Skip to main content
Erschienen in: World Journal of Urology 3/2012

01.06.2012 | Topic paper

Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives

verfasst von: Nagalakshmi Nadiminty, Allen C. Gao

Erschienen in: World Journal of Urology | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Background

The emergence of castration resistance has remained the primary obstacle in prostate cancer therapy for several decades. Mechanisms likely to be involved in castration-resistant progression have been studied extensively, but have failed to yield many meaningful and effective targets. The re-activation of the androgen receptor (AR) in castration-resistant prostate cancer (CRPC) is now recognized as the central event in this process, and therapeutic modalities are being devised to combat it.

Methods

A review of literature was performed to highlight the important factors that play a role in the aberrant activation of the AR in CRPC.

Results

Seminal and exciting advances made in the past few years in the discovery of the roles of new intrinsic factors such as intracrine androgens, gene fusions involving the ETS oncogenes, and splice variants of the AR are reviewed. New and emerging hypotheses about the involvement of factors such as cytokines and other signaling pathways are discussed.

Conclusions

This review summarizes the most recent advances in the persistent activation of the androgen receptor signaling pathway and provides a perspective about their significance in CRPC progression.
Literatur
1.
2.
Zurück zum Zitat Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS (2006) Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res 66:10613–10620PubMedCrossRef Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS (2006) Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res 66:10613–10620PubMedCrossRef
3.
Zurück zum Zitat Visakorpi T, Hyytinen E, Koivisto P et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406PubMedCrossRef Visakorpi T, Hyytinen E, Koivisto P et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406PubMedCrossRef
4.
Zurück zum Zitat Chen CD, Welsbie DS, Tran C et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39PubMedCrossRef Chen CD, Welsbie DS, Tran C et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39PubMedCrossRef
5.
Zurück zum Zitat Palmberg C, Koivisto P, Kakkola L, Tammela TLJ, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995PubMedCrossRef Palmberg C, Koivisto P, Kakkola L, Tammela TLJ, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995PubMedCrossRef
6.
Zurück zum Zitat Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261PubMedCrossRef Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261PubMedCrossRef
7.
Zurück zum Zitat Koochekpour S (2010) Androgen receptor signaling and mutations in prostate cancer. Asian J Androl 12:639–657PubMedCrossRef Koochekpour S (2010) Androgen receptor signaling and mutations in prostate cancer. Asian J Androl 12:639–657PubMedCrossRef
8.
Zurück zum Zitat Brooke GN, Bevan CL (2009) The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 10:18–25PubMedCrossRef Brooke GN, Bevan CL (2009) The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 10:18–25PubMedCrossRef
9.
Zurück zum Zitat Buchanan G, Yang M, Cheong A et al (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum Mol Genet 13:1677–1692PubMedCrossRef Buchanan G, Yang M, Cheong A et al (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum Mol Genet 13:1677–1692PubMedCrossRef
10.
Zurück zum Zitat Buchanan G, Yang M, Harris JM et al (2001) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol 15:46–56PubMedCrossRef Buchanan G, Yang M, Harris JM et al (2001) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol 15:46–56PubMedCrossRef
11.
Zurück zum Zitat Taylor BS, Schultz N, Hieronymus H et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22PubMedCrossRef Taylor BS, Schultz N, Hieronymus H et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22PubMedCrossRef
12.
Zurück zum Zitat Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME (2010) Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem 56:1492–1495PubMedCrossRef Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME (2010) Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem 56:1492–1495PubMedCrossRef
13.
Zurück zum Zitat Steinkamp MP, O’Mahony OA, Brogley M et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade Therapy. Cancer Res 69:4434–4442PubMedCrossRef Steinkamp MP, O’Mahony OA, Brogley M et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade Therapy. Cancer Res 69:4434–4442PubMedCrossRef
14.
Zurück zum Zitat Tomlins SA, Bjartell A, Chinnaiyan AM et al (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286PubMedCrossRef Tomlins SA, Bjartell A, Chinnaiyan AM et al (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286PubMedCrossRef
