Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 10/2012

01.10.2012 | Original article

In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model

verfasst von: Alessa Pardo, Michael Stöcker, Florian Kampmeier, Georg Melmer, Rainer Fischer, Theo Thepen, Stefan Barth

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 10/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Preclinical in vivo analyses of treatment responses are an important prerequisite to evaluate new therapeutics. Molecular in vivo imaging in the far red (FR)/near infra red (NIR) is a promising method, as it enables measurements at different time points in individual animals, thereby reducing the number of animals required, while increasing statistical significance. Here, we show the establishment of a method to monitor response to treatment using fluorescent cells, expressing the epidermal growth factor receptor (EGFR), a target already used in therapy.

Methods

We transfected A-431 tumour cells with the far red–emitting protein Katushka (Kat2), resulting in strong fluorescence allowing for the monitoring of tumour growth when implanted in BALB/c nu/nu mice with a CRi Maestro in vivo imager. We targeted A-431 cells with a previously reported immunotoxin (IT), consisting of the anti-EGFR antibody single-chain variable fragment (scFv) 425, fused to Pseudomonas aeruginosa Exotoxin A’ (ETA’). In addition, EGFR expression was verified using the 425(scFv) conjugated to a NIR dye BG-747 through a SNAP-tag linker.

Results

The results show the feasibility to evaluate response to treatment in vivo by FR imaging, while at the same location detecting EGFR expression. Treatment with 425(scFv)-ETA’ resulted in decelerated tumour growth, while not affecting the overall health of the animals. This is in contrast to treatment with Doxorubicin, which, although decreasing the tumour size, resulted in poor health.

Conclusions

We developed a novel method to non-invasively determine treatment responses by in vivo imaging of multiple parameters which showed the efficacy of 425(scFv)-ETA’.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Contag PR (2002) Whole-animal cellular and molecular imaging to accelerate drug development. Drug Discov Today 7:555–562PubMedCrossRef Contag PR (2002) Whole-animal cellular and molecular imaging to accelerate drug development. Drug Discov Today 7:555–562PubMedCrossRef
2.
Zurück zum Zitat Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRef Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRef
3.
Zurück zum Zitat Alford R, Ogawa M, Choyke PL, Kobayashi H (2009) Molecular probes for the in vivo imaging of cancer. Mol Biosyst 5:1279–1291PubMedCrossRef Alford R, Ogawa M, Choyke PL, Kobayashi H (2009) Molecular probes for the in vivo imaging of cancer. Mol Biosyst 5:1279–1291PubMedCrossRef
4.
Zurück zum Zitat Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12:139–149PubMed Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12:139–149PubMed
5.
Zurück zum Zitat Weissleder R (2001) A clearer vision for in vivo imaging. Progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19:316–317PubMedCrossRef Weissleder R (2001) A clearer vision for in vivo imaging. Progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19:316–317PubMedCrossRef
6.
Zurück zum Zitat Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedCrossRef Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedCrossRef
7.
Zurück zum Zitat Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci USA 75:3317–3321PubMedCrossRef Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci USA 75:3317–3321PubMedCrossRef
8.
Zurück zum Zitat Tolmachev V, Rosik D, Wållberg H, Sjöberg A, Sandström M, Hansson M et al (2010) Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-Z EGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imag 37:613–622CrossRef Tolmachev V, Rosik D, Wållberg H, Sjöberg A, Sandström M, Hansson M et al (2010) Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-Z EGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imag 37:613–622CrossRef
9.
Zurück zum Zitat Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279PubMedCrossRef Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11:6270–6279PubMedCrossRef
10.
Zurück zum Zitat Shao W, Zhao S, Liu Z, Zhang J, Ma S, Sato JD et al (2006) Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C. Biochem Biophys Res Commun 349:816–824PubMedCrossRef Shao W, Zhao S, Liu Z, Zhang J, Ma S, Sato JD et al (2006) Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C. Biochem Biophys Res Commun 349:816–824PubMedCrossRef
11.
Zurück zum Zitat Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA drug approval summary: Gefitinib (ZD1839)(Iressa (R)) tablets. Oncologist 8:303–306PubMedCrossRef Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA drug approval summary: Gefitinib (ZD1839)(Iressa (R)) tablets. Oncologist 8:303–306PubMedCrossRef
12.
Zurück zum Zitat Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva (R)) tablets. Oncologist 10:461–466PubMedCrossRef Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva (R)) tablets. Oncologist 10:461–466PubMedCrossRef
13.
Zurück zum Zitat Vincenzi B, Zoccoli A, Pantano F, Venditti O, Galluzzo S (2010) Cetuximab: from bench to bedside. Curr Cancer Drug Targets 10:80–95PubMedCrossRef Vincenzi B, Zoccoli A, Pantano F, Venditti O, Galluzzo S (2010) Cetuximab: from bench to bedside. Curr Cancer Drug Targets 10:80–95PubMedCrossRef
14.
Zurück zum Zitat Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix). Oncologist 12:577–583PubMedCrossRef Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix). Oncologist 12:577–583PubMedCrossRef
15.
Zurück zum Zitat Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM (2005) Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11:397–405PubMed Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM (2005) Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11:397–405PubMed
16.
Zurück zum Zitat Bruell D, Stöcker M, Huhn M, Redding N, Küpper M, Schumacher P et al (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA’ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186PubMed Bruell D, Stöcker M, Huhn M, Redding N, Küpper M, Schumacher P et al (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA’ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186PubMed
17.
Zurück zum Zitat Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Müller J, Ischenko I et al (2005) Recombinant anti-EGFR immunotoxin 425 (scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313PubMed Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Müller J, Ischenko I et al (2005) Recombinant anti-EGFR immunotoxin 425 (scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313PubMed
18.
Zurück zum Zitat Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinköthe T et al (2000) Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 95:3909–3914PubMed Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinköthe T et al (2000) Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 95:3909–3914PubMed
19.
Zurück zum Zitat Huhn M, Sasse S, Tur MK, Matthey B, Schinköthe T, Rybak SM, et al. (2001) Human angiogenin fused to human CD30 Ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 61:8737–8742 Huhn M, Sasse S, Tur MK, Matthey B, Schinköthe T, Rybak SM, et al. (2001) Human angiogenin fused to human CD30 Ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 61:8737–8742
20.
Zurück zum Zitat Tur M, Huhn M, Thepen T, Stöcker M, Krohn R, Vogel S et al (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 63:8414–8419PubMed Tur M, Huhn M, Thepen T, Stöcker M, Krohn R, Vogel S et al (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 63:8414–8419PubMed
21.
Zurück zum Zitat Stahnke B, Thepen T, Stöcker M, Rosinke R, Jost E, Fischer R et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924–2932PubMedCrossRef Stahnke B, Thepen T, Stöcker M, Rosinke R, Jost E, Fischer R et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924–2932PubMedCrossRef
22.
Zurück zum Zitat Tur MK, Neef I, Jost E, Galm O, Jäger G, Stöcker M et al (2009) Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J Immunother 32:431–441PubMedCrossRef Tur MK, Neef I, Jost E, Galm O, Jäger G, Stöcker M et al (2009) Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J Immunother 32:431–441PubMedCrossRef
23.
Zurück zum Zitat Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565PubMedCrossRef Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565PubMedCrossRef
24.
Zurück zum Zitat Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237PubMedCrossRef Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237PubMedCrossRef
25.
Zurück zum Zitat Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, Fitzgerald DJ et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247PubMedCrossRef Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, Fitzgerald DJ et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247PubMedCrossRef
26.
Zurück zum Zitat Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM et al (2010) Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res 16:1894–1903PubMedCrossRef Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM et al (2010) Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res 16:1894–1903PubMedCrossRef
28.
Zurück zum Zitat Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837PubMedCrossRef Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837PubMedCrossRef
29.
Zurück zum Zitat Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28:3801–3813PubMedCrossRef Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28:3801–3813PubMedCrossRef
30.
Zurück zum Zitat Arteaga CL (2003) EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21:289s–291sPubMedCrossRef Arteaga CL (2003) EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21:289s–291sPubMedCrossRef
31.
Zurück zum Zitat Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A et al (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 20:1010–1015PubMedCrossRef Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A et al (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 20:1010–1015PubMedCrossRef
32.
Zurück zum Zitat Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, Fischer R et al (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imag 37:1926–1934CrossRef Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, Fischer R et al (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imag 37:1926–1934CrossRef
33.
Zurück zum Zitat Matthey B, Engert A, Klimka A, Diehl V, Barth S (1999) A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 229:145–153PubMedCrossRef Matthey B, Engert A, Klimka A, Diehl V, Barth S (1999) A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 229:145–153PubMedCrossRef
34.
Zurück zum Zitat Ribbert T, Thepen T, Tur MK, Fischer R, Huhn M, Barth S (2010) Improved efficacy by increased valency, both in vitro, as well as in vivo in a chronic cutaneous inflammation model in hCD64 transgenic mice. Br J Dermatol 162:1–3CrossRef Ribbert T, Thepen T, Tur MK, Fischer R, Huhn M, Barth S (2010) Improved efficacy by increased valency, both in vitro, as well as in vivo in a chronic cutaneous inflammation model in hCD64 transgenic mice. Br J Dermatol 162:1–3CrossRef
35.
Zurück zum Zitat Kapp U, Wolf J, Von Kalle C, Tawadros S, Röttgen A, Engert A et al (1992) Preliminary report: growth of Hodgkin’s lymphoma derived cells in immune compromised mice. Ann Oncol 3:S21–S23 Kapp U, Wolf J, Von Kalle C, Tawadros S, Röttgen A, Engert A et al (1992) Preliminary report: growth of Hodgkin’s lymphoma derived cells in immune compromised mice. Ann Oncol 3:S21–S23
36.
Zurück zum Zitat Stocker M, Tur MK, Sasse S, Krüßmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219PubMedCrossRef Stocker M, Tur MK, Sasse S, Krüßmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219PubMedCrossRef
37.
Zurück zum Zitat Johansen PB (1981) Doxorubicin pharmacokinetics after intravenous and intraperitoneal administration in the nude mouse. Cancer Chemother Pharmacol 5:267–270PubMedCrossRef Johansen PB (1981) Doxorubicin pharmacokinetics after intravenous and intraperitoneal administration in the nude mouse. Cancer Chemother Pharmacol 5:267–270PubMedCrossRef
38.
Zurück zum Zitat Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S (2005) Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci 76:1439–1453PubMedCrossRef Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S (2005) Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci 76:1439–1453PubMedCrossRef
39.
Zurück zum Zitat Ajaj KA, Graeser R, Fichtner I, Kratz F (2009) In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol 64:413–418PubMedCrossRef Ajaj KA, Graeser R, Fichtner I, Kratz F (2009) In vitro and in vivo study of an albumin-binding prodrug of doxorubicin that is cleaved by cathepsin B. Cancer Chemother Pharmacol 64:413–418PubMedCrossRef
40.
Zurück zum Zitat Jensen MM, Jørgensen JT, Binderup T, Kjaer A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imag 8:16CrossRef Jensen MM, Jørgensen JT, Binderup T, Kjaer A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imag 8:16CrossRef
41.
Zurück zum Zitat He X, Nie H, Wang K, Tan W, Wu X, Zhang P (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80:9597–9603PubMedCrossRef He X, Nie H, Wang K, Tan W, Wu X, Zhang P (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80:9597–9603PubMedCrossRef
42.
Zurück zum Zitat Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648PubMedCrossRef Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648PubMedCrossRef
43.
Zurück zum Zitat Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648PubMedCrossRef Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648PubMedCrossRef
44.
Zurück zum Zitat Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M et al (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109PubMedCrossRef Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M et al (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109PubMedCrossRef
Metadaten
Titel
In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model
verfasst von
Alessa Pardo
Michael Stöcker
Florian Kampmeier
Georg Melmer
Rainer Fischer
Theo Thepen
Stefan Barth
Publikationsdatum
01.10.2012
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 10/2012
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1219-3

Weitere Artikel der Ausgabe 10/2012

Cancer Immunology, Immunotherapy 10/2012 Zur Ausgabe

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.