brusadin, Asunción Lopez-Conesa, Luis Martinez-Insfran, Pedro Fernández-Fernández, Ricardo Robles-Campos

Erschienen in: Langenbeck's Archives of Surgery | Ausgabe 4/2022

Abstract

Purpose

Assessing hepatic vein reconstruction using a left renal vein graft and in situ hypothermic liver perfusion in an extended liver resection.

Methods

Patients included in this study were those with liver tumors undergoing curative surgery with resection and reconstruction of hepatic veins. Hepatic vein was reconstructed using a left renal vein graft. We describe the technical aspects of liver resection and vascular reconstruction, the key aspects of hemodynamic management, and the use of in situ hypothermic liver preservations during liver transection (prior to and during vascular clamping).

Results

The right hepatic vein was reconstructed with a median left renal venal graft length of 4.5 cm (IQR, 3.1–5.2). Creatinine levels remained within normal limits in the immediate postoperative phase and during follow-up. Median blood loss was 500 ml (IQR, 300–1500) and in situ perfusion with cold ischemia was 67 min (IQR, 60.5–77.5). The grafts remained patent during the follow-up with no signs of thrombosis. No major postoperative complications were observed.

Conclusion

Left renal vein graft for the reconstruction of a hepatic vein and in situ hypothermic liver perfusion are feasible during extended liver resection.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00423-022-02451-6.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The treatment of choice for most primary and metastatic liver tumors is liver resection [1, 2]. A successful liver surgery is dependent on sufficient liver mass, adequate arterial perfusion, and venous outflow in addition to intact biliary drainage. Depending on the tumor location, a hepatic vein resection might be necessary for a radical surgery. In the past, liver tumors with involvement of hepatic veins were considered unresectable with poor prognosis. Recent improvements in surgical technique together with a greater understanding of the segmental liver anatomy, liver machine preservation, and perioperative patient management are making hepatic resection with involvement of hepatic veins a possibility.
Hepatic vascular exclusion and hepatic vein reconstruction are required during curative surgery for tumors invading hepatic veins [35]. Hepatic vascular exclusion can be total including the portal pedicle, the infra- and suprahepatic inferior vena cava (IVC) or partial, either by occluding the infrahepatic IVC and preserving hepatic flow or by occluding the portal pedicle and hepatic veins by leaving the IVC open. During hepatic vascular exclusion, the future liver remnant can be perfused to reduce ischemia and consequent injury during reperfusion. These measures are applied to minimize the need for blood transfusions, to minimize hepatic ischemia to assist in the hemodynamic stability of the patient. After hepatic vascular exclusion, the hepatic vein is resected and reconstructed. A variety of options have been proposed to replace veins in abdominal surgery [612]. Among them, autologous vein grafts are widely used due to their relatively common availability, low thrombotic rate, and low rate of infection. The left renal vein (LRV) graft is also a valuable option for the reconstruction of the hepatic veins during liver surgery [1319]. The experience with regard to this is still lacking and a report on the topic will assist in understanding such a surgical technique.
This study reports the results of the hepatic vein resection reconstruction. Furthermore, the technical aspects of hepatic vascular exclusion, in situ liver perfusion to minimize liver ischemia, intraoperative hemodynamic monitoring, and hepatic vein reconstruction with autologous renal vein interposition will be described.

Methods

Patient selection

This is a retrospective study on a prospective database of liver resections performed from July 1985 to December 2020 at Virgen de la Arrixaca University Hospital, Murcia. Patients undergoing a resection of hepatic vein(s) with hepatic vascular exclusion were selected. Included patients were selected rigorously using the American Society of Anesthesiologist (ASA) score and had adequate cardiac, renal, and hepatic functions and were discussed in a multidisciplinary board. Computed tomography and magnetic resonance imaging were performed routinely to assess the tumor relation to hepatic veins with vena cava and collateral renal veins distribution.

Anesthetic management

  • Hemodynamic management during liver transection. Restrictive fluid therapy was administered at 2 ml/kg/h of crystalloid solution (Plasmalyte®, Baxter Healthcare Ltd., UK) while maintaining cardiac index (CI) > 2.5 l/min/m2. In case of bleeding, albumin replacement (Albutein® 5%, Instituto Grifols, S.A. Barcelona, Spain) was provided at a 1:1 ratio.
  • Hemodynamic management prior to vascular clamping: A supramaximal optimization protocol was conducted, consisting of the following: replacement fluid therapy with 1,000–1,500 ml of crystalloid solution until a systolic volume variation (SVV) < 10% is reached; dobutamine 2–5 mcg/kg/min for a CI > 4 l/min/m2; and norepinephrine 0.10–0.50 mcg/kg/min for a systemic vascular resistance index (SVRI) > 3,500 dynes-sec-m2/cm5.
  • Management during vascular clamping. Portal vein clamping test was performed for 5 min. If the CI fell below 2.5 l/min/m2, the dosages of dobutamine and norepinephrine were increased to a maximum of 10 mcg/kg/min and 1 mcg/kg/min, respectively. IC > 2.5 l/min/m2 after 5 min of testing was considered favorable and the vascular resection phase was initiated.

Surgical technique

Surgical technique was standardized and detailed in Figs. 1 and 2.
  • Step 1 — staging and hepatic transection. The abdominal cavity was opened through subcostal bilateral incision and explored. Tumor location in relation to vascular structures was investigated with ultrasound. A band was placed around supra- and infrahepatic IVC and hepatic pedicle before the parenchyma transection. This was followed by dissection and ligation of the left hepatic artery along with dissection and ligation of a long pedicle of the left portal vein (for subsequent hepatic perfusion). Finally, a ligation and transection of the left bile duct was performed. Once the portal pedicle has been controlled, the hepatic partition with CUSA® or SonaStar® by Misonix is performed on the Cantlie line until the IVC is reached. The middle and left hepatic vein is divided and the section line is continued through segments 7–8 until reaching the proximity of the tumor that invades the right hepatic vein (RHV).
  • Step 2 — LRV graft preparation. The LRV was isolated up to the gonadal vein. To obtain a longer LRV, the left adrenal vein was sacrificed. The IVC was clamped laterally to obtain a wide ostium of the LRV at the IVC level. Subsequently, the preparation of the graft was carried out, aiming to obtain a length of at least 4–6 cm.
  • Step 3 — total hepatic vascular occlusion, tumor resection, and graft placement. For the left hepatectomy, a band was placed around the left and middle hepatic veins and a complete mobilization of the segment 1 was performed to the subsequent exclusion of the RHV. After completion of hepatic transection and left hepatectomy, the haptic pedicle was occluded with Pringle maneuver and RHV was clamped. This was followed by the cannulation of the left portal vein stump (at least 2 cm). The perfusion through left portal vein stump was started continuously with gravity and RHV was opened between tumor and IVC (Wisconsin solution, using 2–4 l at 4 °C). The preservation solution was hanged 80 cm above the patient. With this maneuver, it was prevented that the preservation solution could reach the central circulation. Flash fluid was removed with two aspirators to avoid a drop in body temperature. In addition, potassium level was controlled in regular intervals to monitor its level. Hepatectomy was completed by removing the tumor infiltrated part of the RHV. Once the tumor was resected, LRV anastomosis to the rest of RHV was performed first at the parenchymal level, subsequently at the proximal end of the IVC. The blood flow leaves through the RHV until the anastomosis of the RHV with the LRV graft is completed.
  • Step 4 — hepatic reperfusion. Before finalizing the RHV reconstruction, albumin was infused via the left portal vein to remove potassium from the solution. Subsequently, RHV reconstruction was finalized, and left portal vein was ligated. Hepatic re-circulation was started first by opening RHV. At this point, the anastomosis was controlled via adequate hemostasis. Afterwards, the hepatic pedicle was opened as a final step of hepatic reperfusion. We checked that the venous graft had flow through ultrasound. Postoperatively, dose-adjusted subcutaneous heparin sodium (1 mg/kg/day for 1 month) was used, followed by warfarin and aspirin (5 and 75 to 100 mg/day for 3 months, respectively).

Results

Four patients underwent left hepatectomy with vascular reconstruction using LRV for tumor invasion of the confluence of hepatic veins (Fig. S1). The details are shown in Table 1. The origin of the liver metastases was colorectal cancer (n = 3) and breast cancer (n = 1). All patients had received neoadjuvant chemotherapy. Median lesion size was 40 mm [interquartile range (IQR), 35–62].
Table 1.
Demographic, perioperative, and oncological data of patients with a left renal vein graft for vascular reconstruction after resection of tumors in the confluence of the hepatic veins under vascular inflow occlusion with in situ hypothermic perfusion
Diagnosis
Initial tumor stage
Gender
Age
Previous chemo
N° of lesions
Size (cm)
Blood losses (ml)
Surgical time (min)
Complications (Clavien)
Warm ischemia (min)
ICU length of stay (days)
Hospital stay (days)
Tumor recurrence
Survival time (months)
1
CRLM
T3N0M0
M
53
Xelox
1
40
1500
240
No
77
4
15
No
Alive (118)
2
CRLM
T3N1M1
F
60
Folfox + Cetuximab
2
40; 20
300
420
No
60
5
11
No
Death (90)
3
BCLM
T2N0M1
F
53
Anthracycline
1
70
500
300
Pleural effusion (IIIa)
62
7
15
Yes
Alive (98)
4
CRLM
T3N0M1
M
40
Folfiri + Cetuximab
1
34
500
480
Intraabdominal colección (IIIA)
72
5
24
No
Alive (6)
CRLM, colorectal liver metastases; BCLM, breast cancer liver metastases; M, male; F, female; HTN, hypertension; CAD, coronary artery disease; rct, resection; RHV, right hepatic vein; MHV, middle hepatic vein; cm, centimeters; ml, millimeters; min, minutes

