Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 8/2021

Open Access 08.05.2021 | Original Article – Cancer Research

Integrated analysis of programmed cell death ligand 1 expression reveals increased levels in high-grade glioma

verfasst von: Dorothee Hölzl, Georg Hutarew, Barbara Zellinger, Hans U. Schlicker, Christoph Schwartz, Peter A. Winkler, Karl Sotlar, Theo F. J. Kraus

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 8/2021

Abstract

Purpose

Gliomas are the most frequent primary brain tumors of adults. Despite intensive research, there are still no targeted therapies available. Here, we performed an integrated analysis of glioma and programmed cell death ligand 1 (PD-L1) in 90 samples including 58 glioma and 32 control brain tissues.

Methods

To identify PD-L1 expression in glioma, we performed immunohistochemical analysis of PD-L1 tumor proportion score (TPS) using the clinically valid PD-L1 22C3 antibody on 90 samples including controls and WHO grade I–IV gliomas.

Results

We found that PD-L1 is highly expressed in a subfraction of glioma cells. Analysis of PD-L1 levels in different glioma subtypes revealed a strong intertumoral variation of PD-L1 protein. Furthermore, we correlated PD-L1 expression with molecular glioma hallmarks such as MGMT-promoter methylation, IDH1/2 mutations, TERT promoter mutations and LOH1p/19q.

Conclusion

In summary, we found that PD-L1 is highly expressed in a subfraction of glioma, indicating PD-L1 as a potential new marker in glioma assessment opening up novel therapeutic approaches.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Gliomas represent the most frequent primary brain tumors of adults (Louis et al. 2016a). According to the guidelines of the World Health Organization (WHO) for classification of brain tumors, gliomas are assigned to WHO-Grade I–IV tumors representing the degree of aggressiveness (Louis et al. 2016a).
While WHO-Grade I pilocytic astrocytomas (PA) are slow growing gliomas with a good prognosis, WHO-Grade IV glioblastomas (GBM) are highly malignant and diffusely infiltrating brain tumors with a very unfavorable outcome (Louis et al. 2016a). With a reported annual incidence of 3–4 cases per 100,000 population in the western world, GBMs are also the most frequently diagnosed brain tumors in adult patients (Louis et al. 2016a). The highly aggressive clinical behavior of GBMs is also reflected by the histological appearance: They show a high mitotic count, microvascular proliferation and necrosis (Louis et al. 2016a).
For advanced glioma stratification, the 2016 WHO Classification for Central Nervous System (CNS) Tumors integrated molecular genetic findings for advanced tumor classification: (Louis et al. 2016a). Key findings are mutations of the IDH1 and IDH2 (Isocitrate Dehydrogenase), H3F3A (Histone H3 Family 3A), HIST1H3B and HIST1H3C genes, TERT (Telomerase Reverse Transcriptase) promotor mutations as well as combined chromosomal losses of chromosome 1p and 19q (loss of heterozygosity, LOH) (Louis et al. 2016a). Integrating these molecular findings with histology, there is a severe advance in the prediction of patient outcome (Louis et al. 2007, 2016a, b).
With regard to therapeutic targets, the analysis of the O6-methylguanin–DNA–methyltransferase (MGMT) promotor is of crucial importance (Hegi et al. 2008, 2009; Kaina et al. 2007). The MGMT protein is associated with DNA repair mechanisms, and epigenetic silencing of MGMT transcription by promoter hypermethylation compromises DNA repair mechanisms. Thus, a hypermethylated tumor promoter status has been found to associate with significantly improved survival in patients receiving combined and adjuvant radio-chemotherapy with temozolomide according to the EORTC/NCIC protocol (Hegi et al. 2005). Despite intensive research there is still no targeted therapy available and even by applying temozolomide, the patient outcome is still very unfavorable (Hegi et al. 2004, 2005, 2008, 2012; Hau et al. 2007).
Programmed Cell Death Ligand 1 (PD-L1) is a key player in triggering immune response in human cancers (Campesato et al. 2015; Gatalica et al. 2014; Ohaegbulam et al. 2015). Thereby, PD-L1 interacts with PD-1 (Programmed Cell Death 1) and inhibits immune response by induction of IL-10 (Interleukin) in monocytes (Said et al. 2010). In many tumors, there is an overexpression of PD-L1 that represents a druggable target (Sun et al. 2018; Honda et al. 2017; Kataoka and Ogawa 2016; Kataoka et al. 2016; Isaacsson Velho and Antonarakis 2018; Fan et al. 2019). In lung, breast, gastrointestinal and many other cancers with PD-L1 overexpression showed good response with PD-L1 inhibitors (Reck et al. 2016; Li et al. 2016; Fujita et al. 2015).
However, there is no reliable data available on PD-L1 in glioma with regard to morphological subtypes and genetic profiles. Here, we analyzed PD-L1 expression in 90 different tissue specimens. Thereby, we included 58 glioma samples of WHO Grades I–IV and 32 control brain tissue specimens (16 frontal cortex and 16 frontal white matter samples). Furthermore, we performed integrated analysis of PD-L1 expression and molecular hallmarks of analyzed gliomas.

