Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2013

01.12.2013 | NON-THEMATIC REVIEW

Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review

verfasst von: Asfar S. Azmi, Bin Bao, Fazlul H. Sarkar

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2013

Einloggen, um Zugang zu erhalten

Abstract

Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is composed of active, passive, export through microparticles, and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro- and macromolecules. In pathological states, such as cancer, aberrant activity of the export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome-mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents, and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor-related pathways, such as hypoxia-driven epithelial-to-mesenchymal transition, cancer stemness, angiogenesis, and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggests that exosome-secreted proteins can also propel fibroblast growth, resulting in desmoplastic reaction, a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome-mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
Literatur
1.
Zurück zum Zitat Kitano, H. (2004). Cancer as a robust system: implications for anticancer therapy. Nature Reviews Cancer, 4, 227–235.PubMed Kitano, H. (2004). Cancer as a robust system: implications for anticancer therapy. Nature Reviews Cancer, 4, 227–235.PubMed
2.
Zurück zum Zitat Kitano, H. (2003). Cancer robustness: tumour tactics. Nature, 426, 125.PubMed Kitano, H. (2003). Cancer robustness: tumour tactics. Nature, 426, 125.PubMed
3.
Zurück zum Zitat Miyawaki, A. (2011). Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology, 12, 656–668.PubMed Miyawaki, A. (2011). Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology, 12, 656–668.PubMed
4.
Zurück zum Zitat Sugano, K., Kansy, M., Artursson, P., Avdeef, A., Bendels, S., Di, L., et al. (2010). Coexistence of passive and carrier-mediated processes in drug transport. Nature Reviews Drug Discovery, 9, 597–614.PubMed Sugano, K., Kansy, M., Artursson, P., Avdeef, A., Bendels, S., Di, L., et al. (2010). Coexistence of passive and carrier-mediated processes in drug transport. Nature Reviews Drug Discovery, 9, 597–614.PubMed
5.
Zurück zum Zitat El, A. S., Mager, I., Breakefield, X. O., & Wood, M. J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12, 347–357. El, A. S., Mager, I., Breakefield, X. O., & Wood, M. J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12, 347–357.
6.
Zurück zum Zitat Staals, R. H., & Pruijn, G. J. (2010). The human exosome and disease. Advances in Experimental Medicine and Biology, 702, 132–142.PubMed Staals, R. H., & Pruijn, G. J. (2010). The human exosome and disease. Advances in Experimental Medicine and Biology, 702, 132–142.PubMed
7.
Zurück zum Zitat Schorey, J. S., & Bhatnagar, S. (2008). Exosome function: from tumor immunology to pathogen biology. Traffic, 9, 871–881.PubMed Schorey, J. S., & Bhatnagar, S. (2008). Exosome function: from tumor immunology to pathogen biology. Traffic, 9, 871–881.PubMed
8.
Zurück zum Zitat Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820, 940–948.PubMed Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820, 940–948.PubMed
9.
Zurück zum Zitat Vinciguerra, P., & Stutz, F. (2004). mRNA export: an assembly line from genes to nuclear pores. Current Opinion in Cell Biology, 16, 285–292.PubMed Vinciguerra, P., & Stutz, F. (2004). mRNA export: an assembly line from genes to nuclear pores. Current Opinion in Cell Biology, 16, 285–292.PubMed
10.
Zurück zum Zitat Fevrier, B., Vilette, D., Laude, H., & Raposo, G. (2005). Exosomes: a bubble ride for prions? Traffic, 6, 10–17.PubMed Fevrier, B., Vilette, D., Laude, H., & Raposo, G. (2005). Exosomes: a bubble ride for prions? Traffic, 6, 10–17.PubMed
11.
Zurück zum Zitat Gibbings, D. J., Ciaudo, C., Erhardt, M., & Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology, 11, 1143–1149.PubMed Gibbings, D. J., Ciaudo, C., Erhardt, M., & Voinnet, O. (2009). Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biology, 11, 1143–1149.PubMed
12.
Zurück zum Zitat Finkelstein, A. (1964). Carrier model for active transport of ions across a mosaic membrane. Biophysical Journal, 4, 421–440.PubMed Finkelstein, A. (1964). Carrier model for active transport of ions across a mosaic membrane. Biophysical Journal, 4, 421–440.PubMed
13.
Zurück zum Zitat Diekmann, Y., & Pereira-Leal, J. B. (2013). Evolution of intracellular compartmentalization. The Biochemical Journal, 449, 319–331.PubMed Diekmann, Y., & Pereira-Leal, J. B. (2013). Evolution of intracellular compartmentalization. The Biochemical Journal, 449, 319–331.PubMed
14.
Zurück zum Zitat Wright, E. M., Hirayama, B., Hazama, A., Loo, D. D., Supplisson, S., Turk, E., et al. (1993). The sodium/glucose cotransporter (SGLT1). Society of General Physiologists Series, 48, 229–241.PubMed Wright, E. M., Hirayama, B., Hazama, A., Loo, D. D., Supplisson, S., Turk, E., et al. (1993). The sodium/glucose cotransporter (SGLT1). Society of General Physiologists Series, 48, 229–241.PubMed
15.
Zurück zum Zitat Grunwald, D., Singer, R. H., & Rout, M. (2011). Nuclear export dynamics of RNA-protein complexes. Nature, 475, 333–341.PubMed Grunwald, D., Singer, R. H., & Rout, M. (2011). Nuclear export dynamics of RNA-protein complexes. Nature, 475, 333–341.PubMed
16.
Zurück zum Zitat Kim, J., Izadyar, A., Nioradze, N., & Amemiya, S. (2013). Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. Journal of the American Chemical Society, 135, 2321–2329.PubMed Kim, J., Izadyar, A., Nioradze, N., & Amemiya, S. (2013). Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. Journal of the American Chemical Society, 135, 2321–2329.PubMed
17.
Zurück zum Zitat Albertini, M., Pemberton, L. F., Rosenblum, J. S., & Blobel, G. (1998). A novel nuclear import pathway for the transcription factor TFIIS. The Journal of Cell Biology, 143, 1447–1455.PubMed Albertini, M., Pemberton, L. F., Rosenblum, J. S., & Blobel, G. (1998). A novel nuclear import pathway for the transcription factor TFIIS. The Journal of Cell Biology, 143, 1447–1455.PubMed
18.
Zurück zum Zitat Rosenblum, J. S., Pemberton, L. F., Bonifaci, N., & Blobel, G. (1998). Nuclear import and the evolution of a multifunctional RNA-binding protein. The Journal of Cell Biology, 143, 887–899.PubMed Rosenblum, J. S., Pemberton, L. F., Bonifaci, N., & Blobel, G. (1998). Nuclear import and the evolution of a multifunctional RNA-binding protein. The Journal of Cell Biology, 143, 887–899.PubMed
19.
Zurück zum Zitat Pemberton, L. F., Blobel, G., & Rosenblum, J. S. (1998). Transport routes through the nuclear pore complex. Current Opinion in Cell Biology, 10, 392–399.PubMed Pemberton, L. F., Blobel, G., & Rosenblum, J. S. (1998). Transport routes through the nuclear pore complex. Current Opinion in Cell Biology, 10, 392–399.PubMed
20.
Zurück zum Zitat Rosenblum, J. S., Pemberton, L. F., & Blobel, G. (1997). A nuclear import pathway for a protein involved in tRNA maturation. The Journal of Cell Biology, 139, 1655–1661.PubMed Rosenblum, J. S., Pemberton, L. F., & Blobel, G. (1997). A nuclear import pathway for a protein involved in tRNA maturation. The Journal of Cell Biology, 139, 1655–1661.PubMed
21.
Zurück zum Zitat Lee, S. J., Jiko, C., Yamashita, E., & Tsukihara, T. (2011). Selective nuclear export mechanism of small RNAs. Current Opinion in Structural Biology, 21, 101–108.PubMed Lee, S. J., Jiko, C., Yamashita, E., & Tsukihara, T. (2011). Selective nuclear export mechanism of small RNAs. Current Opinion in Structural Biology, 21, 101–108.PubMed
22.
Zurück zum Zitat Adam, S. A., Lobl, T. J., Mitchell, M. A., & Gerace, L. (1989). Identification of specific binding proteins for a nuclear location sequence. Nature, 337, 276–279.PubMed Adam, S. A., Lobl, T. J., Mitchell, M. A., & Gerace, L. (1989). Identification of specific binding proteins for a nuclear location sequence. Nature, 337, 276–279.PubMed
23.
Zurück zum Zitat Wen, W., Meinkoth, J. L., Tsien, R. Y., & Taylor, S. S. (1995). Identification of a signal for rapid export of proteins from the nucleus. Cell, 82, 463–473.PubMed Wen, W., Meinkoth, J. L., Tsien, R. Y., & Taylor, S. S. (1995). Identification of a signal for rapid export of proteins from the nucleus. Cell, 82, 463–473.PubMed
24.
Zurück zum Zitat Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science, 113(Pt 19), 3365–3374.PubMed Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science, 113(Pt 19), 3365–3374.PubMed
25.
Zurück zum Zitat Trams, E. G., Lauter, C. J., Salem, N., Jr., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta, 645, 63–70.PubMed Trams, E. G., Lauter, C. J., Salem, N., Jr., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta, 645, 63–70.PubMed
26.
