Skip to main content
Erschienen in: Diabetologia 1/2018

24.09.2017 | Review

Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond

verfasst von: Hans-Peter Hammes

Erschienen in: Diabetologia | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Diabetic retinopathy remains a relevant clinical problem. In parallel with diagnostic and therapeutic improvements, the role of glycaemia and reactive metabolites causing cell stress and biochemical abnormalities as treatment targets needs continuous re-evaluation. Furthermore, the basic mechanisms of physiological angiogenesis, remodelling and pruning give important clues about the origins of vasoregression during the very early stages of diabetic retinopathy and can be modelled in animals. This review summarises evidence supporting a role for the neurovascular unit—composed of neuronal, glial and vascular cells—as a responder to the biochemical changes imposed by reactive metabolites and high glucose. Normoglycaemic animal models developing retinal degeneration, provide valuable information about common pathways downstream of progressive neuronal damage that induce vasoregression, as in diabetic models. These models can serve to assess novel treatments addressing the entire neurovascular unit for the benefit of early diabetic retinopathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Leasher JL, Bourne RR, Flaxman SR et al (2016) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39:1643–1649CrossRefPubMed Leasher JL, Bourne RR, Flaxman SR et al (2016) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39:1643–1649CrossRefPubMed
3.
Zurück zum Zitat Damato EM, Murray N, Szetu J, Sikivou BT, Emma S, McGhee CN (2014) Sight-threatening diabetic retinopathy at presentation to screening services in Fiji. Ophthalmic Epidemiol 21:318–326CrossRefPubMed Damato EM, Murray N, Szetu J, Sikivou BT, Emma S, McGhee CN (2014) Sight-threatening diabetic retinopathy at presentation to screening services in Fiji. Ophthalmic Epidemiol 21:318–326CrossRefPubMed
4.
Zurück zum Zitat Ponto KA, Koenig J, Peto T et al (2016) Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 59:1913–1919CrossRefPubMed Ponto KA, Koenig J, Peto T et al (2016) Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 59:1913–1919CrossRefPubMed
5.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRef UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRef
6.
Zurück zum Zitat Bearse MA Jr, Adams AJ, Han Y et al (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448CrossRefPubMedPubMedCentral Bearse MA Jr, Adams AJ, Han Y et al (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat van Dijk HW, Verbraak FD, Kok PH et al (2010) Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 51:3660–3665CrossRefPubMedPubMedCentral van Dijk HW, Verbraak FD, Kok PH et al (2010) Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 51:3660–3665CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat van Dijk HW, Verbraak FD, Kok PH et al (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53:2715–2719CrossRefPubMedPubMedCentral van Dijk HW, Verbraak FD, Kok PH et al (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53:2715–2719CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRefPubMed Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRefPubMed
13.
Zurück zum Zitat Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406CrossRefPubMedPubMedCentral Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Stone J, Itin A, Alon T et al (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed Stone J, Itin A, Alon T et al (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed
15.
16.
Zurück zum Zitat Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966CrossRefPubMed Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966CrossRefPubMed
17.
Zurück zum Zitat Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177CrossRefPubMed Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177CrossRefPubMed
18.
Zurück zum Zitat Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502CrossRefPubMed Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502CrossRefPubMed
20.
Zurück zum Zitat Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefPubMed Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefPubMed
21.
Zurück zum Zitat Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23CrossRefPubMed Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23CrossRefPubMed
22.
Zurück zum Zitat Aguilera KY, Brekken RA (2014) Recruitment and retention: factors that affect pericyte migration. Cell Mol Life Sci 71:299–309CrossRefPubMed Aguilera KY, Brekken RA (2014) Recruitment and retention: factors that affect pericyte migration. Cell Mol Life Sci 71:299–309CrossRefPubMed
23.
Zurück zum Zitat Hammes HP, Lin J, Renner O et al (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112CrossRefPubMed Hammes HP, Lin J, Renner O et al (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112CrossRefPubMed
24.