Materials and methods

Tissue collection

We analyzed 90 anonymized tissue samples including 58 glioma and 32 control brains samples. Gliomas were allocated to WHO Grades I to IV and an integrated molecular profiling was performed according to the 2016 WHO classification of CNS tumors (Louis et al. 2016a). All samples were formalin-fixed and paraffin-embedded (FFPE) and stored in the tissue collection of the University Institute of Pathology of the University Hospital Salzburg. Control samples included 16 frontal cortex and 16 frontal white matter samples of post-mortem brains that were formalin-fixed and paraffin-embedded and stored in the tissue collection of the University Institute of Pathology of the University Hospital Salzburg. Details on glioma and control samples including PD-L1 status can be found in Tables 1 and 2.
Table 1
Details on glioma samples
ID
Age [years]
Sex
Diagnosis
WHO Grade
IDH1
IDH2
LOH 1p/19q
TERT
MGMT
H3F3A
PD-L1 22C3 positive [%]
T01
39
f
Pilocytic Astrocytoma
I
wt
wt
n.a
wt
Unmethylated
n.a
0
T02
16
m
Pilocytic Astrocytoma
I
wt
wt
n.a
wt
n.a
n.a
0
T03
39
m
Diffuse Astrocytoma
II
p.R132H
wt
wt
wt
Methylated
n.a
0
T04
47
m
Diffuse Astrocytoma
II
p.R132S
wt
wt
wt
Methylated
n.a
0
T05
76
m
Diffuse Astrocytoma
II
wt
wt
wt
C228T
Unmethylated
n.a
0
T06
39
m
Diffuse Astrocytoma
II
p.R132H
wt
wt
wt
Methylated
n.a
1
T07
63
f
Oligodendroglioma
II
p.R132H
wt
1p/19q
C250T
Methylated
n.a
0
T08
54
m
Oligodendroglioma
II
p.R132H
wt
1p/19q
C250T
Methylated
n.a
0
T09
42
m
Oligodendroglioma
II
p.R132H
n.a
1p/19q
n.a
n.a
n.a
0
T10
37
f
Anaplastic Astrocytoma
III
p.R132H
wt
wt
wt
Methylated
n.a
1
T11
67
m
Anaplastic Astrocytoma
III
wt
wt
wt
C250T
Methylated
n.a
7
T12
46
f
Anaplastic Oligodendroglioma
III
p.R132H
wt
1p/19q
wt
Methylated
n.a
45
T13
32
m
Glioblastoma
IV
wt
wt
1p
C228T
Unmethylated
n.a
88
T14
72
m
Glioblastoma
IV
wt
wt
wt
C228T
Methylated
n.a
0
T15
65
m
Glioblastoma
IV
wt
wt
wt
C250T
Methylated
n.a
5
T16
77
f
Glioblastoma
IV
wt
wt
wt
C228T
Methylated
n.a
95
T17
79
f
Glioblastoma
IV
wt
wt
wt
C228T
Unmethylated
n.a
0
T18
28
m
Glioblastoma
IV
wt
wt
wt
wt
Unmethylated
n.a
40
T19
52
f
Glioblastoma
IV
wt
wt
wt
C250T
Unmethylated
n.a
100
T20
44
m
Glioblastoma
IV
wt
wt
n.a
C250T
n.a
n.a
2
T21
78
f
Glioblastoma
IV
wt
wt
n.a
C228T
n.a
n.a
34
T22
45
f
Glioblastoma
IV
wt
wt
n.a
C228T
Methylated
wt
70
T23
77
f
Glioblastoma
IV
wt
wt
n.a
C228T
n.a
n.a
90
T24
50
m
Glioblastoma
IV
wt
wt
n.a
C250T
Methylated
n.a
0
T25
61
m
Glioblastoma
IV
wt
wt
n.a
wt
Unmethylated
n.a
5
T26
70
f
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
0
T27
69
m
Glioblastoma
IV
wt
wt
n.a
C250T
Unmethylated
n.a
1
T28
83
m
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
0
T29
51
m
Glioblastoma
IV
wt
wt
n.a
C250T
Methylated
n.a
0
T30
63
f
Glioblastoma
IV
wt
wt
n.a
C250T
Methylated
n.a
0
T31
66
f
Glioblastoma
IV
wt
wt
n.a
C228T
Methylated
n.a
100
T32
77
m
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
0
T33
58
m
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
wt
0
T34
56
f
Glioblastoma
IV
wt
wt
n.a
C228T
n.a
wt
0
T35
76
f
Glioblastoma
IV
wt
wt
n.a
wt
methylated
n.a
5
T36
72
f
Glioblastoma
IV
wt
wt
n.a
C250T
n.a
n.a
7
T37
25
m
Glioblastoma
IV
wt
wt
n.a
wt
Unmethylated
wt
32
T38
52
m
Glioblastoma
IV
wt
wt
19q
C228T
Methylated
n.a
76
T39
53
m
Glioblastoma
IV
wt
wt
wt
C250T
Unmethylated
n.a
90
T40
79
f
Glioblastoma
IV
wt
wt
wt
wt
Methylated
n.a
55
T41
53
m
Glioblastoma
IV
wt
wt
wt
C228T
Unmethylated
n.a
15
T42
56
m
Glioblastoma
IV
wt
wt
wt
wt
Methylated
n.a
100
T43
60
m
Glioblastoma
IV
wt
wt
n.a
C250T
Methylated
n.a
42
T44
64
m
Glioblastoma
IV
wt
wt
wt
C228T
Methylated
n.a
55
T45
66
m
Glioblastoma
IV
wt
wt
n.a
C228T
Methylated
n.a
98
T46
82
f
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
0
T47
72
m
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
1
T48
87
m
Glioblastoma
IV
wt
wt
n.a
C228T
Unmethylated
n.a
28
T49
56
m
Glioblastoma
IV
wt
wt
19q
C228T
Methylated
n.a
0
T50
64
m
Glioblastoma
IV
wt
wt
1p
C250T
n.a
n.a
48
T51
59
m
Glioblastoma
IV
wt
wt
n.a
C250T
n.a
n.a
90
T52
71
m
Glioblastoma
IV
wt
wt
wt
wt
Unmethylated
n.a
10
T53
50
f
Glioblastoma
IV
wt
wt
wt
C228T
Unmethylated
n.a
0
T54
58
m
Glioblastoma
IV
wt
wt
1p
C250T
Methylated
n.a
24
T55
75
f
Glioblastoma
IV
wt
wt
1p
C250T
Unmethylated
n.a
90
T56
41
m
Glioblastoma
IV
wt
wt
wt
C250T
Unmethylated
n.a
86
T57
39
m
Diffuse Midline Glioma
IV
wt
wt
n.a
C228T
Unmethylated
K27M
2
T58
33
f
Diffuse Midline Glioma
IV
wt
wt
n.a
wt
Methylated
K27M
0
Indicated are details on all 58 glioma samples
wt wild type, n.a. not available
Table 2
Details on control samples
ID
Age [years]
Sex
Region
PD-L1 22C3 positive [%]
C01
95
m
Frontal Cortex
0
C02
56
m
Frontal Cortex
0
C03
62
m
Frontal Cortex
0
C04
65
f
Frontal Cortex
0
C05
92
f
Frontal Cortex
0
C06
75
f
Frontal Cortex
0
C07
75
f
Frontal Cortex
0
C08
87
f
Frontal Cortex
0
C09
54
f
Frontal Cortex
0
C10
67
f
Frontal Cortex
0
C11
79
f
Frontal Cortex
0
C12
69
f
Frontal Cortex
0
C13
89
f
Frontal Cortex
0
C14
52
m
Frontal Cortex
0
C15
59
m
Frontal Cortex
0
C16
54
m
Frontal Cortex
0
W01
95
m
Frontal White Matter
0
W02
56
m
Frontal White Matter
1
W03
62
m
Frontal White Matter
0
W04
65
f
Frontal White Matter
0
W05
92
f
Frontal White Matter
0
W06
75
f
Frontal White Matter
0
W07
75
f
Frontal White Matter
0
W08
87
f
Frontal White Matter
0
W09
54
f
Frontal White Matter
0
W10
67
f
Frontal White Matter
0
W11
79
f
Frontal White Matter
0
W12
69
f
Frontal White Matter
0
W13
89
f
Frontal White Matter
0
W14
52
m
Frontal White Matter
0
W15
59
m
Frontal White Matter
0
W16
54
m
Frontal White Matter
1
Indicated are details on all 32 control samples

Molecular genetic characterization of gliomas

Molecular genetic analysis of glioma samples was performed as previously described (Kraus et al. 2020). In brief, DNA extraction for molecular pathological analysis was performed of microscopically identified representative tumor tissues with at least 90% of viable tumor cells applying the Maxwell system (Promega) according to the manufacturer’s instructions. IDH1 and IDH2 and BRAF hot spot mutations were analyzed applying the AmpliSeq for Illumina Cancer Hotspot Panel v2 (Illumina) on an Illumina MiniSeq next generation sequencing device (Illumina) according to the manufacturer’s protocols. Hot spot loci of TERT promoter, H3F3A, HIST1H3B and HIST1H3C genes were analyzed by Sanger sequencing as described previously (Kraus et al. 2020). MGMT promotor methylation was assessed by methylation specific PCR (MSP) and bisulfite sequencing (Kraus et al. 2015a, b). Assessment of 1p/19q status was performed by Fluorescence in situ hybridization (FISH) applying ZytoLight 1p/1q and 19q/19p probe sets (ZytoVision) following the manufacturer’s protocols. According to the guidelines of the current WHO classification, 1p/19q status was assessed in all IDH mutated glioma, since loss of 1p and 19q is only occurring in gliomas harboring IDH mutations (Louis et al. 2016a).

Immunohistochemical analysis

Routine immunohistochemistry performed on glioma samples included antibodies against GFAP, Ki67 and PHH3. PD-L1 expression was assessed applying the PD-L1 22C3 antibody (M3653 antibody kit, Dabo). Quantification of PD-L1 levels were performed by DH, TFJK and GH using the tumor proportion score (TPS) (Li et al. 2017; Neuman et al. 2016; Roge et al. 2017). All immunohistochemical stains were performed on a Ventana BenchMark Ultra device (Roche) according to the manufacturer’s protocols.

Computational data analysis

Statistical analysis was performed using Prism 9 (GraphPad) software suite. As statistical tests, we applied t test and one-way ANOVA with uncorrected Fisher’s Test. Statistical significance was assumed for p values < 0.05.

Results

PD-L1 is expressed in human gliomas

To evaluate the significance of PD-L1 expression in gliomas, we used the PD-L1 22C3 antibody and performed immunohistochemical analysis in 90 tissue samples. These samples include 58 gliomas of WHO grades I, II, III and IV and 32 control brain samples including cortex and white matter regions. We found that there was no PD-L1 expression in control tissue, i.e., cortex (n = 16, Fig. 1a, b) and white matter (n = 16, Fig. 1c, d). In gliomas, we found uneven PD-L1 expression. Low grade gliomas consisting of WHO grade I pilocytic astrocytomas (n = 2, Fig. 1e, f) and WHO grade II diffuse gliomas (n = 7, Fig. 1g, h) did not show noteworthy PD-L1 expression. High grade gliomas consisting of WHO grade III anaplastic gliomas (n = 3, Fig. 1i, j) and WHO grade IV glioma (n = 46, Fig. 1k, l), showed intermediate to high PD-L1 expression. PD-L1 tumor proportion scores (TPS) of all 90 analyzed samples can be found in Fig. 1m.

PD-L1 is significantly overexpressed in high grade gliomas

A detailed analysis of PD-L1 expression in all 90 tissues specimen revealed significant overexpression of PD-L1 in glioma compared with healthy brain tissue: There was a statistically significant overexpression in glioma compared to cortex (p < 0.01, Fig. 2a) and white matter (p < 0.01, Fig. 2a). Analyzing PD-L1 expression and WHO grade confirmed high PD-L1 expression in high grade gliomas with a significant overexpression in WHO grade IV glioblastomas (p < 0.05, Fig. 2b). A detailed analysis of PD-L1 expression in glioma showed that 24% of all glioma showed TPS of ≥ 50%, 14% showed TPS of 25–50%, 10% showed TPS of 10–25%, 4% showed TPS of 5–10%, 10% showed TPS of 1–5% and 38% showed TPS of < 1% (Fig. 2c).