15.
Zurück zum Zitat Tomlins SA, Mehra R, Rhodes DR et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66:3396–3400PubMedCrossRef Tomlins SA, Mehra R, Rhodes DR et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66:3396–3400PubMedCrossRef
16.
Zurück zum Zitat Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM (2008) The discovery and application of gene fusions in prostate cancer. BJU Int 102:276–282PubMedCrossRef Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM (2008) The discovery and application of gene fusions in prostate cancer. BJU Int 102:276–282PubMedCrossRef
17.
Zurück zum Zitat Demichelis F, Fall K, Perner S et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599PubMedCrossRef Demichelis F, Fall K, Perner S et al (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26:4596–4599PubMedCrossRef
18.
Zurück zum Zitat Attard G, Swennenhuis JF, Olmos D et al (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69:2912–2918PubMedCrossRef Attard G, Swennenhuis JF, Olmos D et al (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69:2912–2918PubMedCrossRef
19.
Zurück zum Zitat Klezovitch O, Risk M, Coleman I et al (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105:2105–2110PubMedCrossRef Klezovitch O, Risk M, Coleman I et al (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105:2105–2110PubMedCrossRef
20.
Zurück zum Zitat Bastus NC, Boyd LK, Mao X et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548PubMedCrossRef Bastus NC, Boyd LK, Mao X et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548PubMedCrossRef
21.
Zurück zum Zitat Fine SW, Gopalan A, Leversha MA et al (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 23:1325–1333PubMedCrossRef Fine SW, Gopalan A, Leversha MA et al (2010) TMPRSS2-ERG gene fusion is associated with low Gleason scores and not with high-grade morphological features. Mod Pathol 23:1325–1333PubMedCrossRef
22.
Zurück zum Zitat Yu J, Yu J, Mani R-S et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454PubMedCrossRef Yu J, Yu J, Mani R-S et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454PubMedCrossRef
23.
Zurück zum Zitat Carver BS, Tran J, Gopalan A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624PubMedCrossRef Carver BS, Tran J, Gopalan A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624PubMedCrossRef
24.
Zurück zum Zitat Yoshimoto M, Joshua AM, Cunha IW et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460PubMedCrossRef Yoshimoto M, Joshua AM, Cunha IW et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460PubMedCrossRef
25.
Zurück zum Zitat Salami SS, Schmidt F, Laxman B et al Combining urinary detection of TMPRSS2:ERG and CaP3 with serum PSA to predict diagnosis of prostate cancer. Urologic oncology: seminars and original investigations. (in press, corrected proof) Salami SS, Schmidt F, Laxman B et al Combining urinary detection of TMPRSS2:ERG and CaP3 with serum PSA to predict diagnosis of prostate cancer. Urologic oncology: seminars and original investigations. (in press, corrected proof)
26.
Zurück zum Zitat Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly (ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678PubMedCrossRef Brenner JC, Ateeq B, Li Y et al (2011) Mechanistic rationale for inhibition of poly (ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678PubMedCrossRef
27.
Zurück zum Zitat Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642PubMedCrossRef Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642PubMedCrossRef
28.
Zurück zum Zitat Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13:2465–2477PubMedCrossRef Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13:2465–2477PubMedCrossRef
29.
Zurück zum Zitat Blackwood EM, Kadonaga JT (1998) Going the distance: the current view of enhancer action. Science 281:60–63PubMedCrossRef Blackwood EM, Kadonaga JT (1998) Going the distance: the current view of enhancer action. Science 281:60–63PubMedCrossRef
30.
Zurück zum Zitat Wang Q, Li W, Liu XS et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392PubMedCrossRef Wang Q, Li W, Liu XS et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392PubMedCrossRef
31.
Zurück zum Zitat Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256PubMedCrossRef Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256PubMedCrossRef
32.
Zurück zum Zitat Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate: n/a-n/a Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate: n/a-n/a
33.
Zurück zum Zitat Tepper CG, Boucher DL, Ryan PE et al (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62:6606–6614PubMed Tepper CG, Boucher DL, Ryan PE et al (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62:6606–6614PubMed
