Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2021

17.06.2021

Metformin: review of epidemiology and mechanisms of action in pancreatic cancer

verfasst von: Guido Eibl, Enrique Rozengurt

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Literatur
4.
Zurück zum Zitat Albini, A., DeCensi, A., Cavalli, F., & Costa, A. (2016). Cancer prevention and interception: A new era for chemopreventive approaches. Clinical Cancer Research, 22(17), 4322–4327.CrossRefPubMed Albini, A., DeCensi, A., Cavalli, F., & Costa, A. (2016). Cancer prevention and interception: A new era for chemopreventive approaches. Clinical Cancer Research, 22(17), 4322–4327.CrossRefPubMed
5.
6.
Zurück zum Zitat Maitra, A., Fukushima, N., Takaori, K., & Hruban, R. H. (2005). Precursors to invasive pancreatic cancer. Advances in Anatomic Pathology, 12(2), 81–91.CrossRefPubMed Maitra, A., Fukushima, N., Takaori, K., & Hruban, R. H. (2005). Precursors to invasive pancreatic cancer. Advances in Anatomic Pathology, 12(2), 81–91.CrossRefPubMed
8.
Zurück zum Zitat Hingorani, S. R., Petricoin, E. F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., Ross, S., Conrads, T. P., Veenstra, T. D., Hitt, B. A., Kawaguchi, Y., Johann, D., Liotta, L. A., Crawford, H. C., Putt, M. E., Jacks, T., Wright, C. V., Hruban, R. H., Lowy, A. M., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.CrossRefPubMed Hingorani, S. R., Petricoin, E. F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., Ross, S., Conrads, T. P., Veenstra, T. D., Hitt, B. A., Kawaguchi, Y., Johann, D., Liotta, L. A., Crawford, H. C., Putt, M. E., Jacks, T., Wright, C. V., Hruban, R. H., Lowy, A. M., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.CrossRefPubMed
9.
11.
Zurück zum Zitat Collins, M. A., Bednar, F., Zhang, Y., Brisset, J.-C., Galbán, S., Galbán, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & Pasca di Magliano, M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122(2), 639–653. https://doi.org/10.1172/JCI59227CrossRefPubMedPubMedCentral Collins, M. A., Bednar, F., Zhang, Y., Brisset, J.-C., Galbán, S., Galbán, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & Pasca di Magliano, M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122(2), 639–653. https://​doi.​org/​10.​1172/​JCI59227CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Arslan, A. A., Helzlsouer, K. J., Kooperberg, C., Shu, X.-O., Steplowski, E., Bueno-de-Mesquita, H. B., Fuchs, C. S., Gross, M. D., Jacobs, E. J., LaCroix, A. Z., Petersen, G. M., Stolzenberg-Solomon, R. Z., Zheng, W., Albanes, D., Amundadottir, L., Bamlet, W. R., Barricarte, A., Bingham, S. A., Boeing, H., et al. (2010). Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the pancreatic cancer cohort consortium (PanScan). Archives of Internal Medicine, 170(9), 791–802. https://doi.org/10.1001/archinternmed.2010.63CrossRefPubMedPubMedCentral Arslan, A. A., Helzlsouer, K. J., Kooperberg, C., Shu, X.-O., Steplowski, E., Bueno-de-Mesquita, H. B., Fuchs, C. S., Gross, M. D., Jacobs, E. J., LaCroix, A. Z., Petersen, G. M., Stolzenberg-Solomon, R. Z., Zheng, W., Albanes, D., Amundadottir, L., Bamlet, W. R., Barricarte, A., Bingham, S. A., Boeing, H., et al. (2010). Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the pancreatic cancer cohort consortium (PanScan). Archives of Internal Medicine, 170(9), 791–802. https://​doi.​org/​10.​1001/​archinternmed.​2010.​63CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., & Yee, D. (2010). Diabetes and cancer: A consensus report. CA: A Cancer Journal for Clinicians, 60, 207–221. Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., & Yee, D. (2010). Diabetes and cancer: A consensus report. CA: A Cancer Journal for Clinicians, 60, 207–221.
16.
Zurück zum Zitat Bethea, T. N., Kitahara, C. M., Sonderman, J., Patel, A. V., Harvey, C., Knutsen, S. F., Park, Y., Park, S. Y., Fraser, G. E., Jacobs, E. J., Purdue, M. P., Stolzenberg-Solomon, R. Z., Gillanders, E. M., Blot, W. J., Palmer, J. R., & Kolonel, L. N. (2014). A pooled analysis of body mass index and pancreatic cancer mortality in African Americans. Cancer Epidemiology, Biomarkers & Prevention, 23(10), 2119–2125. https://doi.org/10.1158/1055-9965.EPI-14-0422CrossRef Bethea, T. N., Kitahara, C. M., Sonderman, J., Patel, A. V., Harvey, C., Knutsen, