Skip to main content
Erschienen in: Angiogenesis 1/2013

01.01.2013 | Original Paper

Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration

verfasst von: Inho Choi, Yong Suk Lee, Hee Kyoung Chung, Dongwon Choi, Tatiana Ecoiffier, Ha Neul Lee, Kyu Eui Kim, Sunju Lee, Eun Kyung Park, Yong Sun Maeng, Nam Yun Kim, Robert D. Ladner, Nicos A. Petasis, Chester J. Koh, Lu Chen, Heinz-Josef Lenz, Young-Kwon Hong

Erschienen in: Angiogenesis | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Lymphedema is mainly caused by lymphatic obstruction and manifested as tissue swelling, often in the arms and legs. Lymphedema is one of the most common post-surgical complications in breast cancer patients and presents a painful and disfiguring chronic illness that has few treatment options. Here, we evaluated the therapeutic potential of interleukin (IL)-8 in lymphatic regeneration independent of its pro-inflammatory activity. We found that IL-8 promoted proliferation, tube formation, and migration of lymphatic endothelial cells (LECs) without activating the VEGF signaling. Additionally, IL-8 suppressed the major cell cycle inhibitor CDKN1C/p57KIP2 by downregulating its positive regulator PROX1, which is known as the master regulator of LEC-differentiation. Animal-based studies such as matrigel plug and cornea micropocket assays demonstrated potent efficacy of IL-8 in activating lymphangiogenesis in vivo. Moreover, we have generated a novel transgenic mouse model (K14-hIL8) that expresses human IL-8 in the skin and then crossed with lymphatic-specific fluorescent (Prox1-GFP) mouse. The resulting double transgenic mice showed that a stable expression of IL-8 could promote embryonic lymphangiogenesis. Moreover, an immunodeficient IL-8-expressing mouse line that was established by crossing K14-hIL8 mice with athymic nude mice displayed an enhanced tumor-associated lymphangiogenesis. Finally, when experimental lymphedema was introduced, K14-hIL8 mice showed an improved amelioration of lymphedema with an increased lymphatic regeneration. Together, we report that IL-8 can activate lymphangiogenesis in vitro and in vivo with a therapeutic efficacy in post-surgical lymphedema.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedCrossRef Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedCrossRef
2.
Zurück zum Zitat Norrmen C et al (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351PubMedCrossRef Norrmen C et al (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351PubMedCrossRef
3.
Zurück zum Zitat Schmitz KH et al (2012) Prevalence of breast cancer treatment sequelae over 6 years of follow-up: the pulling through study. Cancer 118(8 Suppl):2217–2225PubMedCrossRef Schmitz KH et al (2012) Prevalence of breast cancer treatment sequelae over 6 years of follow-up: the pulling through study. Cancer 118(8 Suppl):2217–2225PubMedCrossRef
4.
Zurück zum Zitat Shimoda H, Bernas MJ, Witte MH (2011) Dysmorphogenesis of lymph nodes in Foxc2 haploinsufficient mice. Histochem Cell Biol 135(6):603–613PubMedCrossRef Shimoda H, Bernas MJ, Witte MH (2011) Dysmorphogenesis of lymph nodes in Foxc2 haploinsufficient mice. Histochem Cell Biol 135(6):603–613PubMedCrossRef
5.
Zurück zum Zitat Shah C, Vicini FA (2011) Breast cancer-related arm lymphedema: incidence rates, diagnostic techniques, optimal management and risk reduction strategies. Int J Radiat Oncol Biol Phys 81(4):907–914PubMedCrossRef Shah C, Vicini FA (2011) Breast cancer-related arm lymphedema: incidence rates, diagnostic techniques, optimal management and risk reduction strategies. Int J Radiat Oncol Biol Phys 81(4):907–914PubMedCrossRef
6.
7.
Zurück zum Zitat Petrek JA et al (2001) Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 92(6):1368–1377PubMedCrossRef Petrek JA et al (2001) Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 92(6):1368–1377PubMedCrossRef
8.
Zurück zum Zitat Hardin R, Jacobs LK (2012) Lymphedema: still a problem without an answer. Oncology (Williston Park) 26(3):256–257 Hardin R, Jacobs LK (2012) Lymphedema: still a problem without an answer. Oncology (Williston Park) 26(3):256–257
9.
Zurück zum Zitat McLaughlin SA (2012) Lymphedema: separating fact from fiction. Oncology (Williston Park) 26(3):242–249 McLaughlin SA (2012) Lymphedema: separating fact from fiction. Oncology (Williston Park) 26(3):242–249
10.
Zurück zum Zitat Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476PubMedCrossRef Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476PubMedCrossRef
11.
Zurück zum Zitat Oh SJ et al (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109PubMedCrossRef Oh SJ et al (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109PubMedCrossRef
12.
Zurück zum Zitat Hong YK et al (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18(10):1111–1113PubMed Hong YK et al (2004) VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18(10):1111–1113PubMed
13.
Zurück zum Zitat Nagy JA et al (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196(11):1497–1506PubMedCrossRef Nagy JA et al (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196(11):1497–1506PubMedCrossRef
14.