Zurück zum Zitat van den Boorn, J. G., Dassler, J., Coch, C., Schlee, M., & Hartmann, G. (2013). Exosomes as nucleic acid nanocarriers. Advanced Drug Delivery Reviews, 65, 331–335.PubMed van den Boorn, J. G., Dassler, J., Coch, C., Schlee, M., & Hartmann, G. (2013). Exosomes as nucleic acid nanocarriers. Advanced Drug Delivery Reviews, 65, 331–335.PubMed
27.
Zurück zum Zitat Batista, B. S., Eng, W. S., Pilobello, K. T., Hendricks-Munoz, K. D., & Mahal, L. K. (2011). Identification of a conserved glycan signature for microvesicles. Journal of Proteome Research, 10, 4624–4633.PubMed Batista, B. S., Eng, W. S., Pilobello, K. T., Hendricks-Munoz, K. D., & Mahal, L. K. (2011). Identification of a conserved glycan signature for microvesicles. Journal of Proteome Research, 10, 4624–4633.PubMed
28.
Zurück zum Zitat Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., & Bonnerot, C. (2005). Exosomal-like vesicles are present in human blood plasma. International Immunology, 17, 879–887.PubMed Caby, M. P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., & Bonnerot, C. (2005). Exosomal-like vesicles are present in human blood plasma. International Immunology, 17, 879–887.PubMed
29.
Zurück zum Zitat Almqvist, N., Lonnqvist, A., Hultkrantz, S., Rask, C., & Telemo, E. (2008). Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology, 125, 21–27.PubMed Almqvist, N., Lonnqvist, A., Hultkrantz, S., Rask, C., & Telemo, E. (2008). Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology, 125, 21–27.PubMed
30.
Zurück zum Zitat Chen, C. Y., Hogan, M. C., & Ward, C. J. (2013). Purification of exosome-like vesicles from urine. Methods in Enzymology, 524, 225–241.PubMed Chen, C. Y., Hogan, M. C., & Ward, C. J. (2013). Purification of exosome-like vesicles from urine. Methods in Enzymology, 524, 225–241.PubMed
31.
Zurück zum Zitat Keller, S., Sanderson, M. P., Stoeck, A., & Altevogt, P. (2006). Exosomes: from biogenesis and secretion to biological function. Immunology Letters, 107, 102–108.PubMed Keller, S., Sanderson, M. P., Stoeck, A., & Altevogt, P. (2006). Exosomes: from biogenesis and secretion to biological function. Immunology Letters, 107, 102–108.PubMed
32.
Zurück zum Zitat Bhatnagar, S., & Schorey, J. S. (2007). Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. The Journal of Biological Chemistry, 282, 25779–25789.PubMed Bhatnagar, S., & Schorey, J. S. (2007). Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. The Journal of Biological Chemistry, 282, 25779–25789.PubMed
33.
Zurück zum Zitat Bhatnagar, S., Shinagawa, K., Castellino, F. J., & Schorey, J. S. (2007). Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood, 110, 3234–3244.PubMed Bhatnagar, S., Shinagawa, K., Castellino, F. J., & Schorey, J. S. (2007). Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood, 110, 3234–3244.PubMed
34.
Zurück zum Zitat Lee, Y., El, A. S., & Wood, M. J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 21, R125–R134.PubMed Lee, Y., El, A. S., & Wood, M. J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 21, R125–R134.PubMed
35.
Zurück zum Zitat Fevrier, B., & Raposo, G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Current Opinion in Cell Biology, 16, 415–421.PubMed Fevrier, B., & Raposo, G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Current Opinion in Cell Biology, 16, 415–421.PubMed
36.
Zurück zum Zitat Cocucci, E., Racchetti, G., Podini, P., & Meldolesi, J. (2007). Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both. Traffic, 8, 742–757.PubMed Cocucci, E., Racchetti, G., Podini, P., & Meldolesi, J. (2007). Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both. Traffic, 8, 742–757.PubMed
37.
Zurück zum Zitat Cocucci, E., Racchetti, G., Rupnik, M., & Meldolesi, J. (2008). The regulated exocytosis of enlargeosomes is mediated by a SNARE machinery that includes VAMP4. Journal of Cell Science, 121, 2983–2991.PubMed Cocucci, E., Racchetti, G., Rupnik, M., & Meldolesi, J. (2008). The regulated exocytosis of enlargeosomes is mediated by a SNARE machinery that includes VAMP4. Journal of Cell Science, 121, 2983–2991.PubMed
38.
Zurück zum Zitat Cocucci, E., & Meldolesi, J. (2011). Ectosomes. Current Biology, 21, R940–R941.PubMed Cocucci, E., & Meldolesi, J. (2011). Ectosomes. Current Biology, 21, R940–R941.PubMed
39.
Zurück zum Zitat Sudhof, T. C. (2004). The synaptic vesicle cycle. Annual Review of Neuroscience, 27, 509–547.PubMed Sudhof, T. C. (2004). The synaptic vesicle cycle. Annual Review of Neuroscience, 27, 509–547.PubMed
40.
Zurück zum Zitat Sudhof, T. C., & Rothman, J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science, 323, 474–477.PubMed Sudhof, T. C., & Rothman, J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science, 323, 474–477.PubMed
41.
Zurück zum Zitat Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12, 19–30.PubMed Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12, 19–30.PubMed
42.
Zurück zum Zitat Bobrie, A., Krumeich, S., Reyal, F., Recchi, C., Moita, L. F., Seabra, M. C., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research, 72, 4920–4930.PubMed Bobrie, A., Krumeich, S., Reyal, F., Recchi, C., Moita, L. F., Seabra, M. C., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research, 72, 4920–4930.PubMed
43.
Zurück zum Zitat Hsu, C., Morohashi, Y., Yoshimura, S., Manrique-Hoyos, N., Jung, S., Lauterbach, M. A., et al. (2010). Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. The Journal of Cell Biology, 189, 223–232.PubMed Hsu, C., Morohashi, Y., Yoshimura, S., Manrique-Hoyos, N., Jung, S., Lauterbach, M. A., et al. (2010). Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. The Journal of Cell Biology, 189, 223–232.PubMed
44.
Zurück zum Zitat Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319, 1244–1247.PubMed Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319, 1244–1247.PubMed
45.
Zurück zum Zitat Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De, M. A., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry, 284, 34211–34222.PubMed Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De, M. A., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry, 284, 34211–34222.PubMed
46.
Zurück zum Zitat Shen, B., Fang, Y., Wu, N., & Gould, S. J. (2011). Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. The Journal of Biological Chemistry, 286, 44162–44176.PubMed Shen, B., Fang, Y., Wu, N., & Gould, S. J. (2011). Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. The Journal of Biological Chemistry, 286, 44162–44176.PubMed
47.
Zurück zum Zitat Poliakov, A., Spilman, M., Dokland, T., Amling, C. L., & Mobley, J. A. (2009). Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate, 69, 159–167.PubMed Poliakov, A., Spilman, M., Dokland, T., Amling, C. L., & Mobley, J. A. (2009). Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. The Prostate, 69, 159–167.PubMed
48.
Zurück zum Zitat Simons, M., & Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21, 575–581.PubMed Simons, M., & Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21, 575–581.PubMed
49.
Zurück zum Zitat Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.PubMed Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.PubMed
50.
Zurück zum Zitat Simpson, R. J., Lim, J. W., Moritz, R. L., & Mathivanan, S. (2009). Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics, 6, 267–283.PubMed Simpson, R. J., Lim, J. W., Moritz, R. L., & Mathivanan, S. (2009). Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics, 6, 267–283.PubMed
51.
Zurück zum Zitat Gross, J.C., Boutros, M. (2013). Secretion and extracellular space travel of Wnt proteins. Current Opinion in Genetics & Development (in press) Gross, J.C., Boutros, M. (2013). Secretion and extracellular space travel of Wnt proteins. Current Opinion in Genetics & Development (in press)
52.
Zurück zum Zitat Gross, J. C., Chaudhary, V., Bartscherer, K., & Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nature Cell Biology, 14, 1036–1045.PubMed Gross, J. C., Chaudhary, V., Bartscherer, K., & Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nature Cell Biology, 14, 1036–1045.PubMed
53.
Zurück zum Zitat Sheldon, H., Heikamp, E., Turley, H., Dragovic, R., Thomas, P., Oon, C. E., et al. (2010). New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood, 116, 2385–2394.PubMed Sheldon, H., Heikamp, E., Turley, H., Dragovic, R., Thomas, P., Oon, C. E., et al. (2010). New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood, 116, 2385–2394.PubMed
54.
Zurück zum Zitat Hasegawa, H., Thomas, H. J., Schooley, K., & Born, T. L. (2011). Native IL-32 is released from intestinal epithelial cells via a non-classical secretory pathway as a membrane-associated protein. Cytokine, 53, 74–83.PubMed Hasegawa, H., Thomas, H. J., Schooley, K., & Born, T. L. (2011). Native IL-32 is released from intestinal epithelial cells via a non-classical secretory pathway as a membrane-associated protein. Cytokine, 53, 74–83.PubMed
55.
