Skip to main content
Erschienen in: Experimental Brain Research 4/2003

01.12.2003 | Research Article

Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats

verfasst von: A. Kral, J.-H. Schröder, R. Klinke, A. K. Engel

Erschienen in: Experimental Brain Research | Ausgabe 4/2003

Einloggen, um Zugang zu erhalten

Abstract

To investigate possible cross-modal reorganization of the primary auditory cortex (field A1) in congenitally deaf cats, after years of auditory deprivation, multiunit activity and local field potentials were recorded in lightly anesthetized animals and compared with responses obtained in hearing cats. Local field potentials were also used for current source-density analyses. For visual stimulation, phase-reversal gratings of three to five different spatial frequencies and three to five different orientations were presented at the point of central vision. Peripheral visual field was tested using hand-held stimuli (light bar-shaped stimulus of different orientations, moved in different directions and flashed) typically used for neurophysiological characterization of visual fields. From 200 multiunit recordings, no response to visual stimuli could be found in A1 of any of the investigated animals. Using the current source-density analysis of local field potentials, no local generators of field potentials could be found within A1, despite of the presence of small local field potentials. No multiunit responses to somatosensory stimulation (whiskers, face, pinna, head, neck, all paws, back, tail) could be obtained. In conclusion, there were no indications for a cross-modal reorganization (visual, somatosensory) of area A1 in congenitally deaf cats.
Fußnoten
1
"Deaf" refers to "congenitally deaf" throughout the manuscript
 
