Skip to main content
Erschienen in: Experimental Brain Research 2/2013

01.10.2013 | Research Article

Left visual field preference for a bimanual grasping task with ecologically valid object sizes

verfasst von: Ada Le, Matthias Niemeier

Erschienen in: Experimental Brain Research | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Grasping using two forelimbs in opposition to one another is evolutionary older than the hand with an opposable thumb (Whishaw and Coles in Behav Brain Res 77:135–148, 1996); yet, the mechanisms for bimanual grasps remain unclear. Similar to unimanual grasping, the localization of matching stable grasp points on an object is computationally expensive and so it makes sense for the signals to converge in a single cortical hemisphere. Indeed, bimanual grasps are faster and more accurate in the left visual field, and are disrupted if there is transcranial stimulation of the right hemisphere (Le and Niemeier in Exp Brain Res 224:263–273, 2013; Le et al. in Cereb Cortex. doi:10.​1093/​cercor/​bht115, 2013). However, research so far has tested the right hemisphere dominance based on small objects only, which are usually grasped with one hand, whereas bimanual grasping is more commonly used for objects that are too big for a single hand. Because grasping large objects might involve different neural circuits than grasping small objects (Grol et al. in J Neurosci 27:11877–11887, 2007), here we tested whether a left visual field/right hemisphere dominance for bimanual grasping exists with large and thus more ecologically valid objects or whether the right hemisphere dominance is a function of object size. We asked participants to fixate to the left or right of an object and to grasp the object with the index and middle fingers of both hands. Consistent with previous observations, we found that for objects in the left visual field, the maximum grip apertures were scaled closer to the object width and were smaller and less variable, than for objects in the right visual field. Our results demonstrate that bimanual grasping is predominantly controlled by the right hemisphere, even in the context of grasping larger objects.
Literatur
Zurück zum Zitat Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the spontaneous phase transition during bimanual coordination. Cereb Cortex 16:1338–1348PubMedCrossRef Aramaki Y, Honda M, Okada T, Sadato N (2006) Neural correlates of the spontaneous phase transition during bimanual coordination. Cereb Cortex 16:1338–1348PubMedCrossRef
Zurück zum Zitat Baas U, de Haan B, Grassli T, Karnath H-O, Mueri R, Perrig WJ, Wurtz P, Gutbrod K (2011) Personal neglect—a disorder of body representation? Neuropsychologia 49:898–905PubMedCrossRef Baas U, de Haan B, Grassli T, Karnath H-O, Mueri R, Perrig WJ, Wurtz P, Gutbrod K (2011) Personal neglect—a disorder of body representation? Neuropsychologia 49:898–905PubMedCrossRef
Zurück zum Zitat Binkofski F, Buccino G (2006) The role of ventral premotor cortex in action execution and action understanding. J Physiol (Paris) 99:396–406CrossRef Binkofski F, Buccino G (2006) The role of ventral premotor cortex in action execution and action understanding. J Physiol (Paris) 99:396–406CrossRef
Zurück zum Zitat Binkofski F, Dohle C, Phil M, Posse S, Stephan KM, Hefter H, Seitz J, Freund HJ (1998) Human anterior intraparietal areas subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMedCrossRef Binkofski F, Dohle C, Phil M, Posse S, Stephan KM, Hefter H, Seitz J, Freund HJ (1998) Human anterior intraparietal areas subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMedCrossRef
Zurück zum Zitat Blake A (1992) Computational modelling of hand-eye coordination. Philos Trans R Soc Lond [Biol] 337:351–360CrossRef Blake A (1992) Computational modelling of hand-eye coordination. Philos Trans R Soc Lond [Biol] 337:351–360CrossRef
Zurück zum Zitat Blake A, Taylor M, Cox A (1993) Grasping visual symmetry. In: Proceedings of the fourth international conference on computer vision. International conference on computer vision, Berlin Blake A, Taylor M, Cox A (1993) Grasping visual symmetry. In: Proceedings of the fourth international conference on computer vision. International conference on computer vision, Berlin
