Skip to main content
Erschienen in: Diabetologia 2/2004

01.02.2004 | Article

Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets

verfasst von: S. Carobbio, H. Ishihara, S. Fernandez-Pascual, C. Bartley, R. Martin-Del-Rio, P. Maechler

Erschienen in: Diabetologia | Ausgabe 2/2004

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Glutamate dehydrogenase (GDH) is a mitochondrial enzyme playing a key role in the control of insulin secretion. However, it is not known whether GDH expression levels in beta cells are rate-limiting for the secretory response to glucose. GDH also controls glutamine and glutamate oxidative metabolism, which is only weak in islets if GDH is not allosterically activated by L-leucine or (+/−)-2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH).

Methods

We constructed an adenovirus encoding for GDH to overexpress the enzyme in the beta-cell line INS-1E, as well as in isolated rat and mouse pancreatic islets. The secretory responses to glucose and glutamine were studied in static and perifusion experiments. Amino acid concentrations and metabolic parameters were measured in parallel.

Results

GDH overexpression in rat islets did not change insulin release at basal or intermediate glucose (2.8 and 8.3 mmol/l respectively), but potentiated the secretory response at high glucose concentrations (16.7 mmol/l) compared to controls (+35%). Control islets exposed to 5 mmol/l glutamine at basal glucose did not increase insulin release, unless BCH was added with a resulting 2.5-fold response. In islets overexpressing GDH glutamine alone stimulated insulin secretion (2.7-fold), which was potentiated 2.2-fold by adding BCH. The secretory responses evoked by glutamine under these conditions correlated with enhanced cellular metabolism.

Conclusions/interpretation

GDH could be rate-limiting in glucose-induced insulin secretion, as GDH overexpression enhanced secretory responses. Moreover, GDH overexpression made islets responsive to glutamine, indicating that under physiological conditions this enzyme acts as a gatekeeper to prevent amino acids from being inappropriate efficient secretagogues.
Literatur
1.
Zurück zum Zitat Michaelidis TM, Tzimagiorgis G, Moschonas NK, Papamatheakis J (1993) The human glutamate dehydrogenase gene family: gene organization and structural characterization. Genomics 16:150–160CrossRefPubMed Michaelidis TM, Tzimagiorgis G, Moschonas NK, Papamatheakis J (1993) The human glutamate dehydrogenase gene family: gene organization and structural characterization. Genomics 16:150–160CrossRefPubMed
2.
Zurück zum Zitat Hudson RC, Daniel RM (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792CrossRefPubMed Hudson RC, Daniel RM (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792CrossRefPubMed
3.
Zurück zum Zitat Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14CrossRefPubMed Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14CrossRefPubMed
4.
Zurück zum Zitat Nissim I (1999) Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol 277:F493–F497PubMed Nissim I (1999) Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol 277:F493–F497PubMed
5.
Zurück zum Zitat Sener A, Malaisse WJ (1980) L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189PubMed Sener A, Malaisse WJ (1980) L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189PubMed
6.
Zurück zum Zitat Bryla J, Michalik M, Nelson J, Erecinska M (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43:1187–1195PubMed Bryla J, Michalik M, Nelson J, Erecinska M (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43:1187–1195PubMed
7.
Zurück zum Zitat Yang SJ, Huh JW, Kim MJ et al. (2003) Regulatory effects of 5’-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85:581–586CrossRefPubMed Yang SJ, Huh JW, Kim MJ et al. (2003) Regulatory effects of 5’-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85:581–586CrossRefPubMed
8.
Zurück zum Zitat Stanley CA, Lieu YK, Hsu BY et al. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357 Stanley CA, Lieu YK, Hsu BY et al. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357
9.
Zurück zum Zitat Yorifuji T, Muroi J, Uematsu A, Hiramatsu H, Momoi T (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum Genet 104:476–479 Yorifuji T, Muroi J, Uematsu A, Hiramatsu H, Momoi T (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum Genet 104:476–479
10.
Zurück zum Zitat Fisher HF (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol 113:16–27PubMed Fisher HF (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol 113:16–27PubMed
11.
Zurück zum Zitat Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720CrossRefPubMed Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720CrossRefPubMed
12.
Zurück zum Zitat Stanley CA, Fang J, Kutyna K et al. (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators. Diabetes 49:667–673PubMed Stanley CA, Fang J, Kutyna K et al. (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators. Diabetes 49:667–673PubMed
13.
Zurück zum Zitat Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402:685–689PubMed Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402:685–689PubMed
14.
Zurück zum Zitat MacDonald MJ, Fahien LA (2000) Glutamate is not a messenger in insulin secretion. J Biol Chem 275:34025–34027CrossRefPubMed MacDonald MJ, Fahien LA (2000) Glutamate is not a messenger in insulin secretion. J Biol Chem 275:34025–34027CrossRefPubMed
15.
Zurück zum Zitat Rubi B, Ishihara H, Hegardt FG, Wollheim CB, Maechler P (2001) GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem 276:36391–36396CrossRefPubMed Rubi B, Ishihara H, Hegardt FG, Wollheim CB, Maechler P (2001) GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem 276:36391–36396CrossRefPubMed
16.
Zurück zum Zitat Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891CrossRefPubMed Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891CrossRefPubMed
17.
Zurück zum Zitat Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett 531:199–203CrossRefPubMed Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett 531:199–203CrossRefPubMed
18.
Zurück zum Zitat Liu YJ, Cheng H, Drought H, MacDonald MJ, Sharp GW, Straub SG (2003) Activation of the KATP channel-independent signaling pathway by the nonhydrolyzable analog of leucine, BCH. Am J Physiol Endocrinol Metab 285:E380–E389PubMed Liu YJ, Cheng H, Drought H, MacDonald MJ, Sharp GW, Straub SG (2003) Activation of the KATP channel-independent signaling pathway by the nonhydrolyzable analog of leucine, BCH. Am J Physiol Endocrinol Metab 285:E380–E389PubMed
19.
Zurück zum Zitat Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMed Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMed
20.
Zurück zum Zitat Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812PubMed Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414:807–812PubMed
21.
Zurück zum Zitat Miki T, Nagashima K, Seino S (1999) The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 22:113–123PubMed Miki T, Nagashima K, Seino S (1999) The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 22:113–123PubMed
22.
Zurück zum Zitat Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495PubMed Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495PubMed
23.
Zurück zum Zitat Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17CrossRefPubMed Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17CrossRefPubMed
24.
Zurück zum Zitat Malaisse WJ, Sener A, Carpinelli AR et al. (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLVI. Physiological role of L-glutamine as a fuel for pancreatic islets. Mol Cell Endocrinol 20:171–189CrossRefPubMed Malaisse WJ, Sener A, Carpinelli AR et al. (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLVI. Physiological role of L-glutamine as a fuel for pancreatic islets. Mol Cell Endocrinol 20:171–189CrossRefPubMed
25.
