Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2009

01.06.2009

Kinesin motor proteins as targets for cancer therapy

verfasst von: Dennis Huszar, Maria-Elena Theoclitou, Jeffrey Skolnik, Ronald Herbst

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2009

Einloggen, um Zugang zu erhalten

Abstract

The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.
Literatur
1.
Zurück zum Zitat Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.PubMedCrossRef Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.PubMedCrossRef
2.
Zurück zum Zitat Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.CrossRef Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.CrossRef
3.
Zurück zum Zitat Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.PubMedCrossRef Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.PubMedCrossRef
4.
Zurück zum Zitat Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedCrossRef Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedCrossRef
5.
Zurück zum Zitat Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.CrossRef Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.CrossRef
6.
Zurück zum Zitat Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.PubMedCrossRef Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.PubMedCrossRef
7.
Zurück zum Zitat Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.CrossRef Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.CrossRef
8.
Zurück zum Zitat Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.PubMedCrossRef Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.PubMedCrossRef
9.
Zurück zum Zitat Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.PubMedCrossRef Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.PubMedCrossRef
10.
Zurück zum Zitat Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.PubMedCrossRef Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.PubMedCrossRef
11.
Zurück zum Zitat Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedCrossRef Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedCrossRef
12.
Zurück zum Zitat LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398. LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398.
13.
Zurück zum Zitat Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.PubMedCrossRef Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.PubMedCrossRef
14.
Zurück zum Zitat Valentine, M. T., Fordyce, P. M., & Block, S. M. (2006). Eg5 steps it up! Cell Division, 1, 31.PubMedCrossRef Valentine, M. T., Fordyce, P. M., & Block, S. M. (2006). Eg5 steps it up! Cell Division, 1, 31.PubMedCrossRef
15.
Zurück zum Zitat Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.PubMedCrossRef Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.PubMedCrossRef
16.
Zurück zum Zitat Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.PubMedCrossRef Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.PubMedCrossRef
17.
Zurück zum Zitat Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedCrossRef Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedCrossRef
18.
Zurück zum Zitat Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.PubMedCrossRef Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.PubMedCrossRef
19.
Zurück zum Zitat Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.PubMedCrossRef Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.PubMedCrossRef
20.
Zurück zum Zitat Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.PubMedCrossRef Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.PubMedCrossRef
21.
Zurück zum Zitat Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.PubMed Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.PubMed
22.
Zurück zum Zitat Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535. Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535.
23.
Zurück zum Zitat Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.PubMedCrossRef Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.PubMedCrossRef
24.
Zurück zum Zitat DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.PubMed DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.PubMed
25.
Zurück zum Zitat Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.PubMedCrossRef Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.PubMedCrossRef
26.
Zurück zum Zitat Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.PubMedCrossRef Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.PubMedCrossRef
27.
Zurück zum Zitat Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.PubMedCrossRef Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.PubMedCrossRef
28.
Zurück zum Zitat Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting. Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting.
29.
Zurück zum Zitat Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting. Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting.
30.
Zurück zum Zitat Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.PubMedCrossRef Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.PubMedCrossRef
31.
Zurück zum Zitat Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.PubMedCrossRef Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.PubMedCrossRef
32.
Zurück zum Zitat Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.PubMedCrossRef Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.PubMedCrossRef
33.
Zurück zum Zitat Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.PubMedCrossRef Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.PubMedCrossRef
34.
Zurück zum Zitat Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.PubMedCrossRef Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.PubMedCrossRef
35.
Zurück zum Zitat Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.PubMedCrossRef Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.PubMedCrossRef
36.
Zurück zum Zitat Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.CrossRef Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.CrossRef
37.
Zurück zum Zitat Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.PubMedCrossRef Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.PubMedCrossRef
38.
Zurück zum Zitat Bristol Myers Squibb (2002). WO2002079169. Bristol Myers Squibb (2002). WO2002079169.
39.
Zurück zum Zitat Bristol Myers Squibb (2002). WO2002079149. Bristol Myers Squibb (2002). WO2002079149.
40.
Zurück zum Zitat Leipzig University/Max-Planck Institute (2006). WO2006048308. Leipzig University/Max-Planck Institute (2006). WO2006048308.
41.
Zurück zum Zitat Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.PubMedCrossRef Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.PubMedCrossRef
42.
Zurück zum Zitat Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.PubMedCrossRef Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.PubMedCrossRef
43.
44.
Zurück zum Zitat Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.CrossRef Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.CrossRef
45.
46.
47.
Zurück zum Zitat Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249. Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249.
48.
Zurück zum Zitat Cytokinetics/GSK (2003). WO2003103575. Cytokinetics/GSK (2003). WO2003103575.
49.
50.
51.
52.
53.
54.
Zurück zum Zitat Cytokinetics/GSK (2004). WO2004024086. Cytokinetics/GSK (2004). WO2004024086.
55.
Zurück zum Zitat Cytokinetics/GSK (2004). WO200406741. Cytokinetics/GSK (2004). WO200406741.
56.
57.
Zurück zum Zitat Cytokinetics/GSK (2005). WO2005042697. Cytokinetics/GSK (2005). WO2005042697.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
Zurück zum Zitat Cytokinetics/GSK (2003). WO2003088903. Cytokinetics/GSK (2003). WO2003088903.
69.
70.
71.
72.
73.
Zurück zum Zitat Cytokinetics/GSK (2004). WO2004055008. Cytokinetics/GSK (2004). WO2004055008.
74.
75.
76.
77.
Zurück zum Zitat Cytokinetics/GSK (2003). WO2003094839. Cytokinetics/GSK (2003). WO2003094839.
78.
79.
Zurück zum Zitat Cytokinetics/GSK (2004). WO2004032840. Cytokinetics/GSK (2004). WO2004032840.
80.
81.
82.
83.
84.
85.
86.
87.
88.
Zurück zum Zitat Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.CrossRef Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.CrossRef
89.
Zurück zum Zitat Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.CrossRef Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.CrossRef
90.
Zurück zum Zitat Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.CrossRef Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.CrossRef
91.
Zurück zum Zitat Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.CrossRef Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.CrossRef
92.
Zurück zum Zitat Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.CrossRef Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.CrossRef
93.
Zurück zum Zitat Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.CrossRef Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.CrossRef
94.
Zurück zum Zitat Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.CrossRef Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.CrossRef
95.
Zurück zum Zitat Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.CrossRef Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.CrossRef
96.
Zurück zum Zitat Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.PubMedCrossRef Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.PubMedCrossRef
97.
Zurück zum Zitat Kyowa Hakko/Fuji Film (2005). WO2005035512. Kyowa Hakko/Fuji Film (2005). WO2005035512.
98.
Zurück zum Zitat Kyowa Hakko/Fuji Film (2005). JP2005232016. Kyowa Hakko/Fuji Film (2005). JP2005232016.
99.
Zurück zum Zitat Kyowa Hakko/Fuji Film (2006). WO2006101102. Kyowa Hakko/Fuji Film (2006). WO2006101102.
100.
101.
102.
Zurück zum Zitat Array Biopharma (2006). WO2006044825. Array Biopharma (2006). WO2006044825.
103.
Zurück zum Zitat Array Biopharma (2008). WO2008042928. Array Biopharma (2008). WO2008042928.
104.
105.
106.
107.
108.
109.
Zurück zum Zitat Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.CrossRef Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.CrossRef
110.
Zurück zum Zitat Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.CrossRef Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.CrossRef
111.
112.
Zurück zum Zitat Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.PubMedCrossRef Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.PubMedCrossRef
113.
114.
115.
116.
117.
118.
119.
120.
Zurück zum Zitat Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.PubMedCrossRef Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.PubMedCrossRef
121.
Zurück zum Zitat Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.CrossRef Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.CrossRef
122.
Zurück zum Zitat Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.PubMedCrossRef Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.PubMedCrossRef
123.
Zurück zum Zitat Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.PubMedCrossRef Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.PubMedCrossRef
124.
Zurück zum Zitat Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.PubMedCrossRef Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.PubMedCrossRef
125.
Zurück zum Zitat Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027. Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027.
126.
Zurück zum Zitat Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.CrossRef Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.CrossRef
127.
Zurück zum Zitat Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.PubMedCrossRef Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.PubMedCrossRef
128.
Zurück zum Zitat Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014. Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014.
129.
Zurück zum Zitat Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.PubMedCrossRef Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.PubMedCrossRef
130.
Zurück zum Zitat Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089. Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089.
131.
Zurück zum Zitat Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562. Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562.
132.
Zurück zum Zitat Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000. Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000.
133.
Zurück zum Zitat O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539. O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539.
134.
Zurück zum Zitat Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516. Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516.
135.
Zurück zum Zitat Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026. Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026.
136.
Zurück zum Zitat Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.PubMedCrossRef Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.PubMedCrossRef
137.
Zurück zum Zitat Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.PubMedCrossRef Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.PubMedCrossRef
138.
Zurück zum Zitat Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.PubMedCrossRef Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.PubMedCrossRef
139.
Zurück zum Zitat Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.PubMedCrossRef Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.PubMedCrossRef
140.
Zurück zum Zitat Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.PubMedCrossRef Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.PubMedCrossRef
141.
Zurück zum Zitat Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.CrossRef Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.CrossRef
142.
Zurück zum Zitat McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.PubMed McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.PubMed
143.
Zurück zum Zitat Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365. Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365.
144.
Zurück zum Zitat Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.PubMedCrossRef Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.PubMedCrossRef
145.
Zurück zum Zitat Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef
146.
Zurück zum Zitat Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007. Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007.
147.
Zurück zum Zitat Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007. Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007.
148.
Zurück zum Zitat Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007. Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007.
149.
Zurück zum Zitat Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.PubMedCrossRef Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.PubMedCrossRef
150.
Zurück zum Zitat Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.PubMedCrossRef Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.PubMedCrossRef
151.
Zurück zum Zitat Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.PubMedCrossRef Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.PubMedCrossRef
152.
Zurück zum Zitat Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.CrossRef Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.CrossRef
153.
Zurück zum Zitat Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.PubMedCrossRef Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.PubMedCrossRef
154.
Zurück zum Zitat Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.PubMedCrossRef Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.PubMedCrossRef
155.
Zurück zum Zitat Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.PubMedCrossRef Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.PubMedCrossRef
156.
Zurück zum Zitat Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef
157.
Zurück zum Zitat Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.PubMedCrossRef Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.PubMedCrossRef
158.
Zurück zum Zitat Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.CrossRef Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.CrossRef
Metadaten
Titel
Kinesin motor proteins as targets for cancer therapy
verfasst von
Dennis Huszar
Maria-Elena Theoclitou
Jeffrey Skolnik
Ronald Herbst
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2009
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9185-8

Weitere Artikel der Ausgabe 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Zur Ausgabe

Acknowledgments

Biographies

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.