Zurück zum Zitat Valdez CN, Arboleda-Velasquez JF, Amarnani DS, Kim LA, PA DA (2014) Retinal microangiopathy in a mouse model of inducible mural cell loss. Am J Pathol 184:2618–2626CrossRefPubMedPubMedCentral Valdez CN, Arboleda-Velasquez JF, Amarnani DS, Kim LA, PA DA (2014) Retinal microangiopathy in a mouse model of inducible mural cell loss. Am J Pathol 184:2618–2626CrossRefPubMedPubMedCentral
25.
28.
Zurück zum Zitat Franco CA, Jones ML, Bernabeu MO et al (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13:e1002125CrossRefPubMedPubMedCentral Franco CA, Jones ML, Bernabeu MO et al (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13:e1002125CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45:30–57CrossRefPubMed Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45:30–57CrossRefPubMed
31.
32.
Zurück zum Zitat Hu J, Popp R, Fromel T et al (2014) Muller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med 211:281–295CrossRefPubMedPubMedCentral Hu J, Popp R, Fromel T et al (2014) Muller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med 211:281–295CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Luhmann UF, Lin J, Acar N et al (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci 46:3372–3382CrossRefPubMed Luhmann UF, Lin J, Acar N et al (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci 46:3372–3382CrossRefPubMed
34.
Zurück zum Zitat Xu Q, Wang Y, Dabdoub A et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895CrossRefPubMed Xu Q, Wang Y, Dabdoub A et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895CrossRefPubMed
35.
36.
Zurück zum Zitat Arroba AI, Valverde AM (2017) Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol 54:527–533CrossRefPubMed Arroba AI, Valverde AM (2017) Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol 54:527–533CrossRefPubMed
37.
38.
Zurück zum Zitat Danesh-Meyer HV, Levin LA (2009) Neuroprotection: extrapolating from neurologic diseases to the eye. Am J Ophthalmol 148(186–191):e182 Danesh-Meyer HV, Levin LA (2009) Neuroprotection: extrapolating from neurologic diseases to the eye. Am J Ophthalmol 148(186–191):e182
39.
Zurück zum Zitat Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, Van Noorden CJ, Schlingemann RO (2009) Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 89:4–15CrossRefPubMed Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, Van Noorden CJ, Schlingemann RO (2009) Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 89:4–15CrossRefPubMed
40.
Zurück zum Zitat Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639CrossRefPubMed Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639CrossRefPubMed
41.
Zurück zum Zitat Pfister F, Przybyt E, Harmsen MC, Hammes HP (2013) Pericytes in the eye. Pflugers Arch - Eur J Physiol 465:789–796CrossRef Pfister F, Przybyt E, Harmsen MC, Hammes HP (2013) Pericytes in the eye. Pflugers Arch - Eur J Physiol 465:789–796CrossRef
42.
Zurück zum Zitat Dietrich N, Kolibabka M, Busch S et al (2016) The DPP4 inhibitor linagliptin protects from experimental diabetic retinopathy. PLoS One 11:e0167853CrossRefPubMedPubMedCentral Dietrich N, Kolibabka M, Busch S et al (2016) The DPP4 inhibitor linagliptin protects from experimental diabetic retinopathy. PLoS One 11:e0167853CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A (2014) Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev, Issue 2, Art. no.: CD009122 Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A (2014) Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev, Issue 2, Art. no.: CD009122
44.
Zurück zum Zitat Hammes HP, Kerner W, Hofer S et al (2011) Diabetic retinopathy in type 1 diabetes-a contemporary analysis of 8,784 patients. Diabetologia 54:1977–1984CrossRefPubMed Hammes HP, Kerner W, Hofer S et al (2011) Diabetic retinopathy in type 1 diabetes-a contemporary analysis of 8,784 patients. Diabetologia 54:1977–1984CrossRefPubMed
45.
Zurück zum Zitat Hammes HP, Welp R, Kempe HP et al (2015) Risk factors for retinopathy and dme in type 2 diabetes-results from the German/Austrian DPV database. PLoS One 10:e0132492CrossRefPubMedPubMedCentral Hammes HP, Welp R, Kempe HP et al (2015) Risk factors for retinopathy and dme in type 2 diabetes-results from the German/Austrian DPV database. PLoS One 10:e0132492CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Hemmingsen B, Lund SS, Gluud C, et al. (2013) Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev, Issue 11, Art. no.: CD008143 Hemmingsen B, Lund SS, Gluud C, et al. (2013) Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev, Issue 11, Art. no.: CD008143
47.
Zurück zum Zitat Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57:995–1001CrossRefPubMed Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57:995–1001CrossRefPubMed
49.
Zurück zum Zitat Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045CrossRefPubMed Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045CrossRefPubMed
50.
Zurück zum Zitat Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299CrossRefPubMed Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299CrossRefPubMed
51.
Zurück zum Zitat Du Y, Miller CM, Kern TS (2003) Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med 35:1491–1499CrossRefPubMed Du Y, Miller CM, Kern TS (2003) Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med 35:1491–1499CrossRefPubMed
52.
Zurück zum Zitat Hidmark A, Fleming T, Vittas S et al (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 122:201–207CrossRefPubMed Hidmark A, Fleming T, Vittas S et al (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 122:201–207CrossRefPubMed
53.
Zurück zum Zitat Rabbani N, Xue M, Thornalley PJ (2016) Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci 130:1677–1696CrossRefPubMed Rabbani N, Xue M, Thornalley PJ (2016) Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci 130:1677–1696CrossRefPubMed
54.
Zurück zum Zitat Kolibabka M, Friedrichs P, Dietrich N, Fleming T, Schlotterer A, Hammes HP (2016) Dicarbonyl stress mimics diabetic neurovascular damage in the retina. Exp Clin Endocrinol Diabetes 124:437–439CrossRefPubMed Kolibabka M, Friedrichs P, Dietrich N, Fleming T, Schlotterer A, Hammes HP (2016) Dicarbonyl stress mimics diabetic neurovascular damage in the retina. Exp Clin Endocrinol Diabetes 124:437–439CrossRefPubMed
55.
Zurück zum Zitat Berner AK, Brouwers O, Pringle R et al (2012) Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55:845–854CrossRefPubMed Berner AK, Brouwers O, Pringle R et al (2012) Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55:845–854CrossRefPubMed
56.
Zurück zum Zitat Queisser MA, Yao D, Geisler S et al (2010) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678CrossRefPubMed Queisser MA, Yao D, Geisler S et al (2010) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59:670–678CrossRefPubMed
57.
Zurück zum Zitat Jorgens K, Stoll SJ, Pohl J et al (2015) High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64:213–225CrossRefPubMed Jorgens K, Stoll SJ, Pohl J et al (2015) High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64:213–225CrossRefPubMed
58.
Zurück zum Zitat Xue M, Weickert MO, Qureshi S et al (2016) Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 65:2282–2294CrossRefPubMed Xue M, Weickert MO, Qureshi S et al (2016) Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 65:2282–2294CrossRefPubMed
59.
Zurück zum Zitat McVicar CM, Ward M, Colhoun LM et al (2015) Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 58:1129–1137CrossRefPubMedPubMedCentral McVicar CM, Ward M, Colhoun LM et al (2015) Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 58:1129–1137CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Miller AG, Tan G, Binger KJ et al (2010) Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59:3208–3215CrossRefPubMedPubMedCentral Miller AG, Tan G, Binger KJ et al (2010) Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59:3208–3215CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Giacco F, Du X, Carratu A et al (2015) GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop. Diabetes 64:3273–3284CrossRefPubMedPubMedCentral Giacco F, Du X, Carratu A et al (2015) GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop. Diabetes 64:3273–3284CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Fu Z, Kuang HY, Hao M, Gao XY, Liu Y, Shao N (2012) Protection of exenatide for retinal ganglion cells with different glucose concentrations. Peptides 37:25–31CrossRefPubMed Fu Z, Kuang HY, Hao M, Gao XY, Liu Y, Shao N (2012) Protection of exenatide for retinal ganglion cells with different glucose concentrations. Peptides 37:25–31CrossRefPubMed
63.