Zurück zum Zitat Vidal, M., Sainte-Marie, J., Philippot, J. R., & Bienvenue, A. (1989). Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for "aminophospholipid translocase". Journal of Cellular Physiology, 140, 455–462.PubMed Vidal, M., Sainte-Marie, J., Philippot, J. R., & Bienvenue, A. (1989). Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for "aminophospholipid translocase". Journal of Cellular Physiology, 140, 455–462.PubMed
56.
Zurück zum Zitat Subra, C., Laulagnier, K., Perret, B., & Record, M. (2007). Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie, 89, 205–212.PubMed Subra, C., Laulagnier, K., Perret, B., & Record, M. (2007). Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie, 89, 205–212.PubMed
57.
Zurück zum Zitat Beloribi, S., Ristorcelli, E., Breuzard, G., Silvy, F., Bertrand-Michel, J., Beraud, E., et al. (2012). Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PloS One, 7, e47480.PubMed Beloribi, S., Ristorcelli, E., Breuzard, G., Silvy, F., Bertrand-Michel, J., Beraud, E., et al. (2012). Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PloS One, 7, e47480.PubMed
58.
Zurück zum Zitat Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J. F., et al. (2004). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. The Biochemical Journal, 380, 161–171.PubMed Laulagnier, K., Motta, C., Hamdi, S., Roy, S., Fauvelle, F., Pageaux, J. F., et al. (2004). Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. The Biochemical Journal, 380, 161–171.PubMed
59.
Zurück zum Zitat Yuyama, K., Sun, H., Mitsutake, S., & Igarashi, Y. (2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of Biological Chemistry, 287, 10977–10989.PubMed Yuyama, K., Sun, H., Mitsutake, S., & Igarashi, Y. (2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of Biological Chemistry, 287, 10977–10989.PubMed
60.
Zurück zum Zitat Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 81, 1171–1182.PubMed Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 81, 1171–1182.PubMed
61.
Zurück zum Zitat Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.PubMed Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.PubMed
62.
Zurück zum Zitat Corrado, C., Raimondo, S., Chiesi, A., Ciccia, F., De, L. G., & Alessandro, R. (2013). Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. International Journal of Molecular Sciences, 14, 5338–5366.PubMed Corrado, C., Raimondo, S., Chiesi, A., Ciccia, F., De, L. G., & Alessandro, R. (2013). Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. International Journal of Molecular Sciences, 14, 5338–5366.PubMed
63.
Zurück zum Zitat Mathivanan, S., Fahner, C. J., Reid, G. E., & Simpson, R. J. (2012). ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Research, 40, D1241–D1244.PubMed Mathivanan, S., Fahner, C. J., Reid, G. E., & Simpson, R. J. (2012). ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Research, 40, D1241–D1244.PubMed
64.
Zurück zum Zitat Mathivanan, S., & Simpson, R. J. (2009). ExoCarta: a compendium of exosomal proteins and RNA. Proteomics, 9, 4997–5000.PubMed Mathivanan, S., & Simpson, R. J. (2009). ExoCarta: a compendium of exosomal proteins and RNA. Proteomics, 9, 4997–5000.PubMed
65.
Zurück zum Zitat Geminard, C., De, G. A., & Vidal, M. (2002). Reticulocyte maturation: mitoptosis and exosome release. Biocell, 26, 205–215.PubMed Geminard, C., De, G. A., & Vidal, M. (2002). Reticulocyte maturation: mitoptosis and exosome release. Biocell, 26, 205–215.PubMed
66.
Zurück zum Zitat Robertson, C., Booth, S. A., Beniac, D. R., Coulthart, M. B., Booth, T. F., & McNicol, A. (2006). Cellular prion protein is released on exosomes from activated platelets. Blood, 107, 3907–3911.PubMed Robertson, C., Booth, S. A., Beniac, D. R., Coulthart, M. B., Booth, T. F., & McNicol, A. (2006). Cellular prion protein is released on exosomes from activated platelets. Blood, 107, 3907–3911.PubMed
67.
Zurück zum Zitat Quah, B., & O'Neill, H. C. (2000). Review: the application of dendritic cell-derived exosomes in tumour immunotherapy. Cancer Biotherapy and Radiopharmaceuticals, 15, 185–194.PubMed Quah, B., & O'Neill, H. C. (2000). Review: the application of dendritic cell-derived exosomes in tumour immunotherapy. Cancer Biotherapy and Radiopharmaceuticals, 15, 185–194.PubMed
68.
Zurück zum Zitat Lasser, C., Eldh, M., Lotvall, J. (2012). Isolation and characterization of RNA-containing exosomes. Journal of Visualized Experiments (59):e3037. Lasser, C., Eldh, M., Lotvall, J. (2012). Isolation and characterization of RNA-containing exosomes. Journal of Visualized Experiments (59):e3037.
69.
Zurück zum Zitat Gogolak, P., Rethi, B., Hajas, G., & Rajnavolgyi, E. (2003). Targeting dendritic cells for priming cellular immune responses. Journal of Molecular Recognition, 16, 299–317.PubMed Gogolak, P., Rethi, B., Hajas, G., & Rajnavolgyi, E. (2003). Targeting dendritic cells for priming cellular immune responses. Journal of Molecular Recognition, 16, 299–317.PubMed
70.
Zurück zum Zitat Gyorgy, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., et al. (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 68, 2667–2688.PubMed Gyorgy, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., et al. (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 68, 2667–2688.PubMed
71.
Zurück zum Zitat Vickers, K. C., & Remaley, A. T. (2012). Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology, 23, 91–97.PubMed Vickers, K. C., & Remaley, A. T. (2012). Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology, 23, 91–97.PubMed
72.
Zurück zum Zitat Jaiswal, R., Luk, F., Gong, J., Mathys, J. M., Grau, G. E., & Bebawy, M. (2012). Microparticle conferred microRNA profiles—implications in the transfer and dominance of cancer traits. Molecular Cancer, 11, 37.PubMed Jaiswal, R., Luk, F., Gong, J., Mathys, J. M., Grau, G. E., & Bebawy, M. (2012). Microparticle conferred microRNA profiles—implications in the transfer and dominance of cancer traits. Molecular Cancer, 11, 37.PubMed
73.
Zurück zum Zitat Gong, J., Jaiswal, R., Mathys, J. M., Combes, V., Grau, G. E., & Bebawy, M. (2012). Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 38, 226–234.PubMed Gong, J., Jaiswal, R., Mathys, J. M., Combes, V., Grau, G. E., & Bebawy, M. (2012). Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 38, 226–234.PubMed
74.
Zurück zum Zitat Gonzalez-Begne, M., Lu, B., Han, X., Hagen, F. K., Hand, A. R., Melvin, J. E., et al. (2009). Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). Journal of Proteome Research, 8, 1304–1314.PubMed Gonzalez-Begne, M., Lu, B., Han, X., Hagen, F. K., Hand, A. R., Melvin, J. E., et al. (2009). Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). Journal of Proteome Research, 8, 1304–1314.PubMed
75.
Zurück zum Zitat Akerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology, 11, 545–555.PubMed Akerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology, 11, 545–555.PubMed
76.
Zurück zum Zitat Akerfelt, M., Trouillet, D., Mezger, V., & Sistonen, L. (2007). Heat shock factors at a crossroad between stress and development. Annals of the New York Academy of Sciences, 1113, 15–27.PubMed Akerfelt, M., Trouillet, D., Mezger, V., & Sistonen, L. (2007). Heat shock factors at a crossroad between stress and development. Annals of the New York Academy of Sciences, 1113, 15–27.PubMed
77.
Zurück zum Zitat De, M. A. (1999). Heat shock proteins: facts, thoughts, and dreams. Shock, 11, 1–12. De, M. A. (1999). Heat shock proteins: facts, thoughts, and dreams. Shock, 11, 1–12.
78.
Zurück zum Zitat Bolhassani, A., & Rafati, S. (2013). Mini-chaperones: potential immuno-stimulators in vaccine design. Human Vaccines & Immunotherapeutics, 9, 153–161. Bolhassani, A., & Rafati, S. (2013). Mini-chaperones: potential immuno-stimulators in vaccine design. Human Vaccines & Immunotherapeutics, 9, 153–161.
79.
Zurück zum Zitat Bolhassani, A., & Rafati, S. (2008). Heat-shock proteins as powerful weapons in vaccine development. Expert Review of Vaccines, 7, 1185–1199.PubMed Bolhassani, A., & Rafati, S. (2008). Heat-shock proteins as powerful weapons in vaccine development. Expert Review of Vaccines, 7, 1185–1199.PubMed
80.
Zurück zum Zitat Mathew, A., Bell, A., & Johnstone, R. M. (1995). Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. The Biochemical Journal, 308(Pt 3), 823–830.PubMed Mathew, A., Bell, A., & Johnstone, R. M. (1995). Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. The Biochemical Journal, 308(Pt 3), 823–830.PubMed
81.
Zurück zum Zitat Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280, 23349–23355.PubMed Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280, 23349–23355.PubMed
82.
Zurück zum Zitat Clayton, A., Turkes, A., Navabi, H., Mason, M. D., & Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 118, 3631–3638.PubMed Clayton, A., Turkes, A., Navabi, H., Mason, M. D., & Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 118, 3631–3638.PubMed
83.
