Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 1/2016

01.01.2016 | Original Article – Cancer Research

Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes

verfasst von: Cátia V. Vaz, Ricardo Marques, Marco G. Alves, Pedro F. Oliveira, José E. Cavaco, Cláudio J. Maia, Sílvia Socorro

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The present study aims to investigate the role of androgens in controlling the glycolytic metabolism and lactate efflux in prostate cancer (PCa) cells.

Methods

Androgen-responsive LNCaP cells were treated with 5α-dihydrotestosterone (DHT, 10 nM) for 12–48 h, and their glycolytic metabolism, lactate production and viability were analyzed. Intracellular and extracellular levels of glucose and lactate were determined spectrophotometrically, and the expression of glucose transporters (GLUT1/GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) was analyzed by real-time PCR and Western blot. The enzymatic activity of LDH was determined by means of a colorimetric assay. Experiments were reproduced in androgen-non-responsive DU145 and PC3 cells.

Results

Androgens stimulated glucose consumption in LNCaP cells by increasing the expression of GLUT3, GLUT1 and PFK, which was underpinned by increased cell viability. Accordingly, lactate production by LNCaP cells was enhanced upon DHT stimulation as evidenced by the increased levels of lactate found in cell culture medium. Although LDH enzymatic activity decreased in LNCaP cells treated with DHT, the expression of MCT4 was significantly increased with androgenic treatment, which sustains the increase on lactate export. Glucose consumption and the expression of GLUTs and PFK remained unchanged in DHT-treated DU145 and PC3 cells.

