Skip to main content
Erschienen in: Annals of Hematology 3/2022

Open Access 26.07.2021 | COVID-19 | Letter to the Editor

Acquired thrombotic thrombocytopenic purpura after first vaccination dose of BNT162b2 mRNA COVID-19 vaccine

verfasst von: Johannes Ruhe, Ulf Schnetzke, Karim Kentouche, Florian Prims, Michael Baier, Konstantin Herfurth, Mandy Schlosser, Martin Busch, Andreas Hochhaus, Gunter Wolf

Erschienen in: Annals of Hematology | Ausgabe 3/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Dear Editor,
Thrombotic thrombocytopenic purpura (TTP) may occur after vaccinations [13]. Here, we report a case of severe TTP early after vaccination against COVID-19.
An 84-year-old female patient was admitted to the hospital with partial hemiplegia, scattered petechiae, and severe arterial hypertension. Cerebral magnetic resonance imaging (MRI) revealed multiple subacute emboli without vessel occlusion. Laboratory findings showed thrombocytopenia (45 × 109/l), Coombs negative hemolytic anemia (hemoglobin 7.9 g/dl; schistocytes 42‰, haptoglobin < 10 mg/dl; total serum bilirubin 2455 mg/dl; Fig. 1), and acute renal failure (serum creatinine 1.95 mg/dl).
Sixteen days before admission, the patient received the first vaccination dose of BNT162b2 (Comirnaty®; Biontech/Pfizer) against COVID-19. Anti-platelet factor 4–IgG was 0.04 U/ml (normal range < 1.0 U/ml); HIPA (heparin-induced platelet antibody) and PIPA (platelet-iodinated protein A) tests were negative at admission so that a SARS-CoV-2 vaccine-induced immune TTP was rather unlikely [4]. Vaccination-related IgG-antibodies against the spike protein were detected (28.6 AU/ml; normal range < 12 AU/ml), without evidence of active or past SARS-CoV-2 infection (negative nucleocapside-IgG and SARS-CoV-2-PCR). Suspecting an acquired TTP, corticosteroid, and plasma exchange therapy (PEX) with fresh frozen plasma were initiated. TTP could be confirmed with an ADAMTS13 activity of 1.6% (60–121%), ADAMTS13-antigen 0.03 IU/ml (0.41–1.41 IU/ml), and inhibitory ADAMTS13-antibodies of 82.2 U/ml (< 12 U/ml). The platelet count increased to 118 × 109/l at day 6 of daily PEX.
After an acute transient loss of consciousness and a sudden drop in platelet count (19 × 109/l) at day 8, 1000 mg rituximab (RTX) was applied in addition to a second corticosteroid pulse. ADAMTS13 antibodies were reduced but still positive (19.9 U/ml); ADAMTS13 activity was 14%. To prevent RTX washout, daily PEX was interrupted for 36 h. As hemolysis may have been aggravated by severe arterial hypertension, likely mediated by TTP-associated endothelial activation stimulating the renin-angiotensin-system, we ensured the consequent administration of angiotensin receptor blocker (candesartan). In the following days, the platelet count and clinical condition improved. After 17 sessions of PEX and the second administration of 1000 mg RTX (day 18), a partial remission was reached with platelets constantly above 100 × 109/l, stabilized red blood cell count (hemoglobin > 9 g/dl), normalized kidney function (creatinine 0.6 mg/dl), and strongly regredient neurologic symptoms. Furthermore, a sufficient proof of ADAMTS13 activity (43–70%) and normalized ADAMTS13 antibodies, lactate dehydrogenase, and other hemolytic parameters supported the findings of clinical improvement (Fig. 1). However, schistocytes were still increased, suggesting possible ongoing mechanical hemolytic activity. Initially increased SARS-CoV-2 IgG and anti-spike titer were normalized and non-detectable at days 9 and 18 as a consequence of daily PEX and the use of rituximab. It can be assumed that no sufficient protection by vaccination could be achieved.
TTP has been described as a complication in COVID-19 patients [5]. A mechanism might be excessive von Willebrand factor (vWF) liberation from the endothelium, exceeding ADAMTS13 capacity for cleaving [6, 7]. Furthermore, Sissa et al. reported about a relapse of TTP 6 days after the second dose administration of BNT162b2 [8]. So far, precise immunological mechanisms remain unclear, but associations to vaccinations as a potential immunological trigger for the formation of antibodies against ADAMTS13 have been published earlier [13]. A pre-vaccination gene expression pattern might be an explanation for developing autoantibodies following vaccination [9].
To our knowledge, this is the first case of a primary manifestation of acquired TTP associated with vaccination with BNT162b2 especially in an older woman who is otherwise not particularly prone to having TTP. TTP should be considered in patients with thrombocytopenia after vaccination against COVID-19 and be added to the safety profile of BNT162b2 [10].