Literatur
Zurück zum Zitat Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of the inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847 Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of the inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847
Zurück zum Zitat Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40 Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40
Zurück zum Zitat Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452PubMed Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452PubMed
Zurück zum Zitat Bavelier D, Tomann A, Hutton C et al. (2000) Visual attention to the periphery is enhanced in congenitally deaf individuals (abstract). J Neurosci 20:93 Bavelier D, Tomann A, Hutton C et al. (2000) Visual attention to the periphery is enhanced in congenitally deaf individuals (abstract). J Neurosci 20:93
Zurück zum Zitat Bernstein LE, Auer ET Jr, Moore JK et al. (2002) Visual speech perception without A1 activation. Neuroreport 13:311–315PubMed Bernstein LE, Auer ET Jr, Moore JK et al. (2002) Visual speech perception without A1 activation. Neuroreport 13:311–315PubMed
Zurück zum Zitat Blakemore C, Zumbroich TJ (1987) Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. J Physiol (Lond) 389:569–603 Blakemore C, Zumbroich TJ (1987) Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. J Physiol (Lond) 389:569–603
Zurück zum Zitat Brechmann A, Baumgart F, Scheich H (2002) Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 87:423–433PubMed Brechmann A, Baumgart F, Scheich H (2002) Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J Neurophysiol 87:423–433PubMed
Zurück zum Zitat Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z (2002) Auditory activation of "visual" cortical areas in the blind mole rat (Spalax ehrenbergi) Eur J Neurosci 16:311–29 Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z (2002) Auditory activation of "visual" cortical areas in the blind mole rat (Spalax ehrenbergi) Eur J Neurosci 16:311–29
Zurück zum Zitat Büchel C, Price C, Frackowiak RS, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121:409–419CrossRefPubMed Büchel C, Price C, Frackowiak RS, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121:409–419CrossRefPubMed
Zurück zum Zitat Clarke S, Innocenti GM (1986) Organization of immature intrahemispheric connections. J Comp Neurol 251:1-22PubMed Clarke S, Innocenti GM (1986) Organization of immature intrahemispheric connections. J Comp Neurol 251:1-22PubMed
Zurück zum Zitat Cohen LG, Weeks RA, Sadato N et al. (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460PubMed Cohen LG, Weeks RA, Sadato N et al. (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460PubMed
Zurück zum Zitat Diamond DM, Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. II. Secondary field (AII). Behav Neurosci 98:189–210CrossRefPubMed Diamond DM, Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. II. Secondary field (AII). Behav Neurosci 98:189–210CrossRefPubMed
Zurück zum Zitat Dreher B, Wang C, Turlejski KJ, Djavadian RL, Burke W (1996) Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cereb Cortex 6:585–599PubMed Dreher B, Wang C, Turlejski KJ, Djavadian RL, Burke W (1996) Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cereb Cortex 6:585–599PubMed
Zurück zum Zitat Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol 117:161–163PubMed Eggermont JJ, Ponton CW, Don M, Waring MD, Kwong B (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngol 117:161–163PubMed
Zurück zum Zitat Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4:1171–1173CrossRefPubMed Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4:1171–1173CrossRefPubMed
Zurück zum Zitat Gao W, Pallas SL (1999) Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. J Neurosci 19:7940–7950PubMed Gao W, Pallas SL (1999) Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. J Neurosci 19:7940–7950PubMed
Zurück zum Zitat Giraud AL, Price CJ, Graham JM, Frackowiak RS (2001a) Functional plasticity of language-related brain areas after cochlear implantation. Brain 124:1307–1316CrossRefPubMed Giraud AL, Price CJ, Graham JM, Frackowiak RS (2001a) Functional plasticity of language-related brain areas after cochlear implantation. Brain 124:1307–1316CrossRefPubMed
Zurück zum Zitat Giraud A, Price CJ, Graham JM, Truy E, Frackowiak RS (2001b) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663CrossRefPubMed Giraud A, Price CJ, Graham JM, Truy E, Frackowiak RS (2001b) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663CrossRefPubMed
Zurück zum Zitat Giraud AL, Truy E, Frackowiak R (2001c) Imaging plasticity in cochlear implant patients. Audiol Neurootol 6:381–393CrossRefPubMed Giraud AL, Truy E, Frackowiak R (2001c) Imaging plasticity in cochlear implant patients. Audiol Neurootol 6:381–393CrossRefPubMed
Zurück zum Zitat Hartmann R, Shepherd RK, Heid S, Klinke R (1997) Response of the A1 to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 112:115–133CrossRefPubMed Hartmann R, Shepherd RK, Heid S, Klinke R (1997) Response of the A1 to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 112:115–133CrossRefPubMed
Zurück zum Zitat Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat—population statistics and degenerative changes. Hear Res 115:101–112CrossRefPubMed Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat—population statistics and degenerative changes. Hear Res 115:101–112CrossRefPubMed