Zurück zum Zitat Panten U, Zielmann S, Langer J, Zunkler BJ, Lenzen S (1984) Regulation of insulin secretion by energy metabolism in pancreatic B-cell mitochondria. Studies with a non-metabolizable leucine analogue. Biochem J 219:189–196PubMed Panten U, Zielmann S, Langer J, Zunkler BJ, Lenzen S (1984) Regulation of insulin secretion by energy metabolism in pancreatic B-cell mitochondria. Studies with a non-metabolizable leucine analogue. Biochem J 219:189–196PubMed
26.
Zurück zum Zitat Heimberg H, De Vos A, Vandercammen A, Schaftingen E van, Pipeleers D, Schuit F (1993) Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO J 12:2873–2879PubMed Heimberg H, De Vos A, Vandercammen A, Schaftingen E van, Pipeleers D, Schuit F (1993) Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO J 12:2873–2879PubMed
27.
Zurück zum Zitat Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of pancreatic islet metabolism and insulin release by a nonmetabolizable amino acid. Proc Natl Acad Sci USA 78:5460–5464PubMed Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of pancreatic islet metabolism and insulin release by a nonmetabolizable amino acid. Proc Natl Acad Sci USA 78:5460–5464PubMed
28.
Zurück zum Zitat Gao ZY, Li G, Najafi H, Wolf BA, Matschinsky FM (1999) Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes 48:1535–1542 Gao ZY, Li G, Najafi H, Wolf BA, Matschinsky FM (1999) Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes 48:1535–1542
29.
Zurück zum Zitat Li C, Najafi H, Daikhin Y et al. (2003) Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858CrossRefPubMed Li C, Najafi H, Daikhin Y et al. (2003) Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858CrossRefPubMed
30.
Zurück zum Zitat Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59:1803–1818PubMed Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59:1803–1818PubMed
31.
Zurück zum Zitat Broca C, Brennan L, Petit P, Newsholme P, Maechler P (2003) Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion. FEBS Lett 545:167–172CrossRefPubMed Broca C, Brennan L, Petit P, Newsholme P, Maechler P (2003) Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion. FEBS Lett 545:167–172CrossRefPubMed
32.
Zurück zum Zitat Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ, Fahien CM (1988) Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem 263:13610–13614PubMed Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ, Fahien CM (1988) Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem 263:13610–13614PubMed
33.
Zurück zum Zitat Malaisse-Lagae F, Sener A, Garcia-Morales P, Valverde I, Malaisse WJ (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Influence of a nonmetabolized analog of leucine on the metabolism of glutamine in pancreatic islets. J Biol Chem 257:3754–3758PubMed Malaisse-Lagae F, Sener A, Garcia-Morales P, Valverde I, Malaisse WJ (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Influence of a nonmetabolized analog of leucine on the metabolism of glutamine in pancreatic islets. J Biol Chem 257:3754–3758PubMed
34.
Zurück zum Zitat Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2003) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology (in press) Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2003) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology (in press)
35.
Zurück zum Zitat Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMed Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMed
36.
Zurück zum Zitat Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269:27310–27314PubMed Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269:27310–27314PubMed
37.
Zurück zum Zitat Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMed Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMed
38.
Zurück zum Zitat Miyake S, Makimura M, Kanegae Y (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 93:1320–1324PubMed Miyake S, Makimura M, Kanegae Y (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 93:1320–1324PubMed
39.
Zurück zum Zitat Maechler P, Gjinovci A, Wollheim CB (2002) Implication of glutamate in the kinetics of insulin secretion in rat and mouse perfused pancreas. Diabetes 51 [Suppl 1]:S99–S102 Maechler P, Gjinovci A, Wollheim CB (2002) Implication of glutamate in the kinetics of insulin secretion in rat and mouse perfused pancreas. Diabetes 51 [Suppl 1]:S99–S102
40.
Zurück zum Zitat Maechler P, Jornot L, Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274:27905–27913CrossRefPubMed Maechler P, Jornot L, Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274:27905–27913CrossRefPubMed
41.
Zurück zum Zitat Bustamante J, Lobo MV, Alonso FJ et al. (2001) An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab 281:E1275–E1285PubMed Bustamante J, Lobo MV, Alonso FJ et al. (2001) An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab 281:E1275–E1285PubMed
42.
Zurück zum Zitat Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16:3833–3841PubMed Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16:3833–3841PubMed
43.
Zurück zum Zitat Maechler P, Wang H, Wollheim CB (1998) Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase. FEBS Lett 422:328–332PubMed Maechler P, Wang H, Wollheim CB (1998) Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase. FEBS Lett 422:328–332PubMed
44.
Zurück zum Zitat Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMed Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMed
45.
Zurück zum Zitat Janjic D, Wollheim CB (1992) Islet cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia 35:482–485 Janjic D, Wollheim CB (1992) Islet cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia 35:482–485
46.
Zurück zum Zitat Schuit F, De Vos A, Farfari S et al. (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579PubMed Schuit F, De Vos A, Farfari S et al. (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579PubMed
47.
Zurück zum Zitat Lu D, Mulder H, Zhao P et al. (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci USA 99:2708–2713CrossRefPubMed Lu D, Mulder H, Zhao P et al. (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci USA 99:2708–2713CrossRefPubMed
48.
Zurück zum Zitat Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412CrossRefPubMed Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412CrossRefPubMed