Integrated analysis of PD-L1 expression and molecular glioma hallmarks

Since gliomas show distinct molecular hallmarks, we next performed an integrated analysis of PD-L1 TPS and molecular genetic status: IDH mutation, TERT promoter mutation, MGMT promoter methylation and loss of heterozygosity of 1p and 19q (LOH 1p/19q). Interestingly, IDH wild-type glioma (n = 46) showed a significant higher expression of PD-L1 compared with IDH mutated gliomas (n = 8, p < 0.05, Fig. 3a). Due to the different biological backgrounds (Louis et al. 2016a) of pilocytic astrocytomas and H3F3A mutated diffuse midline gliomas, these samples were excluded from IDH analysis. In case of TERT promoter mutation, TERT mutated gliomas (n = 42) showed higher PD-L1 expression compared with TERT wild-type gliomas (n = 5, p > 0.05) (Fig. 3b). An analysis of loss of heterozygosity of 1p and 19q (LOH 1p/19q) showed higher PD-L1 expression in gliomas without LOH 1p/19q (n = 54) compared to LOH 1p/19q aberrant gliomas (n = 4, p > 0.05 (Fig. 3c). Analysis of PD-L1 expression and MGMT promoter methylation showed higher PD-L1 expression in MGMT methylated glioma (n = 26) compared to MGMT unmethylated glioma (n = 23, p > 0.05) (Fig. 3d).

Discussion

Despite intensive research, there are still no curative therapies available for GBM patients (Louis et al. 2016a). One milestone in glioblastoma therapy was the discovery of the connection between methylation of the MGMT promotor (Hegi et al. 2008, 2009; Kaina et al. 2007) and tumor response to chemotherapy using temozolomide in 2005 (Hegi et al. 2005). However, since then there have not been any significant advances in glioblastoma therapy.
In anti-tumor therapy, PD-L1 is already a key player in personalized medicine, since it represents a druggable target (Sun et al. 2018; Honda et al. 2017; Kataoka and Ogawa 2016; Kataoka et al. 2016; Isaacsson Velho and Antonarakis 2018; Fan et al. 2019). In many tumors, such as lung, breast, gastrointestinal PD-L1 inhibitors show great advances in patient treatment (Reck et al. 2016; Li et al. 2016; Fujita et al. 2015). Thereby, the expression profile of PD-L1 is assessed immunohistochemically.
Here, we assessed PD-L1 expression using the tumor proportion score (TPS), i.e., the percentage of PD-L1 positive tumor cells compared with all vital tumor cells (Li et al. 2017; Neuman et al. 2016; Roge et al. 2017) to assess PD-L1 expression in gliomas, and thus to evaluate the feasibility of PD-L1 inhibitors in highly aggressive brain tumors.
Our analysis of PD-L1 expression revealed that there are high PD-L1 expression levels in high grade glioma with a high interindividual variation (Fig. 1). While control cortex and white matter tissues showed mean PD-L1 TPS of 0%, gliomas showed significantly increased PD-L1 TPS with a mean of 28% in all 58 gliomas (Fig. 2a). A further subgroup analysis of different WHO grades showed that PD-L1 expression can be found predominantly in high grade gliomas with mean amounts of 18% positive tumor cells in WHO grade III gliomas and 34% positive tumor cell in WHO grade IV glioblastomas, respective (Fig. 2b). Furthermore, we performed integrated analysis of molecular key hallmarks in glioma (IDH, TERT, MGMT methylation) and PD-L1 expression. Interestingly, we found significantly higher PD-L1 expression in IDH wild-type glioma (mean amounts of 32%) compared with IDH mutated gliomas (mean amounts of 6%, p < 0.05, Fig. 3a). In terms of TERT, we found higher PD-L1 expression in TERT mutated glioma (mean amounts of 32%) compared with TERT wild-type glioma (mean amounts of 20%, p > 0.05, Fig. 3b). An analysis of loss of heterozygosity of 1p and 19q (LOH 1p/19q) showed higher PD-L1 expression in gliomas without LOH 1p/19q (mean amounts of 30%) compared with LOH 1p/19q aberrant gliomas (mean amounts of 11%, p > 0.05, Fig. 3c). Analysis of MGMT promoter methylation revealed higher PD-L1 expression in MGMT methylated glioma (mean amounts of 30%) compared with MGMT unmethylated glioma (mean amounts of 26%, Fig. 3d).