Zurück zum Zitat Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419:269–270PubMedCrossRef Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419:269–270PubMedCrossRef
Zurück zum Zitat Brainard DH (1997) The psychophysics toolbox. Spatial Vis 10:433–436CrossRef Brainard DH (1997) The psychophysics toolbox. Spatial Vis 10:433–436CrossRef
Zurück zum Zitat Byrne PA, Cappadocia DC, Crawford JD (2010) Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating. Vis Res 50:2661–2670PubMedCrossRef Byrne PA, Cappadocia DC, Crawford JD (2010) Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating. Vis Res 50:2661–2670PubMedCrossRef
Zurück zum Zitat Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14:157–170PubMedCrossRef Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14:157–170PubMedCrossRef
Zurück zum Zitat Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ, Goodale MA, Culham JC (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323PubMedCrossRef Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ, Goodale MA, Culham JC (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323PubMedCrossRef
Zurück zum Zitat Cohen NR, Cross ES, Tunik E, Grafton S, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47:1553–1562PubMedCrossRef Cohen NR, Cross ES, Tunik E, Grafton S, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47:1553–1562PubMedCrossRef
Zurück zum Zitat Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: eye tracking with MATLAB and the psychophysic toolbox. Behav Res Method Instrum Comput 34:613–617CrossRef Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: eye tracking with MATLAB and the psychophysic toolbox. Behav Res Method Instrum Comput 34:613–617CrossRef
Zurück zum Zitat Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212PubMedCrossRef Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212PubMedCrossRef
Zurück zum Zitat Culham J, Danckert SL, DeSouza JFX, Gati JS, Menen RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189PubMedCrossRef Culham J, Danckert SL, DeSouza JFX, Gati JS, Menen RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189PubMedCrossRef
Zurück zum Zitat Davare M, Andres M, Clerget E, Thonnard J-L, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980PubMedCrossRef Davare M, Andres M, Clerget E, Thonnard J-L, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980PubMedCrossRef
Zurück zum Zitat Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181PubMedCrossRef Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181PubMedCrossRef
Zurück zum Zitat Dohle C, Ostermann G, Hefter H, Freund H-J (2000) Different coupling for the reach and grasp components in bimanual prehension movements. NeuroReport 11:3787–3791PubMedCrossRef Dohle C, Ostermann G, Hefter H, Freund H-J (2000) Different coupling for the reach and grasp components in bimanual prehension movements. NeuroReport 11:3787–3791PubMedCrossRef
Zurück zum Zitat Duque J, Davare M, Delaunay L, Jacob B, Saur R, Hummel F, Hemoye L, Rossion B, Olivier E (2009) Monitoring coordination during bimanual movements: where is the mastermind? J Cogn Neurosci 22:526–542CrossRef Duque J, Davare M, Delaunay L, Jacob B, Saur R, Hummel F, Hemoye L, Rossion B, Olivier E (2009) Monitoring coordination during bimanual movements: where is the mastermind? J Cogn Neurosci 22:526–542CrossRef
Zurück zum Zitat Eastough D, Edwards MG (2007) Movement kinematics in prehension are affected by grasping objects of different mass. Exp Brain Res 176:193–198PubMedCrossRef Eastough D, Edwards MG (2007) Movement kinematics in prehension are affected by grasping objects of different mass. Exp Brain Res 176:193–198PubMedCrossRef
Zurück zum Zitat Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536PubMed Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536PubMed
Zurück zum Zitat Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. Neuroimage 10:114–124PubMedCrossRef Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. Neuroimage 10:114–124PubMedCrossRef
Zurück zum Zitat Frey SH, Vintonb D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23:397–405CrossRef Frey SH, Vintonb D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn Brain Res 23:397–405CrossRef