Zurück zum Zitat Lv, L. H., Wan, Y. L., Lin, Y., Zhang, W., Yang, M., Li, G. L., et al. (2012). Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. The Journal of Biological Chemistry, 287, 15874–15885.PubMed Lv, L. H., Wan, Y. L., Lin, Y., Zhang, W., Yang, M., Li, G. L., et al. (2012). Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. The Journal of Biological Chemistry, 287, 15874–15885.PubMed
84.
Zurück zum Zitat Cho, J. A., Lee, Y. S., Kim, S. H., Ko, J. K., & Kim, C. W. (2009). MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Letters, 275, 256–265.PubMed Cho, J. A., Lee, Y. S., Kim, S. H., Ko, J. K., & Kim, C. W. (2009). MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Letters, 275, 256–265.PubMed
85.
Zurück zum Zitat Mukhopadhyay, U. K., & Mak, A. S. (2009). p53: is the guardian of the genome also a suppressor of cell invasion? Cell Cycle, 8, 2481.PubMed Mukhopadhyay, U. K., & Mak, A. S. (2009). p53: is the guardian of the genome also a suppressor of cell invasion? Cell Cycle, 8, 2481.PubMed
86.
Zurück zum Zitat Muller, P. A., & Vousden, K. H. (2013). p53 mutations in cancer. Nature Cell Biology, 15, 2–8.PubMed Muller, P. A., & Vousden, K. H. (2013). p53 mutations in cancer. Nature Cell Biology, 15, 2–8.PubMed
87.
Zurück zum Zitat Wade, M., Li, Y. C., & Wahl, G. M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature Reviews. Cancer, 13, 83–96.PubMed Wade, M., Li, Y. C., & Wahl, G. M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature Reviews. Cancer, 13, 83–96.PubMed
88.
Zurück zum Zitat Azmi, A. S. (2011). Pharmaceutical reactivation of p53 pathways in cancer. Current Pharmaceutical Design, 17, 534–535.PubMed Azmi, A. S. (2011). Pharmaceutical reactivation of p53 pathways in cancer. Current Pharmaceutical Design, 17, 534–535.PubMed
89.
Zurück zum Zitat Yu, X., Harris, S. L., & Levine, A. J. (2006). The regulation of exosome secretion: a novel function of the p53 protein. Cancer Research, 66, 4795–4801.PubMed Yu, X., Harris, S. L., & Levine, A. J. (2006). The regulation of exosome secretion: a novel function of the p53 protein. Cancer Research, 66, 4795–4801.PubMed
90.
Zurück zum Zitat Yu, X., Riley, T., & Levine, A. J. (2009). The regulation of the endosomal compartment by p53 the tumor suppressor gene. The FEBS Journal, 276, 2201–2212.PubMed Yu, X., Riley, T., & Levine, A. J. (2009). The regulation of the endosomal compartment by p53 the tumor suppressor gene. The FEBS Journal, 276, 2201–2212.PubMed
91.
Zurück zum Zitat Lespagnol, A., Duflaut, D., Beekman, C., Blanc, L., Fiucci, G., Marine, J. C., et al. (2008). Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death and Differentiation, 15, 1723–1733.PubMed Lespagnol, A., Duflaut, D., Beekman, C., Blanc, L., Fiucci, G., Marine, J. C., et al. (2008). Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death and Differentiation, 15, 1723–1733.PubMed
92.
Zurück zum Zitat Honegger, A., Leitz, J., Bulkescher, J., Hoppe-Seyler, K., Hoppe-Seyler, F. (2013). Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and amounts of extracellular microvesicles released from HPV-positive cancer cells. International Journal of Cancer (in press) Honegger, A., Leitz, J., Bulkescher, J., Hoppe-Seyler, K., Hoppe-Seyler, F. (2013). Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and amounts of extracellular microvesicles released from HPV-positive cancer cells. International Journal of Cancer (in press)
93.
Zurück zum Zitat Hupalowska, A., & Miaczynska, M. (2012). The new faces of endocytosis in signaling. Traffic, 13, 9–18.PubMed Hupalowska, A., & Miaczynska, M. (2012). The new faces of endocytosis in signaling. Traffic, 13, 9–18.PubMed
94.
Zurück zum Zitat Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13, 283–296.PubMed Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13, 283–296.PubMed
95.
Zurück zum Zitat Wrighton, K. H. (2011). Tumour suppressors: role of nuclear PTEN revealed. Nature Reviews. Cancer, 11, 154.PubMed Wrighton, K. H. (2011). Tumour suppressors: role of nuclear PTEN revealed. Nature Reviews. Cancer, 11, 154.PubMed
96.
Zurück zum Zitat Vanhaesebroeck, B., Stephens, L., & Hawkins, P. (2012). PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology, 13, 195–203.PubMed Vanhaesebroeck, B., Stephens, L., & Hawkins, P. (2012). PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology, 13, 195–203.PubMed
97.
Zurück zum Zitat Putz, U., Howitt, J., Doan, A., Goh, C. P., Low, L. H., Silke, J., et al. (2012). The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Science Signaling, 5, ra70.PubMed Putz, U., Howitt, J., Doan, A., Goh, C. P., Low, L. H., Silke, J., et al. (2012). The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Science Signaling, 5, ra70.PubMed
98.
Zurück zum Zitat Leslie, N. R. (2012). PTEN: an intercellular peacekeeper? Science Signaling, 5, e50. Leslie, N. R. (2012). PTEN: an intercellular peacekeeper? Science Signaling, 5, e50.
99.
Zurück zum Zitat Ristorcelli, E., Beraud, E., Mathieu, S., Lombardo, D., & Verine, A. (2009). Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. International Journal of Cancer, 125, 1016–1026. Ristorcelli, E., Beraud, E., Mathieu, S., Lombardo, D., & Verine, A. (2009). Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. International Journal of Cancer, 125, 1016–1026.
100.
Zurück zum Zitat Cho, K. R., & Vogelstein, B. (1992). Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. Journal of Cellular Biochemistry. Supplement, 16G, 137–141.PubMed Cho, K. R., & Vogelstein, B. (1992). Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. Journal of Cellular Biochemistry. Supplement, 16G, 137–141.PubMed
101.
Zurück zum Zitat Aust, D. E., Terdiman, J. P., Willenbucher, R. F., Chang, C. G., Molinaro-Clark, A., Baretton, G. B., et al. (2002). The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer, 94, 1421–1427.PubMed Aust, D. E., Terdiman, J. P., Willenbucher, R. F., Chang, C. G., Molinaro-Clark, A., Baretton, G. B., et al. (2002). The APC/beta-catenin pathway in ulcerative colitis-related colorectal carcinomas: a mutational analysis. Cancer, 94, 1421–1427.PubMed
102.
Zurück zum Zitat Lim, J. W., Mathias, R. A., Kapp, E. A., Layton, M. J., Faux, M. C., Burgess, A. W., et al. (2012). Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis, 33, 1873–1880.PubMed Lim, J. W., Mathias, R. A., Kapp, E. A., Layton, M. J., Faux, M. C., Burgess, A. W., et al. (2012). Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis, 33, 1873–1880.PubMed
103.
Zurück zum Zitat Seton-Rogers, S. (2013). Microenvironment: making connections. Nature Reviews. Cancer, 13, 222–223. Seton-Rogers, S. (2013). Microenvironment: making connections. Nature Reviews. Cancer, 13, 222–223.
104.
Zurück zum Zitat He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMed He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMed
105.
Zurück zum Zitat Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMed Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMed
106.
Zurück zum Zitat Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.PubMed Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.PubMed
107.
Zurück zum Zitat Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.PubMed Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.PubMed
108.
Zurück zum Zitat Stoorvogel, W. (2012). Functional transfer of microRNA by exosomes. Blood, 119, 646–648.PubMed Stoorvogel, W. (2012). Functional transfer of microRNA by exosomes. Blood, 119, 646–648.PubMed
109.
Zurück zum Zitat Gallo, A., Tandon, M., Alevizos, I., & Illei, G. G. (2012). The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PloS One, 7, e30679.PubMed Gallo, A., Tandon, M., Alevizos, I., & Illei, G. G. (2012). The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PloS One, 7, e30679.PubMed
110.
Zurück zum Zitat Russo, F., Di, B. S., Nigita, G., Macca, V., Lagana, A., Giugno, R., et al. (2012). miRandola: extracellular circulating microRNAs database. PloS One, 7, e47786.PubMed Russo, F., Di, B. S., Nigita, G., Macca, V., Lagana, A., Giugno, R., et al. (2012). miRandola: extracellular circulating microRNAs database. PloS One, 7, e47786.PubMed
111.
Zurück zum Zitat Boon, R. A., & Vickers, K. C. (2013). Intercellular transport of microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 186–192.PubMed Boon, R. A., & Vickers, K. C. (2013). Intercellular transport of microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 186–192.PubMed
112.
Zurück zum Zitat Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.PubMed Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.PubMed
113.
Zurück zum Zitat Lotvall, J., & Valadi, H. (2007). Cell to cell signalling via exosomes through esRNA. Cell Adhesion & Migration, 1, 156–158. Lotvall, J., & Valadi, H. (2007). Cell to cell signalling via exosomes through esRNA. Cell Adhesion & Migration, 1, 156–158.
114.
Zurück zum Zitat Koga, Y., Yasunaga, M., Moriya, Y., Akasu, T., Fujita, S., Yamamoto, S., et al. (2011). Exosome can prevent RNase from degrading microRNA in feces. Journal of Gastrointestinal Oncology, 2, 215–222.PubMed Koga, Y., Yasunaga, M., Moriya, Y., Akasu, T., Fujita, S., Yamamoto, S., et al. (2011). Exosome can prevent RNase from degrading microRNA in feces. Journal of Gastrointestinal Oncology, 2, 215–222.PubMed
115.
Zurück zum Zitat Chen, T. S., Lai, R. C., Lee, M. M., Choo, A. B., Lee, C. N., & Lim, S. K. (2010). Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research, 38, 215–224.PubMed Chen, T. S., Lai, R. C., Lee, M. M., Choo, A. B., Lee, C. N., & Lim, S. K. (2010). Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Research, 38, 215–224.PubMed
116.
Zurück zum Zitat Flynt, A. S., Greimann, J. C., Chung, W. J., Lima, C. D., & Lai, E. C. (2010). MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Molecular Cell, 38, 900–907.PubMed Flynt, A. S., Greimann, J. C., Chung, W. J., Lima, C. D., & Lai, E. C. (2010). MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Molecular Cell, 38, 900–907.PubMed
117.
Zurück zum Zitat Rabinowits, G., Gercel-Taylor, C., Day, J. M., Taylor, D. D., & Kloecker, G. H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clinical Lung Cancer, 10, 42–46.PubMed Rabinowits, G., Gercel-Taylor, C., Day, J. M., Taylor, D. D., & Kloecker, G. H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clinical Lung Cancer, 10, 42–46.PubMed
118.
Zurück zum Zitat Mizoguchi, M., Guan, Y., Yoshimoto, K., Hata, N., Amano, T., Nakamizo, A., et al. (2013). Clinical implications of microRNAs in human glioblastoma. Frontiers in Oncology, 3, 19.PubMed Mizoguchi, M., Guan, Y., Yoshimoto, K., Hata, N., Amano, T., Nakamizo, A., et al. (2013). Clinical implications of microRNAs in human glioblastoma. Frontiers in Oncology, 3, 19.PubMed
119.
Zurück zum Zitat Tanaka, Y., Kamohara, H., Kinoshita, K., Kurashige, J., Ishimoto, T., Iwatsuki, M., et al. (2013). Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer, 119, 1159–1167.PubMed Tanaka, Y., Kamohara, H., Kinoshita, K., Kurashige, J., Ishimoto, T., Iwatsuki, M., et al. (2013). Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer, 119, 1159–1167.PubMed
120.
Zurück zum Zitat Hessvik, N. P., Sandvig, K., & Llorente, A. (2013). Exosomal miRNAs as biomarkers for prostate cancer. Frontiers in Genetics, 4, 36.PubMed Hessvik, N. P., Sandvig, K., & Llorente, A. (2013). Exosomal miRNAs as biomarkers for prostate cancer. Frontiers in Genetics, 4, 36.PubMed
121.
Zurück zum Zitat Hessvik, N. P., Phuyal, S., Brech, A., Sandvig, K., & Llorente, A. (2012). Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1819, 1154–1163.PubMed Hessvik, N. P., Phuyal, S., Brech, A., Sandvig, K., & Llorente, A. (2012). Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1819, 1154–1163.PubMed
122.
Zurück zum Zitat da Silveira, J. C., Veeramachaneni, D. N., Winger, Q. A., Carnevale, E. M., & Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biology of Reproduction, 86, 71.PubMed da Silveira, J. C., Veeramachaneni, D. N., Winger, Q. A., Carnevale, E. M., & Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biology of Reproduction, 86, 71.PubMed
123.
Zurück zum Zitat Lasser, C. (2012). Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opinion on Biological Therapy, 12(Suppl 1), S189–S197.PubMed Lasser, C. (2012). Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opinion on Biological Therapy, 12(Suppl 1), S189–S197.PubMed
124.
Zurück zum Zitat Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., et al. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56, 293–304.PubMed Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., et al. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 56, 293–304.PubMed
125.
Zurück zum Zitat Alvarez, M. L., Khosroheidari, M., Kanchi, R. R., & DiStefano, J. K. (2012). Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 82, 1024–1032.PubMed Alvarez, M. L., Khosroheidari, M., Kanchi, R. R., & DiStefano, J. K. (2012). Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 82, 1024–1032.PubMed
126.
Zurück zum Zitat Umezu, T., Ohyashiki, K., Kuroda, M., Ohyashiki, J.H. (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene (in press) Umezu, T., Ohyashiki, K., Kuroda, M., Ohyashiki, J.H. (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene (in press)
127.
Zurück zum Zitat Bobrie, A., Colombo, M., Raposo, G., & Thery, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic, 12, 1659–1668.PubMed Bobrie, A., Colombo, M., Raposo, G., & Thery, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic, 12, 1659–1668.PubMed
128.
Zurück zum Zitat Pegtel, D. M., van de Garde, M. D. B., & Middeldorp, J. M. (2011). Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochimica et Biophysica Acta, 1809, 715–721.PubMed Pegtel, D. M., van de Garde, M. D. B., & Middeldorp, J. M. (2011). Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochimica et Biophysica Acta, 1809, 715–721.PubMed
129.
Zurück zum Zitat Palma, J., Yaddanapudi, S. C., Pigati, L., Havens, M. A., Jeong, S., Weiner, G. A., et al. (2012). MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Research, 40, 9125–9138.PubMed Palma, J., Yaddanapudi, S. C., Pigati, L., Havens, M. A., Jeong, S., Weiner, G. A., et al. (2012). MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Research, 40, 9125–9138.PubMed
130.
Zurück zum Zitat Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.PubMed Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.PubMed
131.
Zurück zum Zitat Bullerdiek, J., & Flor, I. (2012). Exosome-delivered microRNAs of "chromosome 19 microRNA cluster" as immunomodulators in pregnancy and tumorigenesis. Molecular Cytogenetics, 5, 27.PubMed Bullerdiek, J., & Flor, I. (2012). Exosome-delivered microRNAs of "chromosome 19 microRNA cluster" as immunomodulators in pregnancy and tumorigenesis. Molecular Cytogenetics, 5, 27.PubMed
132.
Zurück zum Zitat Meads, M. B., Gatenby, R. A., & Dalton, W. S. (2009). Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature Reviews. Cancer, 9, 665–674.PubMed Meads, M. B., Gatenby, R. A., & Dalton, W. S. (2009). Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature Reviews. Cancer, 9, 665–674.PubMed
133.
Zurück zum Zitat Shain, K. H., Landowski, T. H., & Dalton, W. S. (2000). The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Current Opinion in Oncology, 12, 557–563.PubMed Shain, K. H., Landowski, T. H., & Dalton, W. S. (2000). The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Current Opinion in Oncology, 12, 557–563.PubMed
134.
Zurück zum Zitat Li, H., Yang, B.B. (2013). Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacologica Sinica (in press) Li, H., Yang, B.B. (2013). Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacologica Sinica (in press)
135.
Zurück zum Zitat Holzel, M., Bovier, A., & Tuting, T. (2013). Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nature Reviews. Cancer, 13, 365–376.PubMed Holzel, M., Bovier, A., & Tuting, T. (2013). Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nature Reviews. Cancer, 13, 365–376.PubMed
136.
Zurück zum Zitat McMillin, D. W., Negri, J. M., & Mitsiades, C. S. (2013). The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews Drug Discovery, 12, 217–228.PubMed McMillin, D. W., Negri, J. M., & Mitsiades, C. S. (2013). The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews Drug Discovery, 12, 217–228.PubMed
137.
Zurück zum Zitat Khan, S., Aspe, J. R., Asumen, M. G., Almaguel, F., Odumosu, O., cevedo-Martinez, S., et al. (2009). Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. British Journal of Cancer, 100, 1073–1086.PubMed Khan, S., Aspe, J. R., Asumen, M. G., Almaguel, F., Odumosu, O., cevedo-Martinez, S., et al. (2009). Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. British Journal of Cancer, 100, 1073–1086.PubMed
138.
Zurück zum Zitat Pilzer, D., Gasser, O., Moskovich, O., Schifferli, J. A., & Fishelson, Z. (2005). Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Seminars in Immunopathology, 27, 375–387.PubMed Pilzer, D., Gasser, O., Moskovich, O., Schifferli, J. A., & Fishelson, Z. (2005). Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Seminars in Immunopathology, 27, 375–387.PubMed
139.
Zurück zum Zitat Pilzer, D., & Fishelson, Z. (2005). Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. International Immunology, 17, 1239–1248.PubMed Pilzer, D., & Fishelson, Z. (2005). Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. International Immunology, 17, 1239–1248.PubMed
140.
Zurück zum Zitat Zhang, H. G., Liu, C., Su, K., Yu, S., Zhang, L., Zhang, S., et al. (2006). A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. The Journal of Immunology, 176, 7385–7393.PubMed Zhang, H. G., Liu, C., Su, K., Yu, S., Zhang, L., Zhang, S., et al. (2006). A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. The Journal of Immunology, 176, 7385–7393.PubMed
141.
Zurück zum Zitat Bodey, B., Bodey, B., Jr., & Kaiser, H. E. (1997). Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo, 11, 351–370.PubMed Bodey, B., Bodey, B., Jr., & Kaiser, H. E. (1997). Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo, 11, 351–370.PubMed
142.