Zurück zum Zitat Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237PubMedCrossRef Nagy JA et al (2002) VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67:227–237PubMedCrossRef
15.
Zurück zum Zitat Nakao S et al (2010) Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. FASEB J 24(2):504–513PubMedCrossRef Nakao S et al (2010) Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. FASEB J 24(2):504–513PubMedCrossRef
16.
Zurück zum Zitat Shin JW et al (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17(2):576–584PubMedCrossRef Shin JW et al (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17(2):576–584PubMedCrossRef
17.
Zurück zum Zitat Cao R et al (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6(4):333–345PubMedCrossRef Cao R et al (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6(4):333–345PubMedCrossRef
18.
Zurück zum Zitat Kajiya K et al (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895PubMedCrossRef Kajiya K et al (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895PubMedCrossRef
19.
Zurück zum Zitat Banziger-Tobler NE et al (2008) Growth hormone promotes lymphangiogenesis. Am J Pathol 173(2):586–597 Banziger-Tobler NE et al (2008) Growth hormone promotes lymphangiogenesis. Am J Pathol 173(2):586–597
20.
Zurück zum Zitat Bjorndahl M et al (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102(43):15593–15598PubMedCrossRef Bjorndahl M et al (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 102(43):15593–15598PubMedCrossRef
21.
Zurück zum Zitat Koch AE et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801PubMedCrossRef Koch AE et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801PubMedCrossRef
22.
Zurück zum Zitat Strieter RM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284PubMed Strieter RM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284PubMed
23.
Zurück zum Zitat Simonini A et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101(13):1519–1526PubMedCrossRef Simonini A et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101(13):1519–1526PubMedCrossRef
24.
Zurück zum Zitat Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284(10):6038–6042PubMedCrossRef Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284(10):6038–6042PubMedCrossRef
25.
Zurück zum Zitat Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11(9):704–712PubMedCrossRef Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11(9):704–712PubMedCrossRef
26.
Zurück zum Zitat Li A et al (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376PubMed Li A et al (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376PubMed
27.
Zurück zum Zitat Choi I et al (2012) 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic Acid for secondary lymphedema. Circulation 125(7):872–882PubMedCrossRef Choi I et al (2012) 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic Acid for secondary lymphedema. Circulation 125(7):872–882PubMedCrossRef
28.
Zurück zum Zitat White JR et al (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273(17):10095–10098PubMedCrossRef White JR et al (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273(17):10095–10098PubMedCrossRef
29.
Zurück zum Zitat Kubo K et al (2005) Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N’-{4-(4-quinolyloxy)phenyl}ureas. J Med Chem 48(5):1359–1366PubMedCrossRef Kubo K et al (2005) Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N’-{4-(4-quinolyloxy)phenyl}ureas. J Med Chem 48(5):1359–1366PubMedCrossRef
30.
Zurück zum Zitat Kirkin V et al (2004) MAZ51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo. Int J Cancer 112(6):986–993PubMedCrossRef Kirkin V et al (2004) MAZ51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo. Int J Cancer 112(6):986–993PubMedCrossRef
31.
Zurück zum Zitat Baxter SA et al (2011) Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. Biochim Biophys Acta 1813(1):201–212PubMedCrossRef Baxter SA et al (2011) Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. Biochim Biophys Acta 1813(1):201–212PubMedCrossRef
32.
Zurück zum Zitat Lee S et al (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113(8):1856–1859PubMedCrossRef Lee S et al (2009) Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113(8):1856–1859PubMedCrossRef
33.
Zurück zum Zitat Choi I et al (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117(1):362–365PubMedCrossRef Choi I et al (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117(1):362–365PubMedCrossRef
34.
Zurück zum Zitat Wang X et al (1997) Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci U S A 94(1):219–226PubMedCrossRef Wang X et al (1997) Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci U S A 94(1):219–226PubMedCrossRef
35.
Zurück zum Zitat Barlic J, Murphy PM (2007) Chemokine regulation of atherosclerosis. J Leukoc Biol 82(2):226–236PubMedCrossRef Barlic J, Murphy PM (2007) Chemokine regulation of atherosclerosis. J Leukoc Biol 82(2):226–236PubMedCrossRef
36.
Zurück zum Zitat Bozic CR et al (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem 269(47):29355–29358PubMed Bozic CR et al (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem 269(47):29355–29358PubMed
37.
Zurück zum Zitat Starckx S et al (2002) Recombinant mouse granulocyte chemotactic protein-2: production in bacteria, characterization, and systemic effects on leukocytes. J Interferon Cytokine Res 22(9):965–974PubMedCrossRef Starckx S et al (2002) Recombinant mouse granulocyte chemotactic protein-2: production in bacteria, characterization, and systemic effects on leukocytes. J Interferon Cytokine Res 22(9):965–974PubMedCrossRef
38.
Zurück zum Zitat Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741PubMedCrossRef Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741PubMedCrossRef
39.
Zurück zum Zitat Kunstfeld R et al (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–1057PubMedCrossRef Kunstfeld R et al (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–1057PubMedCrossRef
40.
Zurück zum Zitat Rutkowski JM et al (2006) Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res 72(3):161–171PubMedCrossRef Rutkowski JM et al (2006) Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res 72(3):161–171PubMedCrossRef
41.
Zurück zum Zitat Petrova TV et al (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599PubMedCrossRef Petrova TV et al (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599PubMedCrossRef
42.
Zurück zum Zitat Hirakawa S et al (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586PubMedCrossRef Hirakawa S et al (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586PubMedCrossRef
43.
Zurück zum Zitat Hong YK et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357PubMedCrossRef Hong YK et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357PubMedCrossRef
44.
Zurück zum Zitat Mu H et al (2012) Lysophosphatidic Acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. Am J Pathol 180(5):2170–2181PubMedCrossRef Mu H et al (2012) Lysophosphatidic Acid induces lymphangiogenesis and IL-8 production in vitro in human lymphatic endothelial cells. Am J Pathol 180(5):2170–2181PubMedCrossRef
45.
Zurück zum Zitat Wigle JT et al (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322PubMedCrossRef Wigle JT et al (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322PubMedCrossRef
46.
Zurück zum Zitat Dyer MA (2003) Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle 2(4):350–357PubMedCrossRef Dyer MA (2003) Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle 2(4):350–357PubMedCrossRef
47.
Zurück zum Zitat Dyer MA et al (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58PubMedCrossRef Dyer MA et al (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58PubMedCrossRef
48.
Zurück zum Zitat Pan MR et al (2009) Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci 122(Pt 18):3358–3364PubMedCrossRef Pan MR et al (2009) Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci 122(Pt 18):3358–3364PubMedCrossRef
49.
Zurück zum Zitat Kang J et al (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116(1):140–150 Kang J et al (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116(1):140–150
50.
Zurück zum Zitat Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185PubMedCrossRef Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185PubMedCrossRef
51.
Zurück zum Zitat Zhang H et al (2011) Spontaneous lymphatic vessel formation and regression in the murine cornea. Invest Ophthalmol Vis Sci 52(1):334–338PubMedCrossRef Zhang H et al (2011) Spontaneous lymphatic vessel formation and regression in the murine cornea. Invest Ophthalmol Vis Sci 52(1):334–338PubMedCrossRef
52.
Zurück zum Zitat Bos FL et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491PubMedCrossRef Bos FL et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491PubMedCrossRef
53.
54.
Zurück zum Zitat Caunt M et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342PubMedCrossRef Caunt M et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342PubMedCrossRef
55.
Zurück zum Zitat Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873PubMedCrossRef Kubo H et al (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99(13):8868–8873PubMedCrossRef
56.
Zurück zum Zitat Ecoiffier T, Yuen D, Chen L (2010) Differential distribution of blood and lymphatic vessels in the murine cornea. Invest Ophthalmol Vis Sci 51(5):2436–2440PubMedCrossRef Ecoiffier T, Yuen D, Chen L (2010) Differential distribution of blood and lymphatic vessels in the murine cornea. Invest Ophthalmol Vis Sci 51(5):2436–2440PubMedCrossRef
57.
Zurück zum Zitat Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E (1989) Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86(5):1563–1567 Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E (1989) Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86(5):1563–1567
Metadaten
Titel
Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration
verfasst von
Inho Choi
Yong Suk Lee
Hee Kyoung Chung
Dongwon Choi
Tatiana Ecoiffier
Ha Neul Lee
Kyu Eui Kim
Sunju Lee
Eun Kyung Park
Yong Sun Maeng
Nam Yun Kim
Robert D. Ladner
Nicos A. Petasis
Chester J. Koh
Lu Chen
Heinz-Josef Lenz
Young-Kwon Hong
Publikationsdatum
01.01.2013
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 1/2013
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9297-6

Weitere Artikel der Ausgabe 1/2013

Angiogenesis 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.