Zurück zum Zitat Galati G, Lobel E, Vallar G, Berthoz A, Pizzamiglio L, Le Bihan D (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional resonance study. Exp Brain Res 133:156–164PubMedCrossRef Galati G, Lobel E, Vallar G, Berthoz A, Pizzamiglio L, Le Bihan D (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional resonance study. Exp Brain Res 133:156–164PubMedCrossRef
Zurück zum Zitat Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170PubMedCrossRef Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170PubMedCrossRef
Zurück zum Zitat Glover S, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17:124–136PubMedCrossRef Glover S, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17:124–136PubMedCrossRef
Zurück zum Zitat Gonzalez CL, Goodale MA (2009) Hand preference for precision grasping predicts language lateralization. Neuropsychologia 47:3182–3189PubMedCrossRef Gonzalez CL, Goodale MA (2009) Hand preference for precision grasping predicts language lateralization. Neuropsychologia 47:3182–3189PubMedCrossRef
Zurück zum Zitat Gonzalez CLR, Ganel T, Goodale MA (2006) Hemispheric specialization for the visual control of action is independent of handedness. J Neurophysiol 95:3496–3501PubMedCrossRef Gonzalez CLR, Ganel T, Goodale MA (2006) Hemispheric specialization for the visual control of action is independent of handedness. J Neurophysiol 95:3496–3501PubMedCrossRef
Zurück zum Zitat Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610PubMedCrossRef Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610PubMedCrossRef
Zurück zum Zitat Grol MJ, Majdandžić J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887PubMedCrossRef Grol MJ, Majdandžić J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887PubMedCrossRef
Zurück zum Zitat Hughes CML, Franz EA (2008) Goal-related planning constraints in bimanual grasping and placing of objects. Exp Brain Res 188:541–550PubMedCrossRef Hughes CML, Franz EA (2008) Goal-related planning constraints in bimanual grasping and placing of objects. Exp Brain Res 188:541–550PubMedCrossRef
Zurück zum Zitat Jackson GM, Jackson SR, Kritikos A (1999) Attention for action: coordinating bimanual reach-to-grasp movements. Br J Psychol 90:247–270PubMedCrossRef Jackson GM, Jackson SR, Kritikos A (1999) Attention for action: coordinating bimanual reach-to-grasp movements. Br J Psychol 90:247–270PubMedCrossRef
Zurück zum Zitat Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, NJ
Zurück zum Zitat Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein E-B, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518PubMedCrossRef Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein E-B, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518PubMedCrossRef
Zurück zum Zitat Koch G, Cercignani M, Pecchioli C, Versace V, Oliveri M, Caltagirone C, Rothwell J, Bozzali M (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage 51:300–312PubMedCrossRef Koch G, Cercignani M, Pecchioli C, Versace V, Oliveri M, Caltagirone C, Rothwell J, Bozzali M (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage 51:300–312PubMedCrossRef
Zurück zum Zitat Lang CE, Schieber MH (2003) Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophys 90:1160–1170CrossRef Lang CE, Schieber MH (2003) Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophys 90:1160–1170CrossRef
Zurück zum Zitat Le A, Niemeier M (2013) A right hemisphere dominance for bimanual grasps. Exp Brain Res 224:263–273PubMedCrossRef Le A, Niemeier M (2013) A right hemisphere dominance for bimanual grasps. Exp Brain Res 224:263–273PubMedCrossRef
Zurück zum Zitat Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152:156–165PubMedCrossRef Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152:156–165PubMedCrossRef
Zurück zum Zitat Lewis GN, Perreault EJ (2009) An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. IEEE Trans Neural Syst Rehabil Eng 17:595–604PubMedCrossRef Lewis GN, Perreault EJ (2009) An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. IEEE Trans Neural Syst Rehabil Eng 17:595–604PubMedCrossRef
Zurück zum Zitat Li S, Latash ML, Yue GH, Siemionow V, Sahgal V (2003) The effects of stroke and age on finger interaction in multi-finger force production tasks. Clin Neurophysiol 114:1646–1655PubMedCrossRef Li S, Latash ML, Yue GH, Siemionow V, Sahgal V (2003) The effects of stroke and age on finger interaction in multi-finger force production tasks. Clin Neurophysiol 114:1646–1655PubMedCrossRef
Zurück zum Zitat Macaluso E, Frith CD, Driver J (2002) Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account. Neuron 34:647–658PubMedCrossRef Macaluso E, Frith CD, Driver J (2002) Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account. Neuron 34:647–658PubMedCrossRef
Zurück zum Zitat Marotta JJ, McKeeff TJ, Behrmann M (2003) Hemispatial neglect: its effects on visual perception and visually guided grasping. Neuropsychologia 41:1262–1271PubMedCrossRef Marotta JJ, McKeeff TJ, Behrmann M (2003) Hemispatial neglect: its effects on visual perception and visually guided grasping. Neuropsychologia 41:1262–1271PubMedCrossRef
Zurück zum Zitat Medendorp WP, Crawford JD, Henriques DYP, van Gisbergen JAM, Gielen CCAM (2000) Kinematic strategies for upper arm-forearm coordination in three dimensions. J Physiol 84:2302–2316 Medendorp WP, Crawford JD, Henriques DYP, van Gisbergen JAM, Gielen CCAM (2000) Kinematic strategies for upper arm-forearm coordination in three dimensions. J Physiol 84:2302–2316
Zurück zum Zitat Monaco S, Chen Y, Medendorp WP, Crawford JD, Fiehler K, Henriques DYP (2013) Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties. Cereb Cortex. doi:10.1093/cercor/bht006 PubMed Monaco S, Chen Y, Medendorp WP, Crawford JD, Fiehler K, Henriques DYP (2013) Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties. Cereb Cortex. doi:10.​1093/​cercor/​bht006 PubMed
Zurück zum Zitat Murata A, Gallese V, Lupino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMed Murata A, Gallese V, Lupino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMed
Zurück zum Zitat Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg 38:902–913 Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg 38:902–913
Zurück zum Zitat Ochiai T, Mushiake H, Tanji J (2005) Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cereb Cortex 15:929–937PubMedCrossRef Ochiai T, Mushiake H, Tanji J (2005) Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cereb Cortex 15:929–937PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
Zurück zum Zitat Pelli DG (1997) The VideoToolbox software for visual psychophysics. Transforming numbers into movies. Spatial Vis 10:437–442CrossRef Pelli DG (1997) The VideoToolbox software for visual psychophysics. Transforming numbers into movies. Spatial Vis 10:437–442CrossRef
Zurück zum Zitat Pujol J, Deus J, Losilla JM, Capdevila A (1999) Cerebral lateralization of language in normal lefthanded people studied by functional MRI. Neurology 52:1038–1043PubMedCrossRef Pujol J, Deus J, Losilla JM, Capdevila A (1999) Cerebral lateralization of language in normal lefthanded people studied by functional MRI. Neurology 52:1038–1043PubMedCrossRef
Zurück zum Zitat Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26:8176–8182PubMedCrossRef Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26:8176–8182PubMedCrossRef
Zurück zum Zitat Rice NJ, Tunik E, Cross ES, Grafton ST (2007) On-line grasp control is mediated by the contralateral hemisphere. Brain Res 1175:76–84PubMedCrossRef Rice NJ, Tunik E, Cross ES, Grafton ST (2007) On-line grasp control is mediated by the contralateral hemisphere. Brain Res 1175:76–84PubMedCrossRef
Zurück zum Zitat Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141CrossRef Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141CrossRef
Zurück zum Zitat Rochat P (1989) Object manipulation and exploration in 2- to 5-month-old infants. Dev Psychol 25:871–884CrossRef Rochat P (1989) Object manipulation and exploration in 2- to 5-month-old infants. Dev Psychol 25:871–884CrossRef
Zurück zum Zitat Rose DK, Winstein CJ (2004) Bimanual training after stroke: are two hands better than one? Top Stroke Rehabil 11:20–30PubMedCrossRef Rose DK, Winstein CJ (2004) Bimanual training after stroke: are two hands better than one? Top Stroke Rehabil 11:20–30PubMedCrossRef
Zurück zum Zitat Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674PubMed Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674PubMed