Zurück zum Zitat Hernandez C, Bogdanov P, Corraliza L et al (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65:172–187PubMed Hernandez C, Bogdanov P, Corraliza L et al (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65:172–187PubMed
64.
Zurück zum Zitat Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844CrossRefPubMed Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844CrossRefPubMed
65.
Zurück zum Zitat Wang Q, Pfister F, Dorn-Beineke A et al (2010) Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia 53:1227–1238CrossRefPubMed Wang Q, Pfister F, Dorn-Beineke A et al (2010) Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia 53:1227–1238CrossRefPubMed
66.
Zurück zum Zitat Wang Q, Gorbey S, Pfister F et al (2011) Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem 27:769–782CrossRefPubMed Wang Q, Gorbey S, Pfister F et al (2011) Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy. Cell Physiol Biochem 27:769–782CrossRefPubMed
67.
Zurück zum Zitat van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL, DFG GRK International Research Training Group (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65:331–345CrossRefPubMed van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL, DFG GRK International Research Training Group (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65:331–345CrossRefPubMed
68.
Zurück zum Zitat Chan EC, Liu GS, Dusting GJ (2015) Redox mechanisms in pathological angiogenesis in the retina: roles for NADPH oxidase. Curr Pharm Des 21:5988–5998CrossRefPubMed Chan EC, Liu GS, Dusting GJ (2015) Redox mechanisms in pathological angiogenesis in the retina: roles for NADPH oxidase. Curr Pharm Des 21:5988–5998CrossRefPubMed
69.
Zurück zum Zitat Kowluru RA, Mishra M (2017) Epigenetic regulation of redox signaling in diabetic retinopathy: role of Nrf2. Free Radic Biol Med 103:155–164CrossRefPubMed Kowluru RA, Mishra M (2017) Epigenetic regulation of redox signaling in diabetic retinopathy: role of Nrf2. Free Radic Biol Med 103:155–164CrossRefPubMed
70.
Zurück zum Zitat Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 113:E2655–E2664CrossRefPubMedPubMedCentral Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 113:E2655–E2664CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Tikellis C, Pickering RJ, Tsorotes D et al (2014) Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes 63:3915–3925CrossRefPubMed Tikellis C, Pickering RJ, Tsorotes D et al (2014) Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes 63:3915–3925CrossRefPubMed
72.
Zurück zum Zitat Manin G, Pons A, Baltzinger P et al (2015) Obstructive sleep apnoea in people with type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet Med 32:90–96CrossRefPubMed Manin G, Pons A, Baltzinger P et al (2015) Obstructive sleep apnoea in people with type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet Med 32:90–96CrossRefPubMed
73.
Zurück zum Zitat Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ (2011) Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 34:1238–1244CrossRefPubMedPubMedCentral Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ (2011) Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 34:1238–1244CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Standl E, Schnell O, McGuire DK, Ceriello A, Ryden L (2017) Integration of recent evidence into management of patients with atherosclerotic cardiovascular disease and type 2 diabetes. Lancet Diabetes Endocrinol 5:391–402CrossRefPubMed Standl E, Schnell O, McGuire DK, Ceriello A, Ryden L (2017) Integration of recent evidence into management of patients with atherosclerotic cardiovascular disease and type 2 diabetes. Lancet Diabetes Endocrinol 5:391–402CrossRefPubMed
75.
Zurück zum Zitat Dietrich N, Hammes HP (2012) Retinal digest preparation: a method to study diabetic retinopathy. Methods Mol Biol (Clifton, NJ) 933:291–302 Dietrich N, Hammes HP (2012) Retinal digest preparation: a method to study diabetic retinopathy. Methods Mol Biol (Clifton, NJ) 933:291–302
Metadaten
Titel
Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond
verfasst von
Hans-Peter Hammes
Publikationsdatum
24.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 1/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4435-8

Weitere Artikel der Ausgabe 1/2018

Diabetologia 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.