Hemodynamic parameters during surgery

Systolic and diastolic blood pressure before, during, and after hepatic exclusion was 140 ± 4.58, 101.3 ± 16.5, 120.6 ± 13.2, 71.3 ± 5.6, 60.6 ± 7.37, and 65 ± 6 mmHg, respectively. Cardiac index was 3.2 ± 0.28, 2.7 ± 0.22, and 2.9 ± 0.2 and heart rate was 75 ± 12.8, 88.3 ± 6.5, and 80 ± 3.4 beats per minute (bpm), before, during, and after hepatic exclusion, respectively (Fig. 3A). End tidal CO2 and oxygen saturation values were stable with minimal variation during the surgery. Two patients required norepinephrine, the first of them prior and during hepatic exclusion. The second patient required prior, during, and after hepatic exclusion and dobutamine during and after hepatic exclusion. A third patient required dobutamine exclusively during hepatic exclusion. All but one patient required at least one packed red blood cell, one patient required a unit of pooled platelets, and two patients required 2 and 6 fibrinogen units.

Surgical outcomes

Liver lesions infiltrated the RHV and the origin of middle and left hepatic veins in all cases. The median blood loss was 500 ml (IQR, 300–1500), median surgical time was 360 min (IQR, 255–465), and perfusion time with cold ischemia was 67 min (IQR, 60.5–77.5). The median length of the graft was 4.5 cm (IQR, 3.1–5.2). There were no major complications (≥ Clavien 3b) with a median hospital stay of 15 days (IQR, 12–21). Creatinine levels remained within normal range both in the immediate postoperative period and during follow-up (Fig. 3B). All patients could be resected with negative margin (R0). The grafts remained patent during follow-up without signs of thrombosis. Median follow-up was 97 months (IQR, 27–113). Three of four patients are currently alive. One patient had a lung recurrence that was treated with surgery (case 3). One patient died disease-free due to a cerebral hemorrhage (case 2).

Discussion

This study suggests that hepatic veins resection within situ liver cooling and autologous LRV for hepatic vein reconstruction is feasible without increased morbidity and impairment of renal function. This situation is feasible only if there is no invasion of the cavo-hepatic junction because the control can perform by hanging of the left hepatic trunk and the anastomosis of the LRV is done on both sides of the RHV.
In healthy liver parenchyma, a liver remnant of around 25% is sufficient for safe liver resection [2022]. Hepatic vein resection with reconstruction may be necessary if a tumor infiltrates to the hepatic veins. Such reconstruction is also proposed if the volume of the congestive area in liver remnant exceeds 20% [23]. Recent advances in liver machine perfusions may enable even ex vivo liver resection and vein reconstruction [2427]. However, ex vivo liver resection may have the disadvantages of additional warm ischemia during portal and arterial anastomoses and is costly. An approach using in situ hypothermic perfusion is comparably simpler and more cost effective [28, 29]. Odhafer et al. [30] advocated a modified approach to ante situm resection, avoiding in situ hypoperfusion or veno-venous bypass during the ischemic phase of resection. Using this approach, they minimized ischemic time (mean 30.9 min) with a maximum duration of 65 min. However, the cooling with a preservation solution to reduce the risk of ischemia and reperfusion injury may be necessary if prolonged surgery is anticipated or the liver has underlying disease such as relevant macrosteatosis or chemotherapy-associated damage.
During clamping of the hepatic veins and IVC, the venous return may decrease up to 75%, which is hardly tolerable without adequate hemodynamic support. We decided on a supramaximal optimization protocol prior to the clamping test to compensate for the decline in venous return. First, a volume replacement is provided up to the upper limit of volume overload (determined by VVS < 10%), after which a higher volume administration does not achieve the goal of improving cardiac output [31, 32]. Following volume restoration, dobutamine infusion is administered to further increase the cardiac output while maintaining the heart rate below 120 bpm. In our experience, these measures have been sufficient for adequate hemodynamic management without requiring veno-venous bypass in any case.
For complex hepatic vein reconstruction, the experience has been obtained mainly from living donor liver transplantation [3336]. Among the different possibilities of vascular grafts, the PTFE prosthesis has a higher risk of thrombosis, and a higher risk of infection via biliary leak, thus we propose to use PTFE prothesis as a last option. The use of cryopreserved veins can be an alternative for reconstruction, being an attractive option due to the variety of diameters, especially when a long length is required, but for this, a tissue bank must be available. It is important to select an autologous vein of optimal size and length, which might not always be available. In such case, an autologous vein could be also valuable alternative for reconstruction of hepatic veins. The external iliac vein has been used previously. However, resection of external iliac vein was associated with postoperative edema of the lower leg, as well as additional injuries. Nakamura et al. reported the use of external iliac vein grafts, superficial femoral vein, or a long saphenous vein graft for HV reconstructions, and only 3/8 grafts were viable at 30 months [37]. Other options such as the external jugular vein graft also require additional incisions in the neck [10]. The portion of the left renal vein is 5 to 6 cm long [38]. Different authors reported the possibility to use LRV grafts for vascular reconstruction in hepatobiliopancreatic surgery without a worsening of renal function in the short and long terms [1318, 3941] (Table S1). Indeed, it has several collateral branches (gonadal vein, the azygous-renal system, and splenorenal communications) that drain the venous return of the left kidney.