Zurück zum Zitat Heil P, Bronchti G, Wollberg Z, Scheich H (1991) Invasion of visual cortex by the auditory system in the naturally blind mole rat. Neuroreport 2:735–738PubMed Heil P, Bronchti G, Wollberg Z, Scheich H (1991) Invasion of visual cortex by the auditory system in the naturally blind mole rat. Neuroreport 2:735–738PubMed
Zurück zum Zitat Herbert DA, Mitchell RA (1971) Blood gas tensions and acid-base balance in awake cats. J Appl Physiol 30:434–436PubMed Herbert DA, Mitchell RA (1971) Blood gas tensions and acid-base balance in awake cats. J Appl Physiol 30:434–436PubMed
Zurück zum Zitat Innocenti GM, Clarke S (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res 316:143–148PubMed Innocenti GM, Clarke S (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res 316:143–148PubMed
Zurück zum Zitat Izraeli R, Koay G, Lamish M et al. (2002) Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur J Neurosci 15:693–712CrossRefPubMed Izraeli R, Koay G, Lamish M et al. (2002) Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur J Neurosci 15:693–712CrossRefPubMed
Zurück zum Zitat Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long- term cochlear electrostimulation. Science 285:1729–1733 Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long- term cochlear electrostimulation. Science 285:1729–1733
Zurück zum Zitat Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70:1717–1721PubMed Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70:1717–1721PubMed
Zurück zum Zitat Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10:714–726CrossRefPubMed Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10:714–726CrossRefPubMed
Zurück zum Zitat Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 6:346–362CrossRefPubMed Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 6:346–362CrossRefPubMed
Zurück zum Zitat Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807CrossRefPubMed Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807CrossRefPubMed
Zurück zum Zitat Lee DS, Lee JS, Oh SH et al. (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150CrossRef Lee DS, Lee JS, Oh SH et al. (2001) Cross-modal plasticity and cochlear implants. Nature 409:149–150CrossRef
Zurück zum Zitat Levanen S, Jousmaki V, Hari R (1998) Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol 8:869–872PubMed Levanen S, Jousmaki V, Hari R (1998) Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol 8:869–872PubMed
Zurück zum Zitat Melchner L von, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876 Melchner L von, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876
Zurück zum Zitat Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMed Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMed
Zurück zum Zitat Neville HJ (1990) Intermodal competition and compensation in development. Evidence from studies of the visual system in congenitally deaf adults. Ann NY Acad Sci 608:71–87PubMed Neville HJ (1990) Intermodal competition and compensation in development. Evidence from studies of the visual system in congenitally deaf adults. Ann NY Acad Sci 608:71–87PubMed
Zurück zum Zitat Nicolelis MA, Chapin JK, Lin RC (1991) Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex. Brain Res 567:133–139CrossRefPubMed Nicolelis MA, Chapin JK, Lin RC (1991) Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex. Brain Res 567:133–139CrossRefPubMed
Zurück zum Zitat Nishimura H, Hashikawa K, Doi K et al. (1999) Sign language "heard" in the auditory cortex. Nature 397:116CrossRefPubMed Nishimura H, Hashikawa K, Doi K et al. (1999) Sign language "heard" in the auditory cortex. Nature 397:116CrossRefPubMed
Zurück zum Zitat Penhune VB, Zatorre RJ, Macdonald JD, Evans AC (1996) Interhemispheric anatomical differences in human A1: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMed Penhune VB, Zatorre RJ, Macdonald JD, Evans AC (1996) Interhemispheric anatomical differences in human A1: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMed
Zurück zum Zitat Petitto LA, Zatorre RJ, Gauna K et al. (2000) Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci USA 97:13961–13966CrossRefPubMed Petitto LA, Zatorre RJ, Gauna K et al. (2000) Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci USA 97:13961–13966CrossRefPubMed
Zurück zum Zitat Ponton CW, Eggermont JJ (2001) Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 6:363–380CrossRefPubMed Ponton CW, Eggermont JJ (2001) Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 6:363–380CrossRefPubMed
Zurück zum Zitat Proksch J, Bavelier D (2002) Changes in the spatial distribution of visual attention after early deafness. J Cogn Neurosci 14:687–701CrossRefPubMed Proksch J, Bavelier D (2002) Changes in the spatial distribution of visual attention after early deafness. J Cogn Neurosci 14:687–701CrossRefPubMed
Zurück zum Zitat Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13:4538–4548PubMed Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13:4538–4548PubMed
Zurück zum Zitat Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291PubMed Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291PubMed
Zurück zum Zitat Rebillard G, Rebillard M, Carlier E, Pujol R (1976) Histo-physiological relationships in the deaf white cat auditory system. Acta Otolaryngol 82:48–56PubMed Rebillard G, Rebillard M, Carlier E, Pujol R (1976) Histo-physiological relationships in the deaf white cat auditory system. Acta Otolaryngol 82:48–56PubMed
Zurück zum Zitat Rebillard G, Carlier E, Rebillard M, Pujol R (1977) Enhancement of visual responses on the A1 of the cat after an early destruction of cochlear receptors. Brain Res 129:162–164CrossRefPubMed Rebillard G, Carlier E, Rebillard M, Pujol R (1977) Enhancement of visual responses on the A1 of the cat after an early destruction of cochlear receptors. Brain Res 129:162–164CrossRefPubMed