Zurück zum Zitat Aung, T., Chapuy, B., Vogel, D., Wenzel, D., Oppermann, M., Lahmann, M., et al. (2011). Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proceedings of the National Academy of Sciences of the United States of America, 108, 15336–15341.PubMed Aung, T., Chapuy, B., Vogel, D., Wenzel, D., Oppermann, M., Lahmann, M., et al. (2011). Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proceedings of the National Academy of Sciences of the United States of America, 108, 15336–15341.PubMed
143.
Zurück zum Zitat Hupfeld, T., Chapuy, B., Schrader, V., Beutler, M., Veltkamp, C., Koch, R., et al. (2013). Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistance. British Journal of Haematology, 161, 204–213.PubMed Hupfeld, T., Chapuy, B., Schrader, V., Beutler, M., Veltkamp, C., Koch, R., et al. (2013). Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistance. British Journal of Haematology, 161, 204–213.PubMed
144.
Zurück zum Zitat Safaei, R., Larson, B. J., Cheng, T. C., Gibson, M. A., Otani, S., Naerdemann, W., et al. (2005). Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Molecular Cancer Therapeutics, 4, 1595–1604.PubMed Safaei, R., Larson, B. J., Cheng, T. C., Gibson, M. A., Otani, S., Naerdemann, W., et al. (2005). Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Molecular Cancer Therapeutics, 4, 1595–1604.PubMed
145.
Zurück zum Zitat Yin, J., Yan, X., Yao, X., Zhang, Y., Shan, Y., Mao, N., et al. (2012). Secretion of annexin A3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. Journal of Cellular and Molecular Medicine, 16, 337–348.PubMed Yin, J., Yan, X., Yao, X., Zhang, Y., Shan, Y., Mao, N., et al. (2012). Secretion of annexin A3 from ovarian cancer cells and its association with platinum resistance in ovarian cancer patients. Journal of Cellular and Molecular Medicine, 16, 337–348.PubMed
146.
Zurück zum Zitat Ciravolo, V., Huber, V., Ghedini, G. C., Venturelli, E., Bianchi, F., Campiglio, M., et al. (2012). Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. Journal of Cellular Physiology, 227, 658–667.PubMed Ciravolo, V., Huber, V., Ghedini, G. C., Venturelli, E., Bianchi, F., Campiglio, M., et al. (2012). Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. Journal of Cellular Physiology, 227, 658–667.PubMed
147.
Zurück zum Zitat Hosseini-Beheshti, E., Pham, S., Adomat, H., Li, N., & Tomlinson Guns, E. S. (2012). Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Molecular & Cellular Proteomics, 11, 863–885. Hosseini-Beheshti, E., Pham, S., Adomat, H., Li, N., & Tomlinson Guns, E. S. (2012). Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Molecular & Cellular Proteomics, 11, 863–885.
148.
Zurück zum Zitat Bard, M. P., Hegmans, J. P., Hemmes, A., Luider, T. M., Willemsen, R., Severijnen, L. A., et al. (2004). Proteomic analysis of exosomes isolated from human malignant pleural effusions. American Journal of Respiratory Cell and Molecular Biology, 31, 114–121.PubMed Bard, M. P., Hegmans, J. P., Hemmes, A., Luider, T. M., Willemsen, R., Severijnen, L. A., et al. (2004). Proteomic analysis of exosomes isolated from human malignant pleural effusions. American Journal of Respiratory Cell and Molecular Biology, 31, 114–121.PubMed
149.
Zurück zum Zitat Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., et al. (2004). Proteomic analysis of exosomes secreted by human mesothelioma cells. The American Journal of Pathology, 164, 1807–1815.PubMed Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., et al. (2004). Proteomic analysis of exosomes secreted by human mesothelioma cells. The American Journal of Pathology, 164, 1807–1815.PubMed
150.
Zurück zum Zitat Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4, 4019–4031.PubMed Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4, 4019–4031.PubMed
151.
Zurück zum Zitat Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews. Cancer, 9, 274–284.PubMed Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews. Cancer, 9, 274–284.PubMed
152.
Zurück zum Zitat Nguyen, D. X., & Massague, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8, 341–352.PubMed Nguyen, D. X., & Massague, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8, 341–352.PubMed
153.
Zurück zum Zitat Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.PubMed Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.PubMed
154.
Zurück zum Zitat Hood, J. L., Pan, H., Lanza, G. M., & Wickline, S. A. (2009). Paracrine induction of endothelium by tumor exosomes. Laboratory Investigation, 89, 1317–1328.PubMed Hood, J. L., Pan, H., Lanza, G. M., & Wickline, S. A. (2009). Paracrine induction of endothelium by tumor exosomes. Laboratory Investigation, 89, 1317–1328.PubMed
155.
Zurück zum Zitat Hood, J. L., San, R. S., & Wickline, S. A. (2011). Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Research, 71, 3792–3801.PubMed Hood, J. L., San, R. S., & Wickline, S. A. (2011). Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Research, 71, 3792–3801.PubMed
156.
Zurück zum Zitat Rana, S., Malinowska, K., & Zoller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 15, 281–295.PubMed Rana, S., Malinowska, K., & Zoller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 15, 281–295.PubMed
157.
Zurück zum Zitat Di, V. D., Morello, M., Dudley, A. C., Schow, P. W., Adam, R. M., Morley, S., et al. (2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology, 181, 1573–1584. Di, V. D., Morello, M., Dudley, A. C., Schow, P. W., Adam, R. M., Morley, S., et al. (2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology, 181, 1573–1584.
158.
Zurück zum Zitat Bao, B., Azmi, A. S., Ali, S., Ahmad, A., Li, Y., Banerjee, S., et al. (2012). The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica et Biophysica Acta, 1826, 272–296.PubMed Bao, B., Azmi, A. S., Ali, S., Ahmad, A., Li, Y., Banerjee, S., et al. (2012). The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica et Biophysica Acta, 1826, 272–296.PubMed
159.
Zurück zum Zitat Casazza, A., Di, C. G., Wenes, M., Finisguerra, V., Deschoemaeker, S., and Mazzone, M. (2013) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene. Casazza, A., Di, C. G., Wenes, M., Finisguerra, V., Deschoemaeker, S., and Mazzone, M. (2013) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene.
160.
Zurück zum Zitat Salnikov, A. V., Liu, L., Platen, M., Gladkich, J., Salnikova, O., Ryschich, E., et al. (2012). Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential. PloS One, 7, e46391.PubMed Salnikov, A. V., Liu, L., Platen, M., Gladkich, J., Salnikova, O., Ryschich, E., et al. (2012). Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential. PloS One, 7, e46391.PubMed
161.
Zurück zum Zitat Chaturvedi, P., Gilkes, D. M., Wong, C. C., Luo, W., Zhang, H., Wei, H., et al. (2013). Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. The Journal of Clinical Investigation, 123, 189–205.PubMed Chaturvedi, P., Gilkes, D. M., Wong, C. C., Luo, W., Zhang, H., Wei, H., et al. (2013). Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. The Journal of Clinical Investigation, 123, 189–205.PubMed
162.
Zurück zum Zitat Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer, 11, 393–410.PubMed Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer, 11, 393–410.PubMed
163.
Zurück zum Zitat Rapisarda, A., & Melillo, G. (2012). Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nature Reviews. Clinical Oncology, 9, 378–390.PubMed Rapisarda, A., & Melillo, G. (2012). Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nature Reviews. Clinical Oncology, 9, 378–390.PubMed
164.
Zurück zum Zitat King, H. W., Michael, M. Z., & Gleadle, J. M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 12, 421.PubMed King, H. W., Michael, M. Z., & Gleadle, J. M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 12, 421.PubMed
165.
Zurück zum Zitat Kucharzewska, P., Christianson, H.C., Welch, J.E., Svensson, K.J., Fredlund, E., Ringner, M., et al. (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proceedings of the National Academy of Sciences of the United States of America (in press) Kucharzewska, P., Christianson, H.C., Welch, J.E., Svensson, K.J., Fredlund, E., Ringner, M., et al. (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proceedings of the National Academy of Sciences of the United States of America (in press)
166.
Zurück zum Zitat Borges, F. T., Melo, S. A., Ozdemir, B. C., Kato, N., Revuelta, I., Miller, C. A., et al. (2013). TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. Journal of the American Society of Nephrology, 24, 385–392.PubMed Borges, F. T., Melo, S. A., Ozdemir, B. C., Kato, N., Revuelta, I., Miller, C. A., et al. (2013). TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. Journal of the American Society of Nephrology, 24, 385–392.PubMed
167.
Zurück zum Zitat Park, J. E., Tan, H. S., Datta, A., Lai, R. C., Zhang, H., Meng, W., et al. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9, 1085–1099. Park, J. E., Tan, H. S., Datta, A., Lai, R. C., Zhang, H., Meng, W., et al. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9, 1085–1099.
168.
Zurück zum Zitat Svensson, K. J., Kucharzewska, P., Christianson, H. C., Skold, S., Lofstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 13147–13152.PubMed Svensson, K. J., Kucharzewska, P., Christianson, H. C., Skold, S., Lofstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 13147–13152.PubMed
169.