34.
Zurück zum Zitat Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477PubMedCrossRef Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477PubMedCrossRef
35.
Zurück zum Zitat Guo Z, Yang X, Sun F et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313PubMedCrossRef Guo Z, Yang X, Sun F et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313PubMedCrossRef
36.
Zurück zum Zitat Hu R, Dunn TA, Wei S et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22PubMedCrossRef Hu R, Dunn TA, Wei S et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22PubMedCrossRef
37.
Zurück zum Zitat Watson PA, Chen YF, Balbas MD et al Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. In: Proceedings of the national academy of sciences 107:16759–16765 Watson PA, Chen YF, Balbas MD et al Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. In: Proceedings of the national academy of sciences 107:16759–16765
38.
Zurück zum Zitat Hornberg E, Ylitalo EB, Crnalic S et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6:e19059PubMedCrossRef Hornberg E, Ylitalo EB, Crnalic S et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6:e19059PubMedCrossRef
39.
Zurück zum Zitat Nishiyama T, Hashimoto Y, Takahashi K (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10:7121–7126PubMedCrossRef Nishiyama T, Hashimoto Y, Takahashi K (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10:7121–7126PubMedCrossRef
40.
Zurück zum Zitat Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657PubMedCrossRef Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657PubMedCrossRef
41.
Zurück zum Zitat Nakamura Y, Suzuki T, Nakabayashi M et al (2005) In situ androgen producing enzymes in human prostate cancer. Endocr Relat Cancer 12:101–107PubMedCrossRef Nakamura Y, Suzuki T, Nakabayashi M et al (2005) In situ androgen producing enzymes in human prostate cancer. Endocr Relat Cancer 12:101–107PubMedCrossRef
42.
Zurück zum Zitat Page ST, Lin DW, Mostaghel EA et al (2006) Persistent intraprostatic androgen concentrations after medical castration in healthy men. Clin Endocrinol Metab 91:3850–3856CrossRef Page ST, Lin DW, Mostaghel EA et al (2006) Persistent intraprostatic androgen concentrations after medical castration in healthy men. Clin Endocrinol Metab 91:3850–3856CrossRef
43.
Zurück zum Zitat Dillard PR, Lin M-F, Khan SA (2008) Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 295:115–120PubMedCrossRef Dillard PR, Lin M-F, Khan SA (2008) Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 295:115–120PubMedCrossRef
44.
Zurück zum Zitat Mostaghel EA, Page ST, Lin DW et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67:5033–5041PubMedCrossRef Mostaghel EA, Page ST, Lin DW et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67:5033–5041PubMedCrossRef
45.
Zurück zum Zitat Leon CG, Locke JA, Adomat HH et al (2010) Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70:390–400PubMed Leon CG, Locke JA, Adomat HH et al (2010) Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 70:390–400PubMed
46.
Zurück zum Zitat Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med. doi:10.2119/molmed.2010.00143 Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med. doi:10.​2119/​molmed.​2010.​00143
47.
Zurück zum Zitat Mostaghel EA, Nelson PS (2008) Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract Res Clin Endocrinol Metab 22:243–258PubMedCrossRef Mostaghel EA, Nelson PS (2008) Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract Res Clin Endocrinol Metab 22:243–258PubMedCrossRef
48.
Zurück zum Zitat Hofland J, van Weerden WM, Dits NFJ et al (1999) Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 70:1256–1264CrossRef Hofland J, van Weerden WM, Dits NFJ et al (1999) Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 70:1256–1264CrossRef
49.
Zurück zum Zitat Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol Semin Orig Investig 27:251–257CrossRef Mostaghel EA, Montgomery B, Nelson PS (2009) Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol Semin Orig Investig 27:251–257CrossRef
50.
Zurück zum Zitat George DJ, Halabi S, Shepard TF et al (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 11:1815–1820PubMedCrossRef George DJ, Halabi S, Shepard TF et al (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 11:1815–1820PubMedCrossRef
51.
Zurück zum Zitat Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015PubMedCrossRef Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015PubMedCrossRef
52.
Zurück zum Zitat Corcoran NM, Costello AJ (2003) Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 91:545–553PubMedCrossRef Corcoran NM, Costello AJ (2003) Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 91:545–553PubMedCrossRef
53.
Zurück zum Zitat Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC (2007) Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67:764–773PubMedCrossRef Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC (2007) Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67:764–773PubMedCrossRef
54.
Zurück zum Zitat Feng S, Tang Q, Sun M, Chun JY, Evans CP, Gao AC (2009) Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Mol Cancer Ther 8:665–671PubMedCrossRef Feng S, Tang Q, Sun M, Chun JY, Evans CP, Gao AC (2009) Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Mol Cancer Ther 8:665–671PubMedCrossRef
55.
Zurück zum Zitat Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Chem Biol 277:38087–38094CrossRef Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Chem Biol 277:38087–38094CrossRef
56.
Zurück zum Zitat Chun JY, Nadiminty N, Dutt S et al (2009) Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 15:4815–4822PubMedCrossRef Chun JY, Nadiminty N, Dutt S et al (2009) Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 15:4815–4822PubMedCrossRef
57.
Zurück zum Zitat Culig Z Cytokine disbalance in common human cancers. Biochimica et Biophysica Acta (BBA). Mole Cell Res 1813:308–314 Culig Z Cytokine disbalance in common human cancers. Biochimica et Biophysica Acta (BBA). Mole Cell Res 1813:308–314
58.
Zurück zum Zitat Santer FdrR, Malinowska K, Culig Z, Cavarretta IT (2010) Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17:241–253 Santer FdrR, Malinowska K, Culig Z, Cavarretta IT (2010) Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17:241–253
59.
Zurück zum Zitat Taguchi Y, Yamamoto M, Yamate T et al (1998) Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 110:559–574 Taguchi Y, Yamamoto M, Yamate T et al (1998) Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 110:559–574
60.
Zurück zum Zitat García-Moreno C, Méndez-Dávila C, de la Piedra C, Castro-Errecaborde NA, Traba ML (2002) Human prostatic carcinoma cells produce an increase in the synthesis of interleukin-6 by human osteoblasts. Prostate 50:241–246PubMedCrossRef García-Moreno C, Méndez-Dávila C, de la Piedra C, Castro-Errecaborde NA, Traba ML (2002) Human prostatic carcinoma cells produce an increase in the synthesis of interleukin-6 by human osteoblasts. Prostate 50:241–246PubMedCrossRef
61.
Zurück zum Zitat Smith PC, Keller ET (2001) Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48:47–53CrossRef Smith PC, Keller ET (2001) Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48:47–53CrossRef
62.
Zurück zum Zitat Wallner L, Dai J, Escara-Wilke J et al (2006) Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res 66:3087–3095PubMedCrossRef Wallner L, Dai J, Escara-Wilke J et al (2006) Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res 66:3087–3095PubMedCrossRef
63.
Zurück zum Zitat Dorff TB, Goldman B, Pinski JK et al (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (Siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16:3028–3034 Dorff TB, Goldman B, Pinski JK et al (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (Siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16:3028–3034
64.
Zurück zum Zitat Karkera J, Steiner H, Li W et al (2011) The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate (Epub ahead of print) Karkera J, Steiner H, Li W et al (2011) The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate (Epub ahead of print)
65.
Zurück zum Zitat Takeshi U, Sadar MD, Suzuki H et al (2005) Interleukin-4 in patients with prostate cancer. Anticancer Res 25:4595–4598PubMed Takeshi U, Sadar MD, Suzuki H et al (2005) Interleukin-4 in patients with prostate cancer. Anticancer Res 25:4595–4598PubMed
66.
Zurück zum Zitat Lee SO, Lou W, Hou M, Onate SA, Gao AC (2003) Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene 22:7981–7988PubMedCrossRef Lee SO, Lou W, Hou M, Onate SA, Gao AC (2003) Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene 22:7981–7988PubMedCrossRef
67.
Zurück zum Zitat Lee SO, Chun JY, Nadiminty N, Lou W, Feng S, Gao AC (2009) Interleukin-4 activates androgen receptor through CBP/p300. Prostate 69:126–132PubMedCrossRef Lee SO, Chun JY, Nadiminty N, Lou W, Feng S, Gao AC (2009) Interleukin-4 activates androgen receptor through CBP/p300. Prostate 69:126–132PubMedCrossRef
68.
Zurück zum Zitat Lee SO, Lou W, Nadiminty N, Lin X, Gao AC (2005) Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64:160–167PubMedCrossRef Lee SO, Lou W, Nadiminty N, Lin X, Gao AC (2005) Requirement for NF-κB in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64:160–167PubMedCrossRef
69.
Zurück zum Zitat Lee SO, Pinder E, Chun JY, Lou W, Sun M, Gao AC (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68:85–91PubMedCrossRef Lee SO, Pinder E, Chun JY, Lou W, Sun M, Gao AC (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68:85–91PubMedCrossRef