49.
Zurück zum Zitat Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancreatic alpha- and beta-cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol 284:G808–G814PubMed Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancreatic alpha- and beta-cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol 284:G808–G814PubMed
50.
Zurück zum Zitat Eto K, Yamashita T, Hirose K et al. (2003) Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells. Am J Physiol Endocrinol Metab 285:E262–E271PubMed Eto K, Yamashita T, Hirose K et al. (2003) Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells. Am J Physiol Endocrinol Metab 285:E262–E271PubMed
51.
Zurück zum Zitat Lenzen S, Schmidt W, Rustenbeck I, Panten U (1986) 2-ketoglutarate generation in pancreatic B-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Biosci Rep 6:163–169PubMed Lenzen S, Schmidt W, Rustenbeck I, Panten U (1986) 2-ketoglutarate generation in pancreatic B-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Biosci Rep 6:163–169PubMed
52.
Zurück zum Zitat Kelly A, Li C, Gao Z, Stanley CA, Matschinsky FM (2002) Glutaminolysis and insulin secretion: from bedside to bench and back. Diabetes 51 [Suppl 3]:S421–S426 Kelly A, Li C, Gao Z, Stanley CA, Matschinsky FM (2002) Glutaminolysis and insulin secretion: from bedside to bench and back. Diabetes 51 [Suppl 3]:S421–S426
53.
Zurück zum Zitat Maechler P, Antinozzi PA, Wollheim CB (2000) Modulation of glutamate generation in mitochondria affects hormone secretion in INS-1E beta cells. IUBMB Life 50:27–31PubMed Maechler P, Antinozzi PA, Wollheim CB (2000) Modulation of glutamate generation in mitochondria affects hormone secretion in INS-1E beta cells. IUBMB Life 50:27–31PubMed
54.
Zurück zum Zitat Sener A, Conget I, Rasschaert J et al. (1994) Insulinotropic action of glutamic acid dimethyl ester. Am J Physiol 267:E573–E584PubMed Sener A, Conget I, Rasschaert J et al. (1994) Insulinotropic action of glutamic acid dimethyl ester. Am J Physiol 267:E573–E584PubMed
55.
Zurück zum Zitat Michalik M, Nelson J, Erecinska M (1992) Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase. Metabolism 41:1319–1326PubMed Michalik M, Nelson J, Erecinska M (1992) Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase. Metabolism 41:1319–1326PubMed
56.
Zurück zum Zitat Malaisse WJ, Sener A, Malaisse-Lagae F et al. (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of L-glutamine and L-leucine. J Biol Chem 257:8731–8737PubMed Malaisse WJ, Sener A, Malaisse-Lagae F et al. (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of L-glutamine and L-leucine. J Biol Chem 257:8731–8737PubMed
57.
Zurück zum Zitat Lenzen S, Rustenbeck I, Panten U (1984) Transamination of 3-phenylpyruvate in pancreatic B-cell mitochondria. J Biol Chem 259:2043–2046PubMed Lenzen S, Rustenbeck I, Panten U (1984) Transamination of 3-phenylpyruvate in pancreatic B-cell mitochondria. J Biol Chem 259:2043–2046PubMed
58.
Zurück zum Zitat Lenzen S, Schmidt W, Panten U (1985) Transamination of neutral amino acids and 2-keto acids in pancreatic B-cell mitochondria. J Biol Chem 260:12629–12634PubMed Lenzen S, Schmidt W, Panten U (1985) Transamination of neutral amino acids and 2-keto acids in pancreatic B-cell mitochondria. J Biol Chem 260:12629–12634PubMed
59.
Zurück zum Zitat Brennan L, Shine A, Hewage C et al. (2002) A nuclear magnetic resonance-based demonstration of substantial oxidative L-alanine metabolism and L-alanine-enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism of L-alanine is important to the regulation of insulin secretion. Diabetes 51:1714–1721 Brennan L, Shine A, Hewage C et al. (2002) A nuclear magnetic resonance-based demonstration of substantial oxidative L-alanine metabolism and L-alanine-enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism of L-alanine is important to the regulation of insulin secretion. Diabetes 51:1714–1721
60.
Zurück zum Zitat Brennan L, Corless M, Hewage C et al. (2003) 13C NMR analysis reveals a link between L-glutamine metabolism, D-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line. Diabetologia 46:1512–1521 Brennan L, Corless M, Hewage C et al. (2003) 13C NMR analysis reveals a link between L-glutamine metabolism, D-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line. Diabetologia 46:1512–1521
61.
Zurück zum Zitat Tanizawa Y, Nakai K, Sasaki T et al. (2002) Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 51:712–717PubMed Tanizawa Y, Nakai K, Sasaki T et al. (2002) Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 51:712–717PubMed
62.
Zurück zum Zitat Boelens PG, Nijveldt RJ, Houdijk AP, Meijer S, Leeuwen PA van (2001) Glutamine alimentation in catabolic state. J Nutr 131 [Suppl]:2569S–2577S Boelens PG, Nijveldt RJ, Houdijk AP, Meijer S, Leeuwen PA van (2001) Glutamine alimentation in catabolic state. J Nutr 131 [Suppl]:2569S–2577S
63.
Zurück zum Zitat Henriksson J (1991) Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol 160:149–165PubMed Henriksson J (1991) Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol 160:149–165PubMed
64.
Zurück zum Zitat Ishihara H, Wang H, Drewes LR, Wollheim CB (1999) Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 104:1621–1629PubMed Ishihara H, Wang H, Drewes LR, Wollheim CB (1999) Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 104:1621–1629PubMed
65.
Zurück zum Zitat Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, Kere J, Sipila I (2003) Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52:199–204 Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, Kere J, Sipila I (2003) Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52:199–204
Metadaten
Titel
Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets
verfasst von
S. Carobbio
H. Ishihara
S. Fernandez-Pascual
C. Bartley
R. Martin-Del-Rio
P. Maechler
Publikationsdatum
01.02.2004
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 2/2004
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-003-1306-2

Weitere Artikel der Ausgabe 2/2004

Diabetologia 2/2004 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.