Conclusions

The use of LRV for the reconstruction of the hepatic vein in tumors that infiltrate the hepatic veins is feasible without impairment of the long-term renal function. Correct hemodynamic management with adequate optimization of the patient prior to and during the clamping of the portal pedicle together with in cooling with preservation solution allows such extreme liver surgery and is alternative to ex vivo liver resection.

Acknowledgements

The authors acknowledge the contribution of David Ferreras for the creation of visualizations and illustrations.

Declarations

Ethics approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual participants included in the study.
The authors affirm that human research participants provided informed consent for publication.

Conflict of interest

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D et al (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27(8):1386–1422CrossRef Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D et al (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27(8):1386–1422CrossRef
2.
Zurück zum Zitat Orcutt ST, Anaya DA (2018) Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25(1):1073274817744621CrossRef Orcutt ST, Anaya DA (2018) Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25(1):1073274817744621CrossRef
3.
Zurück zum Zitat Navez J, Cauchy F, Dokmak S, Goumard C, Faivre E, Weiss E et al (2019) Complex liver resection under hepatic vascular exclusion and hypothermic perfusion with versus without veno-venous bypass: a comparative study. HPB (Oxford) 21(9):1131–1138CrossRef Navez J, Cauchy F, Dokmak S, Goumard C, Faivre E, Weiss E et al (2019) Complex liver resection under hepatic vascular exclusion and hypothermic perfusion with versus without veno-venous bypass: a comparative study. HPB (Oxford) 21(9):1131–1138CrossRef
4.
Zurück zum Zitat Cauchy F, Brustia R, Perdigao F, Bernard D, Soubrane O, Scatton O (2016) In situ hypothermic perfusion of the liver for complex hepatic resection: surgical refinements. World J Surg 40(6):1448–1453CrossRef Cauchy F, Brustia R, Perdigao F, Bernard D, Soubrane O, Scatton O (2016) In situ hypothermic perfusion of the liver for complex hepatic resection: surgical refinements. World J Surg 40(6):1448–1453CrossRef
5.
Zurück zum Zitat Hemming AW, Reed AI, Langham MR Jr, Fujita S, Howard RJ (2004) Combined resection of the liver and inferior vena cava for hepatic malignancy. Ann Surg 239(5):712–719 discussion 9-21CrossRef Hemming AW, Reed AI, Langham MR Jr, Fujita S, Howard RJ (2004) Combined resection of the liver and inferior vena cava for hepatic malignancy. Ann Surg 239(5):712–719 discussion 9-21CrossRef
6.
Zurück zum Zitat Palek R, Jonasova A, Rosendorf J, Mik P, Bajcurova K, Hosek P et al (2019) Allogeneic venous grafts of different origin used for portal vein reconstruction after pancreaticoduodenectomy—experimental study. Anticancer Res 39(12):6603–6620CrossRef Palek R, Jonasova A, Rosendorf J, Mik P, Bajcurova K, Hosek P et al (2019) Allogeneic venous grafts of different origin used for portal vein reconstruction after pancreaticoduodenectomy—experimental study. Anticancer Res 39(12):6603–6620CrossRef
7.
Zurück zum Zitat Lee JM, Lee KW, Hong SK, Yoon KC, Cho JH, Yi NJ et al (2018) Unusual techniques for preserving surgical and oncologic safety in hepatectomy of advanced adrenal malignancy with vena cava and liver invasion. Ann Surg Oncol 25(11):3324–3325CrossRef Lee JM, Lee KW, Hong SK, Yoon KC, Cho JH, Yi NJ et al (2018) Unusual techniques for preserving surgical and oncologic safety in hepatectomy of advanced adrenal malignancy with vena cava and liver invasion. Ann Surg Oncol 25(11):3324–3325CrossRef
8.