Acknowledgements

In the interdisciplinary management of this case of vaccination-associated TTP, many MDs were involved, and the authors are thankful for the good collaboration.

Declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Dias PJ, Gopal S (2009) Refractory thrombotic thrombocytopenic purpura following influenza vaccination. Anaesthesia 64(4):444–446CrossRef Dias PJ, Gopal S (2009) Refractory thrombotic thrombocytopenic purpura following influenza vaccination. Anaesthesia 64(4):444–446CrossRef
2.
Zurück zum Zitat Kojima Y, Ohashi H, Nakamura T et al (2014) Acute thrombotic thrombocytopenic purpura after pneumococcal vaccination. Blood Coagul Fibrinolysis 25(5):512–514CrossRef Kojima Y, Ohashi H, Nakamura T et al (2014) Acute thrombotic thrombocytopenic purpura after pneumococcal vaccination. Blood Coagul Fibrinolysis 25(5):512–514CrossRef
3.
Zurück zum Zitat Hermann R, Pfeil A, Busch M et al (2010) Schwerste thrombotisch-thrombozytopenische Purpura (TTP) nach H1N1-Vakzinierung. Med Klin 105:663–668CrossRef Hermann R, Pfeil A, Busch M et al (2010) Schwerste thrombotisch-thrombozytopenische Purpura (TTP) nach H1N1-Vakzinierung. Med Klin 105:663–668CrossRef
5.
Zurück zum Zitat Tehrani HA, Darnahal M, Vaezi M et al (2021) COVID-19 associated thrombotic thrombocytopenic purpura (TTP) ; a case series and mini-review. Int immunopharmacol 93:107397CrossRef Tehrani HA, Darnahal M, Vaezi M et al (2021) COVID-19 associated thrombotic thrombocytopenic purpura (TTP) ; a case series and mini-review. Int immunopharmacol 93:107397CrossRef
6.
Zurück zum Zitat Doevelaar AAN, Bachmann M, Hölzer B et al (2021) von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease. Crit Care Med 49(5):e512–e520CrossRef Doevelaar AAN, Bachmann M, Hölzer B et al (2021) von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease. Crit Care Med 49(5):e512–e520CrossRef
7.
Zurück zum Zitat Arulkumaran N, Thomas M, Brealey D et al (2020) Plasma exchange for COVID-19 thrombo-inflammatory disease. EJHaem 2(1):26–32CrossRef Arulkumaran N, Thomas M, Brealey D et al (2020) Plasma exchange for COVID-19 thrombo-inflammatory disease. EJHaem 2(1):26–32CrossRef
9.
Zurück zum Zitat Sobolev O, Binda E, O’Farrell S et al (2016) Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat immunol 17(2):204–213CrossRef Sobolev O, Binda E, O’Farrell S et al (2016) Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat immunol 17(2):204–213CrossRef
10.
Zurück zum Zitat Polack FP, Thomas SJ, Kitchin N et al (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383(27):2603–2615CrossRef Polack FP, Thomas SJ, Kitchin N et al (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383(27):2603–2615CrossRef
Metadaten
Titel
Acquired thrombotic thrombocytopenic purpura after first vaccination dose of BNT162b2 mRNA COVID-19 vaccine
verfasst von
Johannes Ruhe
Ulf Schnetzke
Karim Kentouche
Florian Prims
Michael Baier
Konstantin Herfurth
Mandy Schlosser
Martin Busch
Andreas Hochhaus
Gunter Wolf
Publikationsdatum
26.07.2021
Verlag
Springer Berlin Heidelberg
Schlagwort
COVID-19
Erschienen in
Annals of Hematology / Ausgabe 3/2022
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-021-04584-y

Weitere Artikel der Ausgabe 3/2022

Annals of Hematology 3/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.