Skip to main content
Erschienen in: Lasers in Medical Science 3/2012

01.05.2012 | Original Article

The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

verfasst von: Fei Peng, Hua Wu, Yadong Zheng, Xiqiang Xu, Jizhe Yu

Erschienen in: Lasers in Medical Science | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Mesenchymal stem cells (MSCs) are promising for use in regenerative medicine. Low-level light irradiation (LLLI) has been shown to modulate various processes in different biological systems. The aim of our study was to investigate the effect of red light emitted from a light-emitting diode (LED) on bone marrow MSCs with or without osteogenic supplements. MSCs both with and without osteogenic supplements were divided into four groups, and each group was irradiated at doses of 0, 1, 2 and 4 J/cm2. Cellular proliferation was evaluated using WST-8 and 5-ethynyl-2′-deoxyuridine (EdU) fluorescence staining. The alkaline phosphatase activity, mineralization, and expression of osteoblast master genes (Col1α1, Alpl, Bglap and Runx2) were monitored as indicators of MSC differentiation towards osteoblasts. In groups without osteogenic supplements, red light at all doses significantly stimulated cellular proliferation, whereas the osteogenic phenotype of the MSCs was not enhanced. In groups with osteogenic supplements, red light increased alkaline phosphatase activity and mineralized nodule formation, and stimulated the expression of Bglap and Runx2, but decreased cellular proliferation. In conclusion, nonconherent red light can promote proliferation but cannot induce osteogenic differentiation of MSCs in normal media, while it enhances osteogenic differentiation and decreases proliferation of MSCs in media with osteogenic supplements.
Literatur
1.
Zurück zum Zitat Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef
2.
Zurück zum Zitat Caplan AI, Bruder S (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st Century. Trends Mol Med 7:259–264PubMedCrossRef Caplan AI, Bruder S (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st Century. Trends Mol Med 7:259–264PubMedCrossRef
3.
Zurück zum Zitat Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214PubMedCrossRef Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214PubMedCrossRef
4.
Zurück zum Zitat Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72:319–326PubMedCrossRef Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72:319–326PubMedCrossRef
5.
Zurück zum Zitat Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211PubMedCrossRef Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211PubMedCrossRef
6.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRef Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRef
7.
Zurück zum Zitat Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991PubMedCrossRef Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991PubMedCrossRef
8.
Zurück zum Zitat Green DE, Longtin JP, Sitharaman B (2009) The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano 3:2065–2072PubMedCrossRef Green DE, Longtin JP, Sitharaman B (2009) The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano 3:2065–2072PubMedCrossRef
9.
Zurück zum Zitat Mester E, Nagylucskay S, Tisza S, Mester A (1978) Stimulation of wound healing by means of laser rays. Part III – Investigation of the effect on immune competent cells. Acta Chir Acad Sci Hung 19:163–170PubMed Mester E, Nagylucskay S, Tisza S, Mester A (1978) Stimulation of wound healing by means of laser rays. Part III – Investigation of the effect on immune competent cells. Acta Chir Acad Sci Hung 19:163–170PubMed
10.
Zurück zum Zitat Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMedCrossRef Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMedCrossRef
11.
Zurück zum Zitat Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef
12.
Zurück zum Zitat Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef
13.
Zurück zum Zitat Pereira AN, Eduardo Cde P, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267PubMedCrossRef Pereira AN, Eduardo Cde P, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267PubMedCrossRef
14.
Zurück zum Zitat Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium:neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364PubMedCrossRef Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium:neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364PubMedCrossRef
15.
Zurück zum Zitat Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ (2005) Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171PubMedCrossRef Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ (2005) Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171PubMedCrossRef
16.
Zurück zum Zitat Karu TI (2003) Low-power laser therapy. In: VoDinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, pp 1–25 Karu TI (2003) Low-power laser therapy. In: VoDinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, pp 1–25
17.
Zurück zum Zitat Oliveira CF, Hebling J, Souza PPC, Sacono NT, Lessa FR, Lizarelli RFZ, Costa CAS (2008) Effect of low-level laser irradiation on odontoblast-like cells. Laser Phys Lett 5:680–685CrossRef Oliveira CF, Hebling J, Souza PPC, Sacono NT, Lessa FR, Lizarelli RFZ, Costa CAS (2008) Effect of low-level laser irradiation on odontoblast-like cells. Laser Phys Lett 5:680–685CrossRef
18.
Zurück zum Zitat Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef
19.
Zurück zum Zitat Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146PubMedCrossRef
20.
Zurück zum Zitat Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24:214–222PubMedCrossRef Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24:214–222PubMedCrossRef
21.
Zurück zum Zitat Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRef Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRef
22.
Zurück zum Zitat Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469PubMedCrossRef
23.
Zurück zum Zitat Peng F, Wu H (2009) Comments on: Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24:985–986PubMedCrossRef Peng F, Wu H (2009) Comments on: Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24:985–986PubMedCrossRef
24.
Zurück zum Zitat Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420PubMedCrossRef Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420PubMedCrossRef
25.
Zurück zum Zitat Quarles LD, Yohay LD, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692PubMedCrossRef Quarles LD, Yohay LD, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692PubMedCrossRef
26.
Zurück zum Zitat Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef
27.
Zurück zum Zitat Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509PubMedCrossRef Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509PubMedCrossRef
28.
Zurück zum Zitat Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430PubMedCrossRef Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430PubMedCrossRef
29.
Zurück zum Zitat Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRef Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRef
30.
Zurück zum Zitat de Souza SC, Munin E, Alves LP, Salgado MA, Pacheco MT (2005) Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. J Photochem Photobiol B 80:203–207PubMedCrossRef de Souza SC, Munin E, Alves LP, Salgado MA, Pacheco MT (2005) Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. J Photochem Photobiol B 80:203–207PubMedCrossRef
31.
Zurück zum Zitat Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282PubMedCrossRef Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282PubMedCrossRef
32.
Zurück zum Zitat Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340PubMedCrossRef Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340PubMedCrossRef
33.
Zurück zum Zitat Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu GH, Yin H, He Y, Wang Y, Souris JS, Chen L, Zuo GW, Montag AG, Reid RR, Haydon RC, Luu HH, He TC (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest 88:1264–1277PubMedCrossRef Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu GH, Yin H, He Y, Wang Y, Souris JS, Chen L, Zuo GW, Montag AG, Reid RR, Haydon RC, Luu HH, He TC (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest 88:1264–1277PubMedCrossRef
34.
Zurück zum Zitat Holleville N, Mateos S, Bontoux M, Bollerot K, Monsoro-Burq AH (2007) Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol 304:860–874PubMedCrossRef Holleville N, Mateos S, Bontoux M, Bollerot K, Monsoro-Burq AH (2007) Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol 304:860–874PubMedCrossRef
35.
Zurück zum Zitat Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K, Noguchi K, Oda S, Ishikawa I (2007) Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem 100:303–314PubMedCrossRef Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K, Noguchi K, Oda S, Ishikawa I (2007) Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem 100:303–314PubMedCrossRef
36.
Zurück zum Zitat Komori T (2008) Regulation of bone development and maintenance by Runx2. Front Biosci 13:898–903PubMedCrossRef Komori T (2008) Regulation of bone development and maintenance by Runx2. Front Biosci 13:898–903PubMedCrossRef
37.
Zurück zum Zitat Hughes FJ, Collyer J, Stanfield M, Goodman SA (1995) The effects of bone morphogenetic protein-2, -4 and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology 136:2671–2677PubMedCrossRef Hughes FJ, Collyer J, Stanfield M, Goodman SA (1995) The effects of bone morphogenetic protein-2, -4 and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology 136:2671–2677PubMedCrossRef
38.
Zurück zum Zitat Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8:2241–2250PubMed Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8:2241–2250PubMed
Metadaten
Titel
The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells
verfasst von
Fei Peng
Hua Wu
Yadong Zheng
Xiqiang Xu
Jizhe Yu
Publikationsdatum
01.05.2012
Verlag
Springer-Verlag
Erschienen in
Lasers in Medical Science / Ausgabe 3/2012
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-1005-z

Weitere Artikel der Ausgabe 3/2012

Lasers in Medical Science 3/2012 Zur Ausgabe