Zurück zum Zitat Dokmak S, Aussilhou B, Marchese T, Kardoun N, Cauchy F, Schneck AS et al (2018) Right trisectionectomy and caval reconstruction with peritoneal patch under short total vascular exclusion for hepatocellular carcinoma with tumoral thrombus in suprahepatic vena cava. Ann Surg Oncol 25(5):1152CrossRef Dokmak S, Aussilhou B, Marchese T, Kardoun N, Cauchy F, Schneck AS et al (2018) Right trisectionectomy and caval reconstruction with peritoneal patch under short total vascular exclusion for hepatocellular carcinoma with tumoral thrombus in suprahepatic vena cava. Ann Surg Oncol 25(5):1152CrossRef
9.
Zurück zum Zitat Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I et al (2017) Surgical resection of malignancies invading inferior vena cava level I and II. Issues still need to be discussed. Anticancer Res 37(5):2523–2528CrossRef Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I et al (2017) Surgical resection of malignancies invading inferior vena cava level I and II. Issues still need to be discussed. Anticancer Res 37(5):2523–2528CrossRef
10.
Zurück zum Zitat Sadamori H, Hioki M, Monden K, Kobatake C, Kanehira N, Ohno S et al (2019) Right hepatic vein reconstruction with an autologous jugular vein graft to expand the surgical indications for liver tumors. J Gastrointest Surg 23(12):2467CrossRef Sadamori H, Hioki M, Monden K, Kobatake C, Kanehira N, Ohno S et al (2019) Right hepatic vein reconstruction with an autologous jugular vein graft to expand the surgical indications for liver tumors. J Gastrointest Surg 23(12):2467CrossRef
11.
Zurück zum Zitat Stüben BO, Heumann A, Stürznickel J, Izbicki JR, Li J (2019) Successful use of the recanalized remnant umbilical vein as a patch graft for venous reconstruction in abdominal surgery. J Gastrointest Surg 23(6):1227–1231CrossRef Stüben BO, Heumann A, Stürznickel J, Izbicki JR, Li J (2019) Successful use of the recanalized remnant umbilical vein as a patch graft for venous reconstruction in abdominal surgery. J Gastrointest Surg 23(6):1227–1231CrossRef
12.
Zurück zum Zitat Palma AF, Oberkofler CE, Raptis DA, Eshmuminov D, de Rougemont O, Schnyder A et al (2014) Novel rescue procedure for inferior vena cava reconstruction in living-donor liver transplantation using a vascular graft recovered 25 h after donors’ circulatory death and systematic review. Transpl Int 27(2):204–210CrossRef Palma AF, Oberkofler CE, Raptis DA, Eshmuminov D, de Rougemont O, Schnyder A et al (2014) Novel rescue procedure for inferior vena cava reconstruction in living-donor liver transplantation using a vascular graft recovered 25 h after donors’ circulatory death and systematic review. Transpl Int 27(2):204–210CrossRef
13.
Zurück zum Zitat Ohwada S, Hamada K, Kawate S, Sunose Y, Tomizawa N, Yamada T et al (2007) Left renal vein graft for vascular reconstruction in abdominal malignancy. World J Surg 31(6):1215–1220CrossRef Ohwada S, Hamada K, Kawate S, Sunose Y, Tomizawa N, Yamada T et al (2007) Left renal vein graft for vascular reconstruction in abdominal malignancy. World J Surg 31(6):1215–1220CrossRef
14.
Zurück zum Zitat Smoot RL, Christein JD, Farnell MB (2007) An innovative option for venous reconstruction after pancreaticoduodenectomy: the left renal vein. J Gastrointest Surg 11(4):425–431CrossRef Smoot RL, Christein JD, Farnell MB (2007) An innovative option for venous reconstruction after pancreaticoduodenectomy: the left renal vein. J Gastrointest Surg 11(4):425–431CrossRef
15.
Zurück zum Zitat Choi SH, Hwang HK, Kang CM, Lee WJ (2011) Potential use of left renal vein graft in pancreaticoduodenectomy combined with long segmental resection of the superior mesenteric-splenic-portal vein confluence. J Pancreas 12(3):234–240 Choi SH, Hwang HK, Kang CM, Lee WJ (2011) Potential use of left renal vein graft in pancreaticoduodenectomy combined with long segmental resection of the superior mesenteric-splenic-portal vein confluence. J Pancreas 12(3):234–240
16.
Zurück zum Zitat Perumalla R, Jamieson NV, Praseedom RK (2008) Left renal vein as an option for portal inflow in liver transplant recipients with portal vein thrombosis. Transpl Int 21(7):701–703CrossRef Perumalla R, Jamieson NV, Praseedom RK (2008) Left renal vein as an option for portal inflow in liver transplant recipients with portal vein thrombosis. Transpl Int 21(7):701–703CrossRef
17.
Zurück zum Zitat Choudry H, Avella D, Garcia L, Han D, Staveley-O’Carroll K, Kimchi E (2008) Use of the left renal vein as a practical conduit in superior mesenteric vein reconstruction. J Surg Res 146(1):117–120CrossRef Choudry H, Avella D, Garcia L, Han D, Staveley-O’Carroll K, Kimchi E (2008) Use of the left renal vein as a practical conduit in superior mesenteric vein reconstruction. J Surg Res 146(1):117–120CrossRef
18.
Zurück zum Zitat Suzuki T, Yoshidome H, Kimura F, Shimizu H, Ohtsuka M, Kato A et al (2006) Renal function is well maintained after use of left renal vein graft for vascular reconstruction in hepatobiliary-pancreatic surgery. J Am Coll Surg 202(1):87–92CrossRef Suzuki T, Yoshidome H, Kimura F, Shimizu H, Ohtsuka M, Kato A et al (2006) Renal function is well maintained after use of left renal vein graft for vascular reconstruction in hepatobiliary-pancreatic surgery. J Am Coll Surg 202(1):87–92CrossRef
19.
Zurück zum Zitat Yamamoto Y, Sakamoto Y, Nara S, Ban D, Esaki M, Shimada K et al (2009) Reconstruction of the portal and hepatic veins using venous grafts customized from the bilateral gonadal veins. Langenbeck's Arch Surg 394(6):1115–1121CrossRef Yamamoto Y, Sakamoto Y, Nara S, Ban D, Esaki M, Shimada K et al (2009) Reconstruction of the portal and hepatic veins using venous grafts customized from the bilateral gonadal veins. Langenbeck's Arch Surg 394(6):1115–1121CrossRef
20.
Zurück zum Zitat Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Iacono C (2012) How much remnant is enough in liver resection? Dig Surg 29(1):6–17CrossRef Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Iacono C (2012) How much remnant is enough in liver resection? Dig Surg 29(1):6–17CrossRef
21.
Zurück zum Zitat Eshmuminov D, Raptis DA, Linecker M, Wirsching A, Lesurtel M, Clavien PA (2016) Meta-analysis of associating liver partition with portal vein ligation and portal vein occlusion for two-stage hepatectomy. Br J Surg 103(13):1768–1782CrossRef Eshmuminov D, Raptis DA, Linecker M, Wirsching A, Lesurtel M, Clavien PA (2016) Meta-analysis of associating liver partition with portal vein ligation and portal vein occlusion for two-stage hepatectomy. Br J Surg 103(13):1768–1782CrossRef
22.
Zurück zum Zitat Eshmuminov D, Tschuor C, Raptis DA, Boss A, Wurnig MC, Sergeant G et al (2017) Rapid liver volume increase induced by associating liver partition with portal vein ligation for staged hepatectomy (ALPPS): is it edema, steatosis, or true proliferation? Surgery 161(6):1549–1552CrossRef Eshmuminov D, Tschuor C, Raptis DA, Boss A, Wurnig MC, Sergeant G et al (2017) Rapid liver volume increase induced by associating liver partition with portal vein ligation for staged hepatectomy (ALPPS): is it edema, steatosis, or true proliferation? Surgery 161(6):1549–1552CrossRef
23.
Zurück zum Zitat Wu CC, Peng CM, Cheng SB, Yeh DC, Lui WY, Liu TJ et al (2012) The necessity of hepatic vein reconstruction after resection of cranial part of the liver and major hepatic veins in cirrhotic patients. Surgery 151(2):223–231CrossRef Wu CC, Peng CM, Cheng SB, Yeh DC, Lui WY, Liu TJ et al (2012) The necessity of hepatic vein reconstruction after resection of cranial part of the liver and major hepatic veins in cirrhotic patients. Surgery 151(2):223–231CrossRef
24.
Zurück zum Zitat Dengu F, Abbas SH, Ebeling G, Nasralla D (2020) Normothermic machine perfusion (NMP) of the liver as a platform for therapeutic interventions during ex-vivo liver preservation: a review. J Clin Med 9(4. Dengu F, Abbas SH, Ebeling G, Nasralla D (2020) Normothermic machine perfusion (NMP) of the liver as a platform for therapeutic interventions during ex-vivo liver preservation: a review. J Clin Med 9(4.
25.