Zurück zum Zitat Svensson, K. J., & Belting, M. (2013). Role of extracellular membrane vesicles in intercellular communication of the tumour microenvironment. Biochemical Society Transactions, 41, 273–276.PubMed Svensson, K. J., & Belting, M. (2013). Role of extracellular membrane vesicles in intercellular communication of the tumour microenvironment. Biochemical Society Transactions, 41, 273–276.PubMed
170.
Zurück zum Zitat Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed
171.
Zurück zum Zitat Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMed Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMed
172.
Zurück zum Zitat Masuda, S., & Izpisua Belmonte, J. C. (2013). The microenvironment and resistance to personalized cancer therapy. Nature Reviews. Clinical Oncology, 10. Masuda, S., & Izpisua Belmonte, J. C. (2013). The microenvironment and resistance to personalized cancer therapy. Nature Reviews. Clinical Oncology, 10.
173.
Zurück zum Zitat Garnier, D., Magnus, N., Lee, T. H., Bentley, V., Meehan, B., Milsom, C., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry, 287, 43565–43572.PubMed Garnier, D., Magnus, N., Lee, T. H., Bentley, V., Meehan, B., Milsom, C., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry, 287, 43565–43572.PubMed
174.
Zurück zum Zitat Roccaro, A.M., Sacco, A., Maiso, P., Azab, A.K., Tai, Y.T., Reagan, M., et al. (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation (in press) Roccaro, A.M., Sacco, A., Maiso, P., Azab, A.K., Tai, Y.T., Reagan, M., et al. (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation (in press)
175.
Zurück zum Zitat Katsuno, Y., Lamouille, S., & Derynck, R. (2013). TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Current Opinion in Oncology, 25, 76–84.PubMed Katsuno, Y., Lamouille, S., & Derynck, R. (2013). TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Current Opinion in Oncology, 25, 76–84.PubMed
176.
Zurück zum Zitat Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19, 156–172.PubMed Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19, 156–172.PubMed
177.
Zurück zum Zitat Lamouille, S., Connolly, E., Smyth, J. W., Akhurst, R. J., & Derynck, R. (2012). TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. Journal of Cell Science, 125, 1259–1273.PubMed Lamouille, S., Connolly, E., Smyth, J. W., Akhurst, R. J., & Derynck, R. (2012). TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. Journal of Cell Science, 125, 1259–1273.PubMed
178.
Zurück zum Zitat Cho, J. A., Park, H., Lim, E. H., & Lee, K. W. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology, 40, 130–138.PubMed Cho, J. A., Park, H., Lim, E. H., & Lee, K. W. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology, 40, 130–138.PubMed
179.
Zurück zum Zitat Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.PubMed Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.PubMed
180.
Zurück zum Zitat Cheng, C. F., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., et al. (2008). Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Molecular and Cellular Biology, 28, 3344–3358.PubMed Cheng, C. F., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., et al. (2008). Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Molecular and Cellular Biology, 28, 3344–3358.PubMed
181.
Zurück zum Zitat Clayton, A., Mitchell, J. P., Court, J., Linnane, S., Mason, M. D., & Tabi, Z. (2008). Human tumor-derived exosomes down-modulate NKG2D expression. The Journal of Immunology, 180, 7249–7258.PubMed Clayton, A., Mitchell, J. P., Court, J., Linnane, S., Mason, M. D., & Tabi, Z. (2008). Human tumor-derived exosomes down-modulate NKG2D expression. The Journal of Immunology, 180, 7249–7258.PubMed
182.
Zurück zum Zitat Cho, J. A., Park, H., Lim, E. H., Kim, K. H., Choi, J. S., Lee, J. H., et al. (2011). Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecologic Oncology, 123, 379–386.PubMed Cho, J. A., Park, H., Lim, E. H., Kim, K. H., Choi, J. S., Lee, J. H., et al. (2011). Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecologic Oncology, 123, 379–386.PubMed
183.
Zurück zum Zitat Klaus, A., & Birchmeier, W. (2008). Wnt signalling and its impact on development and cancer. Nature Reviews. Cancer, 8, 387–398.PubMed Klaus, A., & Birchmeier, W. (2008). Wnt signalling and its impact on development and cancer. Nature Reviews. Cancer, 8, 387–398.PubMed
184.
Zurück zum Zitat Anastas, J. N., & Moon, R. T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature Reviews. Cancer, 13, 11–26.PubMed Anastas, J. N., & Moon, R. T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature Reviews. Cancer, 13, 11–26.PubMed
185.
Zurück zum Zitat Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development (Cambridge, England), 121, 3529–3537. Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development (Cambridge, England), 121, 3529–3537.
186.
Zurück zum Zitat Morin, P. J. (1999). beta-catenin signaling and cancer. BioEssays, 21, 1021–1030.PubMed Morin, P. J. (1999). beta-catenin signaling and cancer. BioEssays, 21, 1021–1030.PubMed
187.
Zurück zum Zitat Korkut, C., Ataman, B., Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139, 393–404.PubMed Korkut, C., Ataman, B., Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139, 393–404.PubMed
188.
Zurück zum Zitat Koles, K., Nunnari, J., Korkut, C., Barria, R., Brewer, C., Li, Y., et al. (2012). Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. The Journal of Biological Chemistry, 287, 16820–16834.PubMed Koles, K., Nunnari, J., Korkut, C., Barria, R., Brewer, C., Li, Y., et al. (2012). Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. The Journal of Biological Chemistry, 287, 16820–16834.PubMed
189.
Zurück zum Zitat Chairoungdua, A., Smith, D. L., Pochard, P., Hull, M., & Caplan, M. J. (2010). Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. The Journal of Cell Biology, 190, 1079–1091.PubMed Chairoungdua, A., Smith, D. L., Pochard, P., Hull, M., & Caplan, M. J. (2010). Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. The Journal of Cell Biology, 190, 1079–1091.PubMed
190.
Zurück zum Zitat Li, D., Ren, Y. N., Yang, J., Yang, Y. M., Li, C. Y., Xie, R. F., et al. (2011). A preliminary study on the influence of human plasma exosomes-like vesicles on macrophage Wnt5A-Ca(2)+ pathway. Zhonghua Xue Ye Xue Za Zhi, 32, 404–407.PubMed Li, D., Ren, Y. N., Yang, J., Yang, Y. M., Li, C. Y., Xie, R. F., et al. (2011). A preliminary study on the influence of human plasma exosomes-like vesicles on macrophage Wnt5A-Ca(2)+ pathway. Zhonghua Xue Ye Xue Za Zhi, 32, 404–407.PubMed
191.
Zurück zum Zitat Hooper, C., Sainz-Fuertes, R., Lynham, S., Hye, A., Killick, R., Warley, A., et al. (2012). Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neuroscience, 13, 144.PubMed Hooper, C., Sainz-Fuertes, R., Lynham, S., Hye, A., Killick, R., Warley, A., et al. (2012). Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neuroscience, 13, 144.PubMed
192.
Zurück zum Zitat Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151, 1542–1556.PubMed Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151, 1542–1556.PubMed
193.
Zurück zum Zitat Stumpf, W. E. (2005). Drug localization and targeting with receptor microscopic autoradiography. Journal of Pharmacological and Toxicological Methods, 51, 25–40.PubMed Stumpf, W. E. (2005). Drug localization and targeting with receptor microscopic autoradiography. Journal of Pharmacological and Toxicological Methods, 51, 25–40.PubMed
194.
Zurück zum Zitat Jones, P. M., & George, A. M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cellular and Molecular Life Sciences, 61, 682–699.PubMed Jones, P. M., & George, A. M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cellular and Molecular Life Sciences, 61, 682–699.PubMed
195.
Zurück zum Zitat Lee, C. H. (2010). Reversing agents for ATP-binding cassette drug transporters. Methods in Molecular Biology, 596, 325–340.PubMed Lee, C. H. (2010). Reversing agents for ATP-binding cassette drug transporters. Methods in Molecular Biology, 596, 325–340.PubMed
196.
Zurück zum Zitat Corcoran, C., Rani, S., O'Brien, K., O'Neill, A., Prencipe, M., Sheikh, R., et al. (2012). Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PloS One, 7, e50999.PubMed Corcoran, C., Rani, S., O'Brien, K., O'Neill, A., Prencipe, M., Sheikh, R., et al. (2012). Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PloS One, 7, e50999.PubMed
197.
Zurück zum Zitat Shedden, K., Xie, X. T., Chandaroy, P., Chang, Y. T., & Rosania, G. R. (2003). Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Research, 63, 4331–4337.PubMed Shedden, K., Xie, X. T., Chandaroy, P., Chang, Y. T., & Rosania, G. R. (2003). Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Research, 63, 4331–4337.PubMed
198.
Zurück zum Zitat Kooijmans, S. A., Vader, P., van Dommelen, S. M., van Solinge, W. W., & Schiffelers, R. M. (2012). Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525–1541.PubMed Kooijmans, S. A., Vader, P., van Dommelen, S. M., van Solinge, W. W., & Schiffelers, R. M. (2012). Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525–1541.PubMed
199.
Zurück zum Zitat Harding, C. V., Heuser, J. E., & Stahl, P. D. (2013). Exosomes: looking back three decades and into the future. The Journal of Cell Biology, 200, 367–371.PubMed Harding, C. V., Heuser, J. E., & Stahl, P. D. (2013). Exosomes: looking back three decades and into the future. The Journal of Cell Biology, 200, 367–371.PubMed
200.
