Skip to main content
Erschienen in: Diabetologia 4/2006

01.04.2006 | Article

Leukaemia inhibitory factor stimulates glucose transport in isolated cardiomyocytes and induces insulin resistance after chronic exposure

verfasst von: G. Florholmen, G. H. Thoresen, A. C. Rustan, J. Jensen, G. Christensen, V. Aas

Erschienen in: Diabetologia | Ausgabe 4/2006

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Hypertrophic and failing hearts have increased utilisation of glucose, but also develop insulin resistance and reduced ability to produce ATP. Increased levels of the IL-6-related cytokine leukaemia inhibitory factor (LIF) are found in failing hearts, and we have recently shown that LIF reduces ATP production in isolated cardiomyocytes. In the present study we investigated effects of LIF on glucose metabolism, and how LIF-treated cells respond to insulin stimulation.

Methods

Cardiomyocytes were isolated from adult Wistar rats by collagen digestion, maintained in culture for 48 h, and then treated with 1 nmol/l LIF.

Results

Acute LIF treatment increased deoxyglucose uptake compared with controls, but no additive effect was observed in cardiomyocytes treated with LIF and insulin. The phosphatidylinositol 3-kinase inhibitor wortmannin did not affect LIF-induced glucose uptake. LIF had no effect on AMP-activated protein kinase phosphorylation. Cardiomyocytes treated with LIF for 48 h did not respond to insulin by increasing deoxyglucose uptake and showed a reduced insulin-mediated uptake of oleic acid and formation of complex lipids compared with control cells. Chronic LIF treatment increased gene expression of the suppressor of cytokine signalling (Socs) 3 and reduced expression of solute carrier family 2, member 4 (Slc2a4, previously known as glucose transporter 4 [Glut4]). In line with these observations, chronic LIF treatment reduced insulin-mediated phosphorylation of both Akt/protein kinase B (PKB) and glycogen synthase kinase (GSK)-3.

Conclusions/interpretation

Acute LIF treatment increased glucose uptake in isolated cardiomyocytes by a pathway different from that of insulin. Chronic LIF treatment induced insulin resistance, possibly mediated by altered expression of Socs3 and Slc2a4, and impaired insulin-mediated phosphorylation of GSK-3 and Akt/PKB.
Literatur
1.
Zurück zum Zitat Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555CrossRefPubMed Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555CrossRefPubMed
2.
Zurück zum Zitat Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy—why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513CrossRefPubMed Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy—why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513CrossRefPubMed
3.
Zurück zum Zitat Eiken HG, Øie E, Damås JK et al (2001) Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 31:389–397CrossRefPubMed Eiken HG, Øie E, Damås JK et al (2001) Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest 31:389–397CrossRefPubMed
4.
Zurück zum Zitat Wollert KC, Drexler H (2001) The role of interleukin-6 in the failing heart. Heart Fail Rev 6:95–103CrossRefPubMed Wollert KC, Drexler H (2001) The role of interleukin-6 in the failing heart. Heart Fail Rev 6:95–103CrossRefPubMed
5.
Zurück zum Zitat Florholmen G, Aas V, Rustan AC et al (2004) Leukemia inhibitory factor reduces contractile function and induces alterations in energy metabolism in isolated cardiomyocytes. J Mol Cell Cardiol 37:1183–1193CrossRefPubMed Florholmen G, Aas V, Rustan AC et al (2004) Leukemia inhibitory factor reduces contractile function and induces alterations in energy metabolism in isolated cardiomyocytes. J Mol Cell Cardiol 37:1183–1193CrossRefPubMed
6.
Zurück zum Zitat Morissette MR, Howes AL, Zhang T, Brown JH (2003) Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. J Mol Cell Cardiol 35:1217–1227CrossRefPubMed Morissette MR, Howes AL, Zhang T, Brown JH (2003) Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. J Mol Cell Cardiol 35:1217–1227CrossRefPubMed
7.
Zurück zum Zitat Zorzano A, Sevilla L, Camps M et al (1997) Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol 80:65A–76ACrossRefPubMed Zorzano A, Sevilla L, Camps M et al (1997) Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol 80:65A–76ACrossRefPubMed
8.
Zurück zum Zitat Rosenblatt-Velin N, Lerch R, Papageorgiou I, Montessuit C (2004) Insulin resistance in adult cardiomyocytes undergoing dedifferentiation: role of GLUT4 expression and translocation. FASEB J 18:872–874PubMed Rosenblatt-Velin N, Lerch R, Papageorgiou I, Montessuit C (2004) Insulin resistance in adult cardiomyocytes undergoing dedifferentiation: role of GLUT4 expression and translocation. FASEB J 18:872–874PubMed
9.
10.
Zurück zum Zitat Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF (2004) Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc 63:251–258CrossRefPubMed Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF (2004) Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc 63:251–258CrossRefPubMed
11.
Zurück zum Zitat Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42:246–253CrossRefPubMed Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42:246–253CrossRefPubMed
12.
Zurück zum Zitat Shah A, Shannon RP (2003) Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med 4(Suppl 6):S50–S57PubMed Shah A, Shannon RP (2003) Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med 4(Suppl 6):S50–S57PubMed
13.
Zurück zum Zitat Wollert KC, Taga T, Saito M et al (1996) Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 271:9535–9545CrossRefPubMed Wollert KC, Taga T, Saito M et al (1996) Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 271:9535–9545CrossRefPubMed
14.
Zurück zum Zitat Matsui H, Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K (1996) Leukemia inhibitory factor induces a hypertrophic response mediated by gp130 in murine cardiac myocytes. Res Commun Mol Pathol Pharmacol 93:149–162PubMed Matsui H, Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K (1996) Leukemia inhibitory factor induces a hypertrophic response mediated by gp130 in murine cardiac myocytes. Res Commun Mol Pathol Pharmacol 93:149–162PubMed
15.
Zurück zum Zitat Holt E, Christensen G (1997) Transient Ca2+ overload alters Ca2+ handling in rat cardiomyocytes: effects on shortening and relaxation. Am J Physiol 273:H573–H582PubMed Holt E, Christensen G (1997) Transient Ca2+ overload alters Ca2+ handling in rat cardiomyocytes: effects on shortening and relaxation. Am J Physiol 273:H573–H582PubMed
16.
Zurück zum Zitat Eckel J, van Echten G, Reinauer H (1985) Adult cardiac myocytes in primary culture: cell characteristics and insulin-receptor interaction. Am J Physiol 249:H212–H221PubMed Eckel J, van Echten G, Reinauer H (1985) Adult cardiac myocytes in primary culture: cell characteristics and insulin-receptor interaction. Am J Physiol 249:H212–H221PubMed
17.
Zurück zum Zitat Pattyn F, Speleman F, De Paepe A, Vandesompele J (2003) RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 31:122–123CrossRefPubMed Pattyn F, Speleman F, De Paepe A, Vandesompele J (2003) RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 31:122–123CrossRefPubMed
18.
Zurück zum Zitat Eckel J, Asskamp B, Reinauer H (1991) Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology 129:345–352PubMedCrossRef Eckel J, Asskamp B, Reinauer H (1991) Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology 129:345–352PubMedCrossRef
19.
Zurück zum Zitat Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689PubMedCrossRef Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689PubMedCrossRef
20.
Zurück zum Zitat Luiken JJ, Koonen DP, Willems J et al (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51:3113–3119PubMedCrossRef Luiken JJ, Koonen DP, Willems J et al (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51:3113–3119PubMedCrossRef
21.
Zurück zum Zitat Baumann CA, Ribon V, Kanzaki M et al (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207CrossRefPubMed Baumann CA, Ribon V, Kanzaki M et al (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207CrossRefPubMed
22.
Zurück zum Zitat Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed
23.
Zurück zum Zitat Russell RR III, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649PubMed Russell RR III, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649PubMed
24.
Zurück zum Zitat Jensen J, Sharikabad MN, Østbye KM, Melien Ø, Brørs O (2003) Evidence that nitroprusside stimulates glucose uptake in isolated rat cardiomyocytes via mitogen-activated protein kinase. Arch Physiol Biochem 111:239–245CrossRefPubMed Jensen J, Sharikabad MN, Østbye KM, Melien Ø, Brørs O (2003) Evidence that nitroprusside stimulates glucose uptake in isolated rat cardiomyocytes via mitogen-activated protein kinase. Arch Physiol Biochem 111:239–245CrossRefPubMed
25.
Zurück zum Zitat Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20CrossRefPubMed Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20CrossRefPubMed
26.
Zurück zum Zitat Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed
27.
Zurück zum Zitat Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446CrossRefPubMed Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446CrossRefPubMed
28.
Zurück zum Zitat Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 94:9660–9664CrossRefPubMed Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 94:9660–9664CrossRefPubMed
29.
Zurück zum Zitat Gual P, Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109CrossRefPubMed Gual P, Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109CrossRefPubMed
30.
Zurück zum Zitat Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046PubMed Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046PubMed
31.
Zurück zum Zitat Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK (1995) Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 30:205–211CrossRefPubMed Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK (1995) Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 30:205–211CrossRefPubMed
Metadaten
Titel
Leukaemia inhibitory factor stimulates glucose transport in isolated cardiomyocytes and induces insulin resistance after chronic exposure
verfasst von
G. Florholmen
G. H. Thoresen
A. C. Rustan
J. Jensen
G. Christensen
V. Aas
Publikationsdatum
01.04.2006
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 4/2006
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0150-6

Weitere Artikel der Ausgabe 4/2006

Diabetologia 4/2006 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.