Zurück zum Zitat Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C et al (2020) An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 38(2):189–198CrossRef Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C et al (2020) An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 38(2):189–198CrossRef
26.
Zurück zum Zitat Becker D, Hefti M, Schuler MJ, Borrego LB, Hagedorn C, Muller X et al (2020) Model assisted analysis of the hepatic arterial buffer response during ex vivo porcine liver perfusion. IEEE Trans Biomed Eng 67(3):667–678CrossRef Becker D, Hefti M, Schuler MJ, Borrego LB, Hagedorn C, Muller X et al (2020) Model assisted analysis of the hepatic arterial buffer response during ex vivo porcine liver perfusion. IEEE Trans Biomed Eng 67(3):667–678CrossRef
27.
Zurück zum Zitat Becker D, Eshmuminov D, Keller R, Bautista Borrego L, Hagedorn C, Duskabilova M et al (2021) Automated insulin delivery—continuous blood glucose control during ex situ liver perfusion. IEEE Trans Biomed Eng 68(4):1399–1408CrossRef Becker D, Eshmuminov D, Keller R, Bautista Borrego L, Hagedorn C, Duskabilova M et al (2021) Automated insulin delivery—continuous blood glucose control during ex situ liver perfusion. IEEE Trans Biomed Eng 68(4):1399–1408CrossRef
28.
Zurück zum Zitat Dubay D, Gallinger S, Hawryluck L, Swallow C, McCluskey S, McGilvray I (2009) In situ hypothermic liver preservation during radical liver resection with major vascular reconstruction. Br J Surg 96(12):1429–1436CrossRef Dubay D, Gallinger S, Hawryluck L, Swallow C, McCluskey S, McGilvray I (2009) In situ hypothermic liver preservation during radical liver resection with major vascular reconstruction. Br J Surg 96(12):1429–1436CrossRef
29.
Zurück zum Zitat Azoulay D, Andreani P, Maggi U, Salloum C, Perdigao F, Sebagh M et al (2006) Combined liver resection and reconstruction of the supra-renal vena cava: the Paul Brousse experience. Ann Surg 244(1):80–88CrossRef Azoulay D, Andreani P, Maggi U, Salloum C, Perdigao F, Sebagh M et al (2006) Combined liver resection and reconstruction of the supra-renal vena cava: the Paul Brousse experience. Ann Surg 244(1):80–88CrossRef
30.
Zurück zum Zitat Oldhafer F, Ringe KI, Timrott K, Kleine M, Beetz O, Ramackers W et al (2018) Modified ante situm liver resection without use of cold perfusion nor veno-venous bypass for treatment of hepatic lesions infiltrating the hepatocaval confluence. Langenbeck's Arch Surg 403(3):379–386CrossRef Oldhafer F, Ringe KI, Timrott K, Kleine M, Beetz O, Ramackers W et al (2018) Modified ante situm liver resection without use of cold perfusion nor veno-venous bypass for treatment of hepatic lesions infiltrating the hepatocaval confluence. Langenbeck's Arch Surg 403(3):379–386CrossRef
31.
Zurück zum Zitat Monnet X, Teboul JL (2018) Assessment of fluid responsiveness: recent advances. Curr Opin Crit Care 24(3):190–195CrossRef Monnet X, Teboul JL (2018) Assessment of fluid responsiveness: recent advances. Curr Opin Crit Care 24(3):190–195CrossRef
32.
Zurück zum Zitat Jozwiak M, Monnet X, Teboul JL (2018) Prediction of fluid responsiveness in ventilated patients. Ann Transl Med 6(18):352CrossRef Jozwiak M, Monnet X, Teboul JL (2018) Prediction of fluid responsiveness in ventilated patients. Ann Transl Med 6(18):352CrossRef
33.
Zurück zum Zitat Ikegami T, Shirabe K, Yoshiya S, Soejima Y, Yoshizumi T, Uchiyama H et al (2013) One-step reconstruction of the right inferior hepatic veins using auto-venous grafts in living-donor liver transplantation. Surg Today 43(7):769–776CrossRef Ikegami T, Shirabe K, Yoshiya S, Soejima Y, Yoshizumi T, Uchiyama H et al (2013) One-step reconstruction of the right inferior hepatic veins using auto-venous grafts in living-donor liver transplantation. Surg Today 43(7):769–776CrossRef
34.
Zurück zum Zitat Sakamoto K, Ogawa K, Matsui T, Utsunomiya T, Honjo M, Ueno Y et al (2019) Reconstruction of middle hepatic vein tributaries with artificial vascular grafts in living donor liver transplant using right lobe grafts: a case series. Transplant Proc 51(5):1506–1510CrossRef Sakamoto K, Ogawa K, Matsui T, Utsunomiya T, Honjo M, Ueno Y et al (2019) Reconstruction of middle hepatic vein tributaries with artificial vascular grafts in living donor liver transplant using right lobe grafts: a case series. Transplant Proc 51(5):1506–1510CrossRef
35.
Zurück zum Zitat Khan S, Silva MA, Tan YM, John A, Gunson B, Buckels JA et al (2006) Conventional versus piggyback technique of caval implantation; without extra-corporeal veno-venous bypass. A comparative study. Transpl Int 19(10):795–801CrossRef Khan S, Silva MA, Tan YM, John A, Gunson B, Buckels JA et al (2006) Conventional versus piggyback technique of caval implantation; without extra-corporeal veno-venous bypass. A comparative study. Transpl Int 19(10):795–801CrossRef
36.
Zurück zum Zitat Gurusamy KS, Koti R, Pamecha V, Davidson BR (2011) Veno-venous bypass versus none for liver transplantation. Cochrane Database Syst Rev (3):Cd007712 Gurusamy KS, Koti R, Pamecha V, Davidson BR (2011) Veno-venous bypass versus none for liver transplantation. Cochrane Database Syst Rev (3):Cd007712
37.
Zurück zum Zitat Nakamura S, Sakaguchi S, Hachiya T, Suzuki S, Nishiyama R, Konno H et al (1993) Significance of hepatic vein reconstruction in hepatectomy. Surgery. 114(1):59–64PubMed Nakamura S, Sakaguchi S, Hachiya T, Suzuki S, Nishiyama R, Konno H et al (1993) Significance of hepatic vein reconstruction in hepatectomy. Surgery. 114(1):59–64PubMed
38.
Zurück zum Zitat Hostiuc S, Rusu MC, Negoi I, Dorobanțu B, Grigoriu M (2019) Anatomical variants of renal veins: a meta-analysis of prevalence. Sci Rep 9(1):10802CrossRef Hostiuc S, Rusu MC, Negoi I, Dorobanțu B, Grigoriu M (2019) Anatomical variants of renal veins: a meta-analysis of prevalence. Sci Rep 9(1):10802CrossRef
39.
Zurück zum Zitat Miyazaki M, Itoh H, Kaiho T, Ambiru S, Togawa A, Sasada K et al (1995) Portal vein reconstruction at the hepatic hilus using a left renal vein graft. J Am Coll Surg 180(4):497–498PubMed Miyazaki M, Itoh H, Kaiho T, Ambiru S, Togawa A, Sasada K et al (1995) Portal vein reconstruction at the hepatic hilus using a left renal vein graft. J Am Coll Surg 180(4):497–498PubMed
40.
Zurück zum Zitat Miyazaki M, Ito H, Nakagawa K, Ambiru S, Shimizu H, Ohtuka M et al (1997) Vascular reconstruction using left renal vein graft in advanced hepatobiliary malignancy. Hepato-gastroenterology. 44(18):1619–1623PubMed Miyazaki M, Ito H, Nakagawa K, Ambiru S, Shimizu H, Ohtuka M et al (1997) Vascular reconstruction using left renal vein graft in advanced hepatobiliary malignancy. Hepato-gastroenterology. 44(18):1619–1623PubMed
41.
Zurück zum Zitat Eguchi S, Ono S, Soyama A, Fukui-Araki S, Isagawa-Takayama Y, Hidaka M et al (2019) One-step reconstruction of IVC and right hepatic vein using reversed auto IVC and left renal vein graft. Int J Surg Case Rep 57:57–59CrossRef Eguchi S, Ono S, Soyama A, Fukui-Araki S, Isagawa-Takayama Y, Hidaka M et al (2019) One-step reconstruction of IVC and right hepatic vein using reversed auto IVC and left renal vein graft. Int J Surg Case Rep 57:57–59CrossRef
Metadaten
Titel
Left renal vein graft and in situ hepatic perfusion in hepatectomy for complete tumor invasion of hepatic veins: hemodynamic optimization and surgical technique
verfasst von
Víctor Lopez-Lopez
Jose Garcia-Lopez
Dilmurodjon Eshmuminov
Roberto Brusadin
Asunción Lopez-Conesa
Luis Martinez-Insfran
Pedro Fernández-Fernández
Ricardo Robles-Campos
Publikationsdatum
31.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Langenbeck's Archives of Surgery / Ausgabe 4/2022
Print ISSN: 1435-2443
Elektronische ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-022-02451-6

Weitere Artikel der Ausgabe 4/2022

Langenbeck's Archives of Surgery 4/2022 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.