Zurück zum Zitat Sakata H, Taira M, Murata A, Gallese V, Tanaka Y, Shikata E, Kusunoki M (1996) Parietal visual neurons coding three-dimensional characteristics of objects and their relation to hand action. In: Their P, Karnath HO (eds) Parietal lobe contributions to orientation in 3D space. Springer, New York Sakata H, Taira M, Murata A, Gallese V, Tanaka Y, Shikata E, Kusunoki M (1996) Parietal visual neurons coding three-dimensional characteristics of objects and their relation to hand action. In: Their P, Karnath HO (eds) Parietal lobe contributions to orientation in 3D space. Springer, New York
Zurück zum Zitat Schlicht EJ, Schrater PR (2007) Effects of visual uncertainty on grasping movements. Exp Brain Res 182:47–57PubMedCrossRef Schlicht EJ, Schrater PR (2007) Effects of visual uncertainty on grasping movements. Exp Brain Res 182:47–57PubMedCrossRef
Zurück zum Zitat Serrien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167PubMedCrossRef Serrien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167PubMedCrossRef
Zurück zum Zitat Shikata E, Hamzei F, Glauce V, Koch M, Weiller C, Binkofski F, Buchel C (2003) Functional properties and interactions of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17:1105–1110PubMedCrossRef Shikata E, Hamzei F, Glauce V, Koch M, Weiller C, Binkofski F, Buchel C (2003) Functional properties and interactions of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17:1105–1110PubMedCrossRef
Zurück zum Zitat Shmuelof L, Zohary E (2006) A mirror representation of others’ actions in the human anterior parietal cortex. J Neurosci 26:9736–9742PubMedCrossRef Shmuelof L, Zohary E (2006) A mirror representation of others’ actions in the human anterior parietal cortex. J Neurosci 26:9736–9742PubMedCrossRef
Zurück zum Zitat Siddiqui A (1995) Object size as a determinant of grasping in infancy. J Genet Psychol 156:345–358PubMedCrossRef Siddiqui A (1995) Object size as a determinant of grasping in infancy. J Genet Psychol 156:345–358PubMedCrossRef
Zurück zum Zitat Sleimen-Malkoun R, Temprado J–J, Berton E (2010) A dynamic systems approach to bimanual coordination in stroke: implications for rehabilitation and research. Medicina 46:374PubMed Sleimen-Malkoun R, Temprado J–J, Berton E (2010) A dynamic systems approach to bimanual coordination in stroke: implications for rehabilitation and research. Medicina 46:374PubMed
Zurück zum Zitat Sleimen-Malkoun R, Temprado J-J, Thefenne L, Berton E (2011) Bimanual training in stroke: How do coupling and symmetry-breaking matter? BMG Neurology 11:1–9CrossRef Sleimen-Malkoun R, Temprado J-J, Thefenne L, Berton E (2011) Bimanual training in stroke: How do coupling and symmetry-breaking matter? BMG Neurology 11:1–9CrossRef
Zurück zum Zitat Slota GP, Suh MS, Latash ML, Zatsiorsky VM (2012) Stability control of grasping objects with different locations of center of mass and rotational inertia. J Mot Behav 44:169–178PubMedCrossRef Slota GP, Suh MS, Latash ML, Zatsiorsky VM (2012) Stability control of grasping objects with different locations of center of mass and rotational inertia. J Mot Behav 44:169–178PubMedCrossRef
Zurück zum Zitat Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271 Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271
Zurück zum Zitat Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100PubMedCrossRef Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100PubMedCrossRef
Zurück zum Zitat Tanné J, Boussaoud D, Boyer-Zeller N, Rouiller EM (1995) Direct visual pathways for reaching movements in the macaque monkey. NeuroReport 7:267–272PubMed Tanné J, Boussaoud D, Boyer-Zeller N, Rouiller EM (1995) Direct visual pathways for reaching movements in the macaque monkey. NeuroReport 7:267–272PubMed
Zurück zum Zitat Theys T, Pani P, van Loon J, Goffin J, Janssen P (2012) Three-dimensional shape coding in grasping circuits: a comparison between the anterior intraparietal area and ventral premotor area F5a. J Cogn Neurosci. doi:10.1162/jocn_a_00332 PubMed Theys T, Pani P, van Loon J, Goffin J, Janssen P (2012) Three-dimensional shape coding in grasping circuits: a comparison between the anterior intraparietal area and ventral premotor area F5a. J Cogn Neurosci. doi:10.​1162/​jocn_​a_​00332 PubMed