Zurück zum Zitat Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine, 4, 594–600.PubMed Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine, 4, 594–600.PubMed
201.
Zurück zum Zitat Zitvogel, L., Fernandez, N., Lozier, A., Wolfers, J., Regnault, A., Raposo, G., et al. (1999). Dendritic cells or their exosomes are effective biotherapies of cancer. European Journal of Cancer, 35(Suppl 3), S36–S38.PubMed Zitvogel, L., Fernandez, N., Lozier, A., Wolfers, J., Regnault, A., Raposo, G., et al. (1999). Dendritic cells or their exosomes are effective biotherapies of cancer. European Journal of Cancer, 35(Suppl 3), S36–S38.PubMed
202.
Zurück zum Zitat Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., et al. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology, 147, 599–610.PubMed Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., et al. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology, 147, 599–610.PubMed
203.
Zurück zum Zitat Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., et al. (2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 7, 297–303.PubMed Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., et al. (2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 7, 297–303.PubMed
204.
Zurück zum Zitat Lamparski, H. G., Metha-Damani, A., Yao, J. Y., Patel, S., Hsu, D. H., Ruegg, C., et al. (2002). Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods, 270, 211–226.PubMed Lamparski, H. G., Metha-Damani, A., Yao, J. Y., Patel, S., Hsu, D. H., Ruegg, C., et al. (2002). Production and characterization of clinical grade exosomes derived from dendritic cells. Journal of Immunological Methods, 270, 211–226.PubMed
205.
Zurück zum Zitat Chaput, N., Schartz, N. E., Andre, F., Taieb, J., Novault, S., Bonnaventure, P., et al. (2004). Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. The Journal of Immunology, 172, 2137–2146.PubMed Chaput, N., Schartz, N. E., Andre, F., Taieb, J., Novault, S., Bonnaventure, P., et al. (2004). Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. The Journal of Immunology, 172, 2137–2146.PubMed
206.
Zurück zum Zitat Taieb, J., Chaput, N., Schartz, N., Roux, S., Novault, S., Menard, C., et al. (2006). Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. The Journal of Immunology, 176, 2722–2729.PubMed Taieb, J., Chaput, N., Schartz, N., Roux, S., Novault, S., Menard, C., et al. (2006). Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. The Journal of Immunology, 176, 2722–2729.PubMed
207.
Zurück zum Zitat Tian, X., Zhu, M., & Nie, G. (2013). How can nanotechnology help membrane vesicle-based cancer immunotherapy development? Human Vaccines & Immunotherapeutics, 9, 222–225. Tian, X., Zhu, M., & Nie, G. (2013). How can nanotechnology help membrane vesicle-based cancer immunotherapy development? Human Vaccines & Immunotherapeutics, 9, 222–225.
208.
Zurück zum Zitat Hood, J. L., & Wickline, S. A. (2012). A systematic approach to exosome-based translational nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4, 458–467.PubMed Hood, J. L., & Wickline, S. A. (2012). A systematic approach to exosome-based translational nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4, 458–467.PubMed
209.
Zurück zum Zitat Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., et al. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces. B, Biointerfaces, 87, 146–150.PubMed Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., et al. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces. B, Biointerfaces, 87, 146–150.PubMed
210.
Zurück zum Zitat Marchesano, V., Hernandez, Y., Salvenmoser, W., Ambrosone, A., Tino, A., Hobmayer, B., et al. (2013). Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS Nano, 7, 2431–2442.PubMed Marchesano, V., Hernandez, Y., Salvenmoser, W., Ambrosone, A., Tino, A., Hobmayer, B., et al. (2013). Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS Nano, 7, 2431–2442.PubMed
211.
Zurück zum Zitat Tan, A., De La, P. H., & Seifalian, A. M. (2010). The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine, 5, 889–900.PubMed Tan, A., De La, P. H., & Seifalian, A. M. (2010). The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine, 5, 889–900.PubMed
212.
Zurück zum Zitat Ristorcelli, E., Beraud, E., Verrando, P., Villard, C., Lafitte, D., Sbarra, V., et al. (2008). Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. The FASEB Journal, 22, 3358–3369. Ristorcelli, E., Beraud, E., Verrando, P., Villard, C., Lafitte, D., Sbarra, V., et al. (2008). Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. The FASEB Journal, 22, 3358–3369.
213.
Zurück zum Zitat Lakhal, S., & Wood, M. J. (2011). Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays, 33, 737–741.PubMed Lakhal, S., & Wood, M. J. (2011). Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays, 33, 737–741.PubMed
214.
Zurück zum Zitat varez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345. varez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345.
215.
Zurück zum Zitat Zhu, M., Tian, X., Song, X., Li, Y., Tian, Y., Zhao, Y., et al. (2012). Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small, 8, 2841–2848.PubMed Zhu, M., Tian, X., Song, X., Li, Y., Tian, Y., Zhao, Y., et al. (2012). Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small, 8, 2841–2848.PubMed
216.
Zurück zum Zitat Halliwell, B. (2007). Dietary polyphenols: good, bad, or indifferent for your health? Cardiovascular Research, 73, 341–347.PubMed Halliwell, B. (2007). Dietary polyphenols: good, bad, or indifferent for your health? Cardiovascular Research, 73, 341–347.PubMed
217.
Zurück zum Zitat Raffoul, J. J., Kucuk, O., Sarkar, F. H., & Hillman, G. G. (2012). Dietary agents in cancer chemoprevention and treatment. Journal of Oncology, 2012, 749310.PubMed Raffoul, J. J., Kucuk, O., Sarkar, F. H., & Hillman, G. G. (2012). Dietary agents in cancer chemoprevention and treatment. Journal of Oncology, 2012, 749310.PubMed
218.
Zurück zum Zitat Sarkar, F. H., & Li, Y. (2009). Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treatment Reviews, 35, 597–607.PubMed Sarkar, F. H., & Li, Y. (2009). Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treatment Reviews, 35, 597–607.PubMed
219.
Zurück zum Zitat Asher, G. N., & Spelman, K. (2013). Clinical utility of curcumin extract. Alternative Therapies in Health and Medicine, 19, 20–22.PubMed Asher, G. N., & Spelman, K. (2013). Clinical utility of curcumin extract. Alternative Therapies in Health and Medicine, 19, 20–22.PubMed
220.
Zurück zum Zitat Ahmad, I. U., Forman, J. D., Sarkar, F. H., Hillman, G. G., Heath, E., Vaishampayan, U., et al. (2010). Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutrition and Cancer, 62, 996–1000.PubMed Ahmad, I. U., Forman, J. D., Sarkar, F. H., Hillman, G. G., Heath, E., Vaishampayan, U., et al. (2010). Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutrition and Cancer, 62, 996–1000.PubMed
221.
Zurück zum Zitat Heath, E. I., Heilbrun, L. K., Li, J., Vaishampayan, U., Harper, F., Pemberton, P., et al. (2010). A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. American Journal of Translational Research, 2, 402–411.PubMed Heath, E. I., Heilbrun, L. K., Li, J., Vaishampayan, U., Harper, F., Pemberton, P., et al. (2010). A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. American Journal of Translational Research, 2, 402–411.PubMed
222.
Zurück zum Zitat Ahmad, A., Sakr, W. A., & Rahman, K. M. (2012). Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience (Elite Edition), 4, 410–425. Ahmad, A., Sakr, W. A., & Rahman, K. M. (2012). Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience (Elite Edition), 4, 410–425.
223.
Zurück zum Zitat Zhang, H. G., Kim, H., Liu, C., Yu, S., Wang, J., Grizzle, W. E., et al. (2007). Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochimica et Biophysica Acta, 1773, 1116–1123.PubMed Zhang, H. G., Kim, H., Liu, C., Yu, S., Wang, J., Grizzle, W. E., et al. (2007). Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochimica et Biophysica Acta, 1773, 1116–1123.PubMed
224.
Zurück zum Zitat Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., et al. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19, 1769–1779.PubMed Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., et al. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19, 1769–1779.PubMed
225.
Zurück zum Zitat Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M. P., Novault, S., et al. (2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. Journal of Translational Medicine, 3, 10.PubMed Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M. P., Novault, S., et al. (2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. Journal of Translational Medicine, 3, 10.PubMed
226.
Zurück zum Zitat Marleau, A. M., Chen, C. S., Joyce, J. A., & Tullis, R. H. (2012). Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine, 10, 134.PubMed Marleau, A. M., Chen, C. S., Joyce, J. A., & Tullis, R. H. (2012). Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine, 10, 134.PubMed
227.
Zurück zum Zitat Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598. Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.
228.
Zurück zum Zitat Ogawa, Y., Taketomi, Y., Murakami, M., Tsujimoto, M., & Yanoshita, R. (2013). Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biological and Pharmaceutical Bulletin, 36, 66–75.PubMed Ogawa, Y., Taketomi, Y., Murakami, M., Tsujimoto, M., & Yanoshita, R. (2013). Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biological and Pharmaceutical Bulletin, 36, 66–75.PubMed
Metadaten
Titel
Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review
verfasst von
Asfar S. Azmi
Bin Bao
Fazlul H. Sarkar
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2013
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9441-9

Weitere Artikel der Ausgabe 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Zur Ausgabe

EditorialNotes

Preface

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.