Zurück zum Zitat Rebillard G, Rebillard M, Pujol R (1980) Factors affecting the recording of visual-evoked potentials from the deaf cat A1. Brain Res 188:252–254CrossRefPubMed Rebillard G, Rebillard M, Pujol R (1980) Factors affecting the recording of visual-evoked potentials from the deaf cat A1. Brain Res 188:252–254CrossRefPubMed
Zurück zum Zitat Robards MJ (1979) Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study on the opossum. J Comp Neurol 184:547–566PubMed Robards MJ (1979) Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study on the opossum. J Comp Neurol 184:547–566PubMed
Zurück zum Zitat Röder B, Teder-Salejarvi W, Sterr A et al. (1999a) Improved auditory spatial tuning in blind humans. Nature 400:162–166PubMed Röder B, Teder-Salejarvi W, Sterr A et al. (1999a) Improved auditory spatial tuning in blind humans. Nature 400:162–166PubMed
Zurück zum Zitat Röder B, Rösler F, Neville HJ (1999b) Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neurosci Lett 264:53–56CrossRefPubMed Röder B, Rösler F, Neville HJ (1999b) Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neurosci Lett 264:53–56CrossRefPubMed
Zurück zum Zitat Röder B, Rösler F, Neville HJ (2000) Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia 38:1482–1502CrossRefPubMed Röder B, Rösler F, Neville HJ (2000) Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia 38:1482–1502CrossRefPubMed
Zurück zum Zitat Röder B, Rösler F, Neville HJ (2001) Auditory memory in congenitally blind adults: a behavioral–electrophysiological investigation. Brain Res Cogn Brain Res 11:289–303PubMed Röder B, Rösler F, Neville HJ (2001) Auditory memory in congenitally blind adults: a behavioral–electrophysiological investigation. Brain Res Cogn Brain Res 11:289–303PubMed
Zurück zum Zitat Ryugo DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397:532–548CrossRefPubMed Ryugo DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397:532–548CrossRefPubMed
Zurück zum Zitat Sadato N, Pascual-Leone A, Grafman J et al. (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–528PubMed Sadato N, Pascual-Leone A, Grafman J et al. (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–528PubMed
Zurück zum Zitat Schroeder CE, Lindsley RW, Specht C et al. (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327PubMed Schroeder CE, Lindsley RW, Specht C et al. (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327PubMed
Zurück zum Zitat Sharma A, Dorman M, Spahr A, Todd NW (2002) Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol (Suppl) 189:38–41 Sharma A, Dorman M, Spahr A, Todd NW (2002) Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol (Suppl) 189:38–41
Zurück zum Zitat Shore SE, Vass Z, Wys NL, Altschuler RA (2000) Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol 419:271–285PubMed Shore SE, Vass Z, Wys NL, Altschuler RA (2000) Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol 419:271–285PubMed
Zurück zum Zitat Spear PD (1991) Functions of extrastriate visual cortex in nonprimate species. In: CronlyDillon J (ed) Vision and visual dysfunction. (The neural basis of visual function, vol 4) Macmillan, Basingstoke, pp 339–369 Spear PD (1991) Functions of extrastriate visual cortex in nonprimate species. In: CronlyDillon J (ed) Vision and visual dysfunction. (The neural basis of visual function, vol 4) Macmillan, Basingstoke, pp 339–369
Zurück zum Zitat Stewart DL, Starr A (1970) Absence of visually influenced cells in auditory cortex of normal and congenitally deaf cats. Exp Neurol 28:525–528PubMed Stewart DL, Starr A (1970) Absence of visually influenced cells in auditory cortex of normal and congenitally deaf cats. Exp Neurol 28:525–528PubMed
Zurück zum Zitat Weeks R, Horwitz B, Aziz-Sultan A et al. (2000) A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20:2664–2672PubMed Weeks R, Horwitz B, Aziz-Sultan A et al. (2000) A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20:2664–2672PubMed
Zurück zum Zitat Weinberger NM, Hopkins W, Diamond DM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. I. Primary field (AI). Behav Neurosci 98:171–188CrossRefPubMed Weinberger NM, Hopkins W, Diamond DM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. I. Primary field (AI). Behav Neurosci 98:171–188CrossRefPubMed
Zurück zum Zitat Wurth NN, Heid S, Kral A, Klinke R (1999) Morphology of neurons in the primary auditory cortex (A1) in normal and congenitally deaf cats—a study of DiI labeled cells. Göttingen, Neuradiology Report 27:318 Wurth NN, Heid S, Kral A, Klinke R (1999) Morphology of neurons in the primary auditory cortex (A1) in normal and congenitally deaf cats—a study of DiI labeled cells. Göttingen, Neuradiology Report 27:318
Zurück zum Zitat Yaka R, Yinon U, Wollberg Z (1999) Auditory activation of cortical visual areas in cats after early visual deprivation. Eur J Neurosci 11:1301–1312PubMed Yaka R, Yinon U, Wollberg Z (1999) Auditory activation of cortical visual areas in cats after early visual deprivation. Eur J Neurosci 11:1301–1312PubMed
Metadaten
Titel
Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats
verfasst von
A. Kral
J.-H. Schröder
R. Klinke
A. K. Engel
Publikationsdatum
01.12.2003
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1609-z

Weitere Artikel der Ausgabe 4/2003

Experimental Brain Research 4/2003 Zur Ausgabe

Research Article

Inharmonicity detection

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.