Zurück zum Zitat Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246PubMedCrossRef Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246PubMedCrossRef
Zurück zum Zitat Tresilian JR, Stelmach GE (1997) Common organization for unimanual and bimanual reach-to-grasp tasks. Exp Brain Res 115:283–299PubMedCrossRef Tresilian JR, Stelmach GE (1997) Common organization for unimanual and bimanual reach-to-grasp tasks. Exp Brain Res 115:283–299PubMedCrossRef
Zurück zum Zitat Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511PubMed Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511PubMed
Zurück zum Zitat Tunik E, Ortigue S, Adamovich SV, Grafton ST (2008) Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28:13615–13620PubMedCrossRef Tunik E, Ortigue S, Adamovich SV, Grafton ST (2008) Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28:13615–13620PubMedCrossRef
Zurück zum Zitat Vahrenkamp N, Przybylski M, Asfour T, Dillman R (2011) Bimanual grasp planning. In: Conference proceedings of the 11th IEEE-RAS international conference on Humanoid Robots, pp 493–499 Vahrenkamp N, Przybylski M, Asfour T, Dillman R (2011) Bimanual grasp planning. In: Conference proceedings of the 11th IEEE-RAS international conference on Humanoid Robots, pp 493–499
Zurück zum Zitat van den Berg FE, Swinnen SP, Wenderoth N (2010) Hemispheric asymmetries of the premotor cortex are task specific as revealed by disruptive TMS during bimanual versus unimanual movements. Cereb Cortex 20:2842–2851PubMedCrossRef van den Berg FE, Swinnen SP, Wenderoth N (2010) Hemispheric asymmetries of the premotor cortex are task specific as revealed by disruptive TMS during bimanual versus unimanual movements. Cereb Cortex 20:2842–2851PubMedCrossRef
Zurück zum Zitat Vangheluwe S, Suy E, Wenderoth N, Swinnen SP (2006) Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Exp Brain Res 170:543–554PubMedCrossRef Vangheluwe S, Suy E, Wenderoth N, Swinnen SP (2006) Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Exp Brain Res 170:543–554PubMedCrossRef
Zurück zum Zitat Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417PubMedCrossRef Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417PubMedCrossRef
Zurück zum Zitat Weir PL, MacKenzie CL, Marteniuk RG, Carboe SL (1991) Is object texture a constraint on human prehension?: Kinematic evidence. J Mot Behav 23:205–210PubMedCrossRef Weir PL, MacKenzie CL, Marteniuk RG, Carboe SL (1991) Is object texture a constraint on human prehension?: Kinematic evidence. J Mot Behav 23:205–210PubMedCrossRef
Zurück zum Zitat Weiss PH, Rahbari NN, Lux S, Pietrzyk U, Noth J, Fink GR (2006) Processing the spatial configuration of complex actions involves right posterior parietal cortex: an fMRI study with clinical implications. Hum Brain Mapp 27:1004–1014PubMedCrossRef Weiss PH, Rahbari NN, Lux S, Pietrzyk U, Noth J, Fink GR (2006) Processing the spatial configuration of complex actions involves right posterior parietal cortex: an fMRI study with clinical implications. Hum Brain Mapp 27:1004–1014PubMedCrossRef
Zurück zum Zitat Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen S (2004) Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163PubMedCrossRef Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen S (2004) Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163PubMedCrossRef
Zurück zum Zitat Whishaw IQ, Coles BLK (1996) Varieties of paw and digit movement during spontaneous food handling in rat: postures, bimanual coordination, preferences, and the effects of forelimb cortex lesions. Behav Brain Res 77:135–148PubMedCrossRef Whishaw IQ, Coles BLK (1996) Varieties of paw and digit movement during spontaneous food handling in rat: postures, bimanual coordination, preferences, and the effects of forelimb cortex lesions. Behav Brain Res 77:135–148PubMedCrossRef
Metadaten
Titel
Left visual field preference for a bimanual grasping task with ecologically valid object sizes
verfasst von
Ada Le
Matthias Niemeier
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 2/2013
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-013-3643-9

Weitere Artikel der Ausgabe 2/2013

Experimental Brain Research 2/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.