Conclusions

The results obtained establish androgens as modulators of glycolytic metabolism in PCa cells by stimulating glucose consumption, as well as the production and export of lactate, which may represent a crucial issue-driven prostate tumor development. These findings also highlight the importance of PCa therapies targeting AR and metabolism-related proteins.
Literatur
Zurück zum Zitat Albers MJ et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615PubMedPubMedCentralCrossRef Albers MJ et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615PubMedPubMedCentralCrossRef
Zurück zum Zitat Atsumi T et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62:5881–5887PubMed Atsumi T et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62:5881–5887PubMed
Zurück zum Zitat Baltazar F, Pinheiro C, Morais-Santos F, Azevedo-Silva J, Queiros O, Preto A, Casal M (2014) Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol 29:1511–1524PubMed Baltazar F, Pinheiro C, Morais-Santos F, Azevedo-Silva J, Queiros O, Preto A, Casal M (2014) Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol 29:1511–1524PubMed
Zurück zum Zitat Chandler JD, Williams ED, Slavin JL, Best JD, Rogers S (2003) Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97:2035–2042PubMedCrossRef Chandler JD, Williams ED, Slavin JL, Best JD, Rogers S (2003) Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97:2035–2042PubMedCrossRef
Zurück zum Zitat Chehtane M, Khaled AR (2010) Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene. Am J Physiol 298:C1560–C1571CrossRef Chehtane M, Khaled AR (2010) Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene. Am J Physiol 298:C1560–C1571CrossRef
Zurück zum Zitat Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedPubMedCentralCrossRef Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedPubMedCentralCrossRef
Zurück zum Zitat Effert P, Beniers A, Tamimi Y, Handt S, Jakse G (2004) Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res 24:3057–3064PubMed Effert P, Beniers A, Tamimi Y, Handt S, Jakse G (2004) Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res 24:3057–3064PubMed
Zurück zum Zitat Emonds KM, Swinnen JV, van Weerden WM, Vanderhoydonc F, Nuyts J, Mortelmans L, Mottaghy FM (2011) Do androgens control the uptake of 18 F-FDG, 11 C-choline and 11 C-acetate in human prostate cancer cell lines? Eur J Nucl Med Mol Imaging 38:1842–1853PubMedCrossRef Emonds KM, Swinnen JV, van Weerden WM, Vanderhoydonc F, Nuyts J, Mortelmans L, Mottaghy FM (2011) Do androgens control the uptake of 18 F-FDG, 11 C-choline and 11 C-acetate in human prostate cancer cell lines? Eur J Nucl Med Mol Imaging 38:1842–1853PubMedCrossRef
Zurück zum Zitat Everse J, Kaplan NO (1973) Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol 37:61–133PubMed Everse J, Kaplan NO (1973) Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol 37:61–133PubMed
Zurück zum Zitat Fischer K et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819PubMedCrossRef Fischer K et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819PubMedCrossRef
Zurück zum Zitat Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463. doi:10.3892/ijo.2011.1055 PubMed Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463. doi:10.​3892/​ijo.​2011.​1055 PubMed
Zurück zum Zitat Gomes IM, Santos CR, Socorro S, Maia CJ (2013) Six transmembrane epithelial antigen of the prostate 1 is down-regulated by sex hormones in prostate cells. Prostate 73:605–613. doi:10.1002/pros.22601 PubMedCrossRef Gomes IM, Santos CR, Socorro S, Maia CJ (2013) Six transmembrane epithelial antigen of the prostate 1 is down-regulated by sex hormones in prostate cells. Prostate 73:605–613. doi:10.​1002/​pros.​22601 PubMedCrossRef
Zurück zum Zitat Jackson DA, Pombo A, Iborra F (2000) The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J 14:242–254PubMed Jackson DA, Pombo A, Iborra F (2000) The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J 14:242–254PubMed
Zurück zum Zitat Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637PubMedCrossRef Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637PubMedCrossRef
Zurück zum Zitat Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRef Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482PubMedCrossRef
Zurück zum Zitat Larson SM et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373PubMed Larson SM et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45:366–373PubMed
Zurück zum Zitat Lin CY, Wu H, Tjeerdema RS, Viant MR (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3:55–67CrossRef Lin CY, Wu H, Tjeerdema RS, Viant MR (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3:55–67CrossRef
Zurück zum Zitat Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662PubMedCrossRef Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662PubMedCrossRef
Zurück zum Zitat Maia C, Santos C, Schmitt F, Socorro S (2009) Regucalcin is under- expressed in human breast and prostate cancers: effect of sex steroid hormones. J Cell Biochem 107:667–676PubMedCrossRef Maia C, Santos C, Schmitt F, Socorro S (2009) Regucalcin is under- expressed in human breast and prostate cancers: effect of sex steroid hormones. J Cell Biochem 107:667–676PubMedCrossRef
Zurück zum Zitat Mata J, Marguerat S, Bähler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30:506–514PubMedCrossRef Mata J, Marguerat S, Bähler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30:506–514PubMedCrossRef
Zurück zum Zitat Moon JS et al (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 433:225–233. doi:10.1042/BJ20101104 PubMedCrossRef Moon JS et al (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 433:225–233. doi:10.​1042/​BJ20101104 PubMedCrossRef
Zurück zum Zitat Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418PubMedCrossRef Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418PubMedCrossRef
Zurück zum Zitat Nualart F, Garcia MA, Medina RA, Owen GI (2009) Glucose transporters in sex steroid hormone related cancer. Curr Vasc Pharmacol 7:534–548PubMedCrossRef Nualart F, Garcia MA, Medina RA, Owen GI (2009) Glucose transporters in sex steroid hormone related cancer. Curr Vasc Pharmacol 7:534–548PubMedCrossRef
Zurück zum Zitat Oyama N et al (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22:963–969PubMedCrossRef Oyama N et al (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22:963–969PubMedCrossRef
Zurück zum Zitat Pertega-Gomes N et al (2011) Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer 11:312PubMedPubMedCentralCrossRef Pertega-Gomes N et al (2011) Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer 11:312PubMedPubMedCentralCrossRef
Zurück zum Zitat Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44:127–139PubMedCrossRef Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44:127–139PubMedCrossRef
Zurück zum Zitat Sato K, Iemitsu M, Aizawa K, Ajisaka R (2008) Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am J Physiol Endocrinol Metab 294:E961–E968PubMedCrossRef Sato K, Iemitsu M, Aizawa K, Ajisaka R (2008) Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am J Physiol Endocrinol Metab 294:E961–E968PubMedCrossRef
Zurück zum Zitat Swanson MG et al (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264PubMedCrossRef Swanson MG et al (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264PubMedCrossRef
Zurück zum Zitat Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310PubMedCrossRef Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310PubMedCrossRef
Zurück zum Zitat Tessem MB et al (2008) Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 60:510–516PubMedPubMedCentralCrossRef Tessem MB et al (2008) Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 60:510–516PubMedPubMedCentralCrossRef
Zurück zum Zitat Warburg O, Wind F, Negelein E (1926) Ueber den Stoffwechsel von Tumoren im korper. J Mol Med 5:829–832 Warburg O, Wind F, Negelein E (1926) Ueber den Stoffwechsel von Tumoren im korper. J Mol Med 5:829–832
Metadaten
Titel
Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes
verfasst von
Cátia V. Vaz
Ricardo Marques
Marco G. Alves
Pedro F. Oliveira
José E. Cavaco
Cláudio J. Maia
Sílvia Socorro
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 1/2016
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-015-1992-4

Weitere Artikel der Ausgabe 1/2016

Journal of Cancer Research and Clinical Oncology 1/2016 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.