70.
Zurück zum Zitat Huang J, Yao JL, Zhang L et al (2005) Differential expression of interleukin-8 and Its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate can./cer. Am J Pathol 166:1807–1815PubMedCrossRef Huang J, Yao JL, Zhang L et al (2005) Differential expression of interleukin-8 and Its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate can./cer. Am J Pathol 166:1807–1815PubMedCrossRef
71.
Zurück zum Zitat Veltri RW, Miller MC, Zhao G et al (1999) Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 53:139–147PubMedCrossRef Veltri RW, Miller MC, Zhao G et al (1999) Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 53:139–147PubMedCrossRef
72.
Zurück zum Zitat Seaton A, Scullin P, Maxwell PJ et al (2008) Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29:1148–1156PubMedCrossRef Seaton A, Scullin P, Maxwell PJ et al (2008) Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29:1148–1156PubMedCrossRef
73.
Zurück zum Zitat Lee L-F, Louie MC, Desai SJ et al (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205PubMedCrossRef Lee L-F, Louie MC, Desai SJ et al (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205PubMedCrossRef
74.
Zurück zum Zitat Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741PubMedCrossRef Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741PubMedCrossRef
75.
Zurück zum Zitat MacManus CF, Pettigrew J, Seaton A et al (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5:737–748PubMedCrossRef MacManus CF, Pettigrew J, Seaton A et al (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5:737–748PubMedCrossRef
76.
Zurück zum Zitat Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJJ (2008) Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 7:2649–2661PubMedCrossRef Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJJ (2008) Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 7:2649–2661PubMedCrossRef
77.
Zurück zum Zitat Wilson C, Purcell C, Seaton A et al (2008) Chemotherapy-induced CXC-Chemokine/CXC-Chemokine receptor signaling in Metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-κB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327:746–759PubMedCrossRef Wilson C, Purcell C, Seaton A et al (2008) Chemotherapy-induced CXC-Chemokine/CXC-Chemokine receptor signaling in Metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-κB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327:746–759PubMedCrossRef
78.
Zurück zum Zitat Singh R, Lokeshwar B (2009) Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer 8:57PubMedCrossRef Singh R, Lokeshwar B (2009) Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer 8:57PubMedCrossRef
79.
Zurück zum Zitat Dhir R, Ni Z, Lou W, DeMiguel F, Grandis JR, Gao AC (2002) Stat3 activation in prostatic carcinomas. Prostate 51:241–246PubMedCrossRef Dhir R, Ni Z, Lou W, DeMiguel F, Grandis JR, Gao AC (2002) Stat3 activation in prostatic carcinomas. Prostate 51:241–246PubMedCrossRef
80.
Zurück zum Zitat Ok Lee S, Lou W, Qureshi KM, Mehraein-Ghomi F, Trump DL, Gao AC (2004) RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate 60:303–309CrossRef Ok Lee S, Lou W, Qureshi KM, Mehraein-Ghomi F, Trump DL, Gao AC (2004) RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate 60:303–309CrossRef
81.
Zurück zum Zitat Matsuda T, Junicho A, Yamamoto T et al (2001) Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179–187PubMedCrossRef Matsuda T, Junicho A, Yamamoto T et al (2001) Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179–187PubMedCrossRef
82.
Zurück zum Zitat De Miguel F, Lee S, Onate S, Gao A (2003) Stat3 enhances transactivation of steroid hormone receptors. Nucl Recept 1:3PubMedCrossRef De Miguel F, Lee S, Onate S, Gao A (2003) Stat3 enhances transactivation of steroid hormone receptors. Nucl Recept 1:3PubMedCrossRef
83.
Zurück zum Zitat De Miguel F, Lee SO, Lou W et al (2002) Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. Prostate 52:123–129CrossRef De Miguel F, Lee SO, Lou W et al (2002) Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. Prostate 52:123–129CrossRef
84.
Zurück zum Zitat Huang H, Murphy T, Shu P, Barton A, Barton B (2005) Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells. Mol Cancer 4:2PubMedCrossRef Huang H, Murphy T, Shu P, Barton A, Barton B (2005) Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells. Mol Cancer 4:2PubMedCrossRef
85.
Zurück zum Zitat Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305PubMedCrossRef Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305PubMedCrossRef
86.
Zurück zum Zitat Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Jänne OA (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151–24156PubMedCrossRef Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Jänne OA (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151–24156PubMedCrossRef
87.
Zurück zum Zitat Cinar B, Yeung F, Konaka H et al (2004) Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells. Biochem J 379:421–431PubMedCrossRef Cinar B, Yeung F, Konaka H et al (2004) Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells. Biochem J 379:421–431PubMedCrossRef
88.
Zurück zum Zitat Zhang L, Altuwaijri S, Deng F et al (2009) NF-[kappa]B regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175:489–499PubMedCrossRef Zhang L, Altuwaijri S, Deng F et al (2009) NF-[kappa]B regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175:489–499PubMedCrossRef
89.
Zurück zum Zitat Jin RJ, Lho Y, Connelly L et al (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68:6762–6769PubMedCrossRef Jin RJ, Lho Y, Connelly L et al (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68:6762–6769PubMedCrossRef
90.
Zurück zum Zitat Ishiguro H, Akimoto K, Nagashima Y et al (2009) aPKCε promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci 106:16369–16374PubMedCrossRef Ishiguro H, Akimoto K, Nagashima Y et al (2009) aPKCε promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci 106:16369–16374PubMedCrossRef
91.
Zurück zum Zitat Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-[kappa]B signalling. Nat Commun 2:162PubMedCrossRef Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-[kappa]B signalling. Nat Commun 2:162PubMedCrossRef
92.
Zurück zum Zitat Wang J, Cai Y, Shao L-j et al (2010) Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res 71:1325–1333PubMedCrossRef Wang J, Cai Y, Shao L-j et al (2010) Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res 71:1325–1333PubMedCrossRef
93.
Zurück zum Zitat Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F (2005) Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer 93:1019–1023PubMedCrossRef Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F (2005) Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer 93:1019–1023PubMedCrossRef
94.
Zurück zum Zitat Nadiminty N, Chun JY, Lou W, Lin X, Gao AC (2008) NF-κB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68:1725–1733PubMedCrossRef Nadiminty N, Chun JY, Lou W, Lin X, Gao AC (2008) NF-κB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68:1725–1733PubMedCrossRef
95.
Zurück zum Zitat Lessard L, Saad F, Le Page C et al (2007) NF-[kappa]B2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. Cell Signal 19:1093–1100PubMedCrossRef Lessard L, Saad F, Le Page C et al (2007) NF-[kappa]B2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. Cell Signal 19:1093–1100PubMedCrossRef
96.
Zurück zum Zitat Nadiminty N, Lou W, Sun M et al (2010) Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 70:3309–3319PubMedCrossRef Nadiminty N, Lou W, Sun M et al (2010) Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 70:3309–3319PubMedCrossRef
97.
Zurück zum Zitat Nadiminty N, Dutt S, Tepper C, Gao AC (2010) Microarray analysis reveals potential target genes of NF-κB2/p52 in LNCaP prostate cancer cells. prostate 70:276–287PubMed Nadiminty N, Dutt S, Tepper C, Gao AC (2010) Microarray analysis reveals potential target genes of NF-κB2/p52 in LNCaP prostate cancer cells. prostate 70:276–287PubMed
98.
Zurück zum Zitat Nadiminty N, Chun JY, Hu Y, Dutt S, Lin X, Gao AC (2007) LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway. Biochem Biophys Res Commun 359:379–384PubMedCrossRef Nadiminty N, Chun JY, Hu Y, Dutt S, Lin X, Gao AC (2007) LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway. Biochem Biophys Res Commun 359:379–384PubMedCrossRef
99.
Zurück zum Zitat Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci 103:7264–7269PubMedCrossRef Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC (2006) Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci 103:7264–7269PubMedCrossRef
Metadaten
Titel
Mechanisms of persistent activation of the androgen receptor in CRPC: recent advances and future perspectives
verfasst von
Nagalakshmi Nadiminty
Allen C. Gao
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
World Journal of Urology / Ausgabe 3/2012
Print ISSN: 0724-4983
Elektronische ISSN: 1433-8726
DOI
https://doi.org/10.1007/s00345-011-0771-3

Weitere Artikel der Ausgabe 3/2012

World Journal of Urology 3/2012 Zur Ausgabe

Patrone im Penis bringt Urologen in Gefahr

30.05.2024 Operationen am Penis Nachrichten

In Lebensgefahr brachte ein junger Mann nicht nur sich selbst, sondern auch das urologische Team, das ihm zu Hilfe kam: Er hatte sich zur Selbstbefriedigung eine scharfe Patrone in die Harnröhre gesteckt.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.