Considering the gliomagenesis and aggressiveness of glioma, Louis et al. (2016a) these findings are of high therapeutic impact: while IDH mutation is a key pathway in gliomagenesis of WHO grade II and III gliomas and secondarily progressed WHO grade IV glioblastomas, IDH wild-type is a typical hallmark of primary WHO grade IV glioblastomas. Thus, the finding of high PD-L1 expression in IDH wild-type primary glioblastomas is of severe clinical importance opening new therapeutic approaches in therapy of highly aggressive glioblastoma. Vice versa to IDH mutations, TERT mutations are predominantly present in glioblastoma. Thus, the result of high PD-L1 expression in TERT mutated gliomas may also be of high clinical importance for therapy of highly aggressive glioblastomas.
Since the importance of PD-L1 has already been established as personalized medicine target in other tumor entities (Sun et al. 2018; Honda et al. 2017; Kataoka and Ogawa 2016; Kataoka et al. 2016; Isaacsson Velho and Antonarakis 2018; Fan et al. 2019; Reck et al. 2016; Li et al. 2016; Fujita et al. 2015) our findings in glioma may also open new therapeutic approaches in future brain tumor therapy. Thereby, our results are well in line with published data: Nduom et al. found that PD-L1 expression can be found in a subfraction of glioblastoma (Nduom et al. 2016). Thereby high PD-L1 expression is correlated with worse outcome (Nduom et al. 2016). Heiland et al. also report of high PD-L1 expression in glioblastoma with predominance of IDH wild-type glioblastomas (Heiland et al. 2017). Berghoff et al. analyzed PD-L1 expression and tumor infiltrating lymphocytes (TIL) in diffuse glioma and found that high PD-L1 expression and prominent TILs are predominantly present in IDH wild-type glioma compared with IDH mutant glioma (Berghoff et al. 2017). Hao et al. performed a meta-analysis of PD-L1 expression in glioblastoma and also confirmed that high PD-L1 expression can be found predominantly in glioblastoma with unfavorable outcome (Hao et al. 2020). This finding is well in accordance with our results demonstrating that highly aggressive IDH wild-type gliomas show higher PD-L1 expression. In contrast to previous studies, Nduom et al. (2016), Heiland et al. (2017), Hao et al. (2020) we performed PD-L1 expression using the widely accepted and clinically applicable PD-L1 22C3 clone (M3653 antibody kit, Dako) and the tumor proportion score (TPS). Thus, our approach using the PD-L1 22C3 antibody and TPS to evaluate PD-L1 expression opens the way for monoclonal antibody therapies such as prembolizumab in a clinical setting (Ilie et al. 2017). However, the significance of this study is limited due to the low number of cases in distinct subgroups of glioma, such as oligodendroglioma and diffuse midline glioma. Thus, further studies with an increased number of cases will be needed to validate these results. A further limitation of this study is that only a limited set of molecular parameters was assessed, e.g., there was no molecular assessment of the BRAF status in pilocytic astrocytomas. Furthermore, there is one case of diffuse astrocytoma with IDH wild-type status and TERT mutation included in this study. This is a very untypical genotype–phenotype combination and there should be further molecular assessment according to the cIMPACT guidelines (Louis et al. 2020; Gonzalez Castro and Wesseling 2021) including copy number profiling (CNP) to further characterize such cases and to assess, if the underlying biology is that of glioblastoma IDH wild type.
In summary, our findings demonstrate the significance of PD-L1 testing in glioma enabling new individualized strategies for molecularly targeted therapy in highly aggressive brain tumors.

Acknowledgements

We would like to thank the members of the histology, immunohistochemistry and molecular pathology facilities at the Institute of Pathology for their support in conducting this study.

Declarations

Conflicts of interest/Competing interests

None declared.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
Zurück zum Zitat Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA, Xiao N, Overberg P, Rose I, Basu GD, Vranic S, Lynch HT, Von Hoff DD, Hamid O (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev 23(12):2965–2970. https://doi.org/10.1158/1055-9965.EPI-14-0654CrossRef Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA, Xiao N, Overberg P, Rose I, Basu GD, Vranic S, Lynch HT, Von Hoff DD, Hamid O (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev 23(12):2965–2970. https://​doi.​org/​10.​1158/​1055-9965.​EPI-14-0654CrossRef
Zurück zum Zitat Hau P, Stupp R, Hegi ME (2007) MGMT methylation status: the advent of stratified therapy in glioblastoma? Dis Mark 23(1–2):97–104CrossRef Hau P, Stupp R, Hegi ME (2007) MGMT methylation status: the advent of stratified therapy in glioblastoma? Dis Mark 23(1–2):97–104CrossRef
Zurück zum Zitat Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10(6):1871–1874CrossRefPubMed Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10(6):1871–1874CrossRefPubMed
Zurück zum Zitat Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331CrossRefPubMed Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://​doi.​org/​10.​1056/​NEJMoa043331CrossRefPubMed
Zurück zum Zitat Hegi ME, Janzer RC, Lambiv WL, Gorlia T, Kouwenhoven MC, Hartmann C, von Deimling A, Martinet D, Besuchet Schmutz N, Diserens AC, Hamou MF, Bady P, Weller M, van den Bent MJ, Mason WP, Mirimanoff RO, Stupp R, Mokhtari K, Wesseling P, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2012) Presence of an oligodendroglioma-like component in newly diagnosed glioblastoma identifies a pathogenetically heterogeneous subgroup and lacks prognostic value: central pathology review of the EORTC_26981/NCIC_CE.3 trial. Acta Neuropathol 123(6):841–852. https://doi.org/10.1007/s00401-011-0938-4CrossRefPubMed Hegi ME, Janzer RC, Lambiv WL, Gorlia T, Kouwenhoven MC, Hartmann C, von Deimling A, Martinet D, Besuchet Schmutz N, Diserens AC, Hamou MF, Bady P, Weller M, van den Bent MJ, Mason WP, Mirimanoff RO, Stupp R, Mokhtari K, Wesseling P, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2012) Presence of an oligodendroglioma-like component in newly diagnosed glioblastoma identifies a pathogenetically heterogeneous subgroup and lacks prognostic value: central pathology review of the EORTC_26981/NCIC_CE.3 trial. Acta Neuropathol 123(6):841–852. https://​doi.​org/​10.​1007/​s00401-011-0938-4CrossRefPubMed
Zurück zum Zitat Honda Y, Otsuka A, Ono S, Yamamoto Y, Seidel JA, Morita S, Hirata M, Kataoka TR, Takenouchi T, Fujii K, Kanekura T, Okubo Y, Takahashi K, Yanagi T, Hoshina D, Hata H, Abe R, Fujimura T, Funakoshi T, Yoshino K, Masuzawa M, Amoh Y, Tanaka R, Fujisawa Y, Honda T, Kabashima K (2017) Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 6(1):e1253657. https://doi.org/10.1080/2162402X.2016.1253657CrossRefPubMed Honda Y, Otsuka A, Ono S, Yamamoto Y, Seidel JA, Morita S, Hirata M, Kataoka TR, Takenouchi T, Fujii K, Kanekura T, Okubo Y, Takahashi K, Yanagi T, Hoshina D, Hata H, Abe R, Fujimura T, Funakoshi T, Yoshino K, Masuzawa M, Amoh Y, Tanaka R, Fujisawa Y, Honda T, Kabashima K (2017) Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 6(1):e1253657. https://​doi.​org/​10.​1080/​2162402X.​2016.​1253657CrossRefPubMed
Zurück zum Zitat Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, Maeda T, Nagata Y, Kitanaka A, Mizuno S, Tanaka H, Chiba K, Ito S, Watatani Y, Kakiuchi N, Suzuki H, Yoshizato T, Yoshida K, Sanada M, Itonaga H, Imaizumi Y, Totoki Y, Munakata W, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Masuda K, Minato N, Kashiwase K, Izutsu K, Takaori-Kondo A, Miyazaki Y, Takahashi S, Shibata T, Kawamoto H, Akatsuka Y, Shimoda K, Takeuchi K, Seya T, Miyano S, Ogawa S (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534(7607):402–406. https://doi.org/10.1038/nature18294CrossRefPubMed Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S, Maeda T, Nagata Y, Kitanaka A, Mizuno S, Tanaka H, Chiba K, Ito S, Watatani Y, Kakiuchi N, Suzuki H, Yoshizato T, Yoshida K, Sanada M, Itonaga H, Imaizumi Y, Totoki Y, Munakata W, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Masuda K, Minato N, Kashiwase K, Izutsu K, Takaori-Kondo A, Miyazaki Y, Takahashi S, Shibata T, Kawamoto H, Akatsuka Y, Shimoda K, Takeuchi K, Seya T, Miyano S, Ogawa S (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534(7607):402–406. https://​doi.​org/​10.​1038/​nature18294CrossRefPubMed
Zurück zum Zitat Kraus TFJ, Machegger L, Poppe J, Zellinger B, Dovjak E, Schlicker HU, Schwartz C, Ladisich B, Spendel M, Kral M, Reinhardt A, Winkler PA, Sotlar K (2020) Diffuse midline glioma of the cervical spinal cord with H3 K27M genotype phenotypically mimicking anaplastic ganglioglioma: a case report and review of the literature. Brain Tumor Pathol 37(3):89–94. https://doi.org/10.1007/s10014-020-00365-zCrossRefPubMedPubMedCentral Kraus TFJ, Machegger L, Poppe J, Zellinger B, Dovjak E, Schlicker HU, Schwartz C, Ladisich B, Spendel M, Kral M, Reinhardt A, Winkler PA, Sotlar K (2020) Diffuse midline glioma of the cervical spinal cord with H3 K27M genotype phenotypically mimicking anaplastic ganglioglioma: a case report and review of the literature. Brain Tumor Pathol 37(3):89–94. https://​doi.​org/​10.​1007/​s10014-020-00365-zCrossRefPubMedPubMedCentral
Zurück zum Zitat Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C, Paulus W, Perry A, Reifenberger G, Figarella-Branger D, Wesseling P, Batchelor TT, Gregory Cairncross J, Pfister SM, Rutkowski S, Weller M, Wick W, von Deimling A (2016b) cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol. https://doi.org/10.1111/bpa.12457CrossRefPubMedPubMedCentral Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C, Paulus W, Perry A, Reifenberger G, Figarella-Branger D, Wesseling P, Batchelor TT, Gregory Cairncross J, Pfister SM, Rutkowski S, Weller M, Wick W, von Deimling A (2016b) cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol. https://​doi.​org/​10.​1111/​bpa.​12457CrossRefPubMedPubMedCentral
Zurück zum Zitat Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, Eberhart C, Figarella-Branger D, Fouladi M, Fuller GN, Giannini C, Haberler C, Hawkins C, Komori T, Kros JM, Ng HK, Orr BA, Park SH, Paulus W, Perry A, Pietsch T, Reifenberger G, Rosenblum M, Rous B, Sahm F, Sarkar C, Solomon DA, Tabori U, van den Bent MJ, von Deimling A, Weller M, White VA, Ellison DW (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30(4):844–856. https://doi.org/10.1111/bpa.12832CrossRefPubMedPubMedCentral Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, Eberhart C, Figarella-Branger D, Fouladi M, Fuller GN, Giannini C, Haberler C, Hawkins C, Komori T, Kros JM, Ng HK, Orr BA, Park SH, Paulus W, Perry A, Pietsch T, Reifenberger G, Rosenblum M, Rous B, Sahm F, Sarkar C, Solomon DA, Tabori U, van den Bent MJ, von Deimling A, Weller M, White VA, Ellison DW (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30(4):844–856. https://​doi.​org/​10.​1111/​bpa.​12832CrossRefPubMedPubMedCentral
Zurück zum Zitat Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X, Zhou S, Ivan C, Chen JQ, Burks JK, Fuller GN, Calin GA, Conrad CA, Creasy C, Ritthipichai K, Radvanyi L, Heimberger AB (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18(2):195–205. https://doi.org/10.1093/neuonc/nov172CrossRefPubMed Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X, Zhou S, Ivan C, Chen JQ, Burks JK, Fuller GN, Calin GA, Conrad CA, Creasy C, Ritthipichai K, Radvanyi L, Heimberger AB (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18(2):195–205. https://​doi.​org/​10.​1093/​neuonc/​nov172CrossRefPubMed
Zurück zum Zitat Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774CrossRefPubMed Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://​doi.​org/​10.​1056/​NEJMoa1606774CrossRefPubMed
Zurück zum Zitat Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, Hill BJ, Noto A, Ancuta P, Peretz Y, Fonseca SG, Van Grevenynghe J, Boulassel MR, Bruneau J, Shoukry NH, Routy JP, Douek DC, Haddad EK, Sekaly RP (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 16(4):452–459. https://doi.org/10.1038/nm.2106CrossRefPubMedPubMedCentral Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, Hill BJ, Noto A, Ancuta P, Peretz Y, Fonseca SG, Van Grevenynghe J, Boulassel MR, Bruneau J, Shoukry NH, Routy JP, Douek DC, Haddad EK, Sekaly RP (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 16(4):452–459. https://​doi.​org/​10.​1038/​nm.​2106CrossRefPubMedPubMedCentral
Metadaten
Titel
Integrated analysis of programmed cell death ligand 1 expression reveals increased levels in high-grade glioma
verfasst von
Dorothee Hölzl
Georg Hutarew
Barbara Zellinger
Hans U. Schlicker
Christoph Schwartz
Peter A. Winkler
Karl Sotlar
Theo F. J. Kraus
Publikationsdatum
08.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 8/2021
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-021-03656-w

Weitere Artikel der Ausgabe 8/2021

Journal of Cancer Research and Clinical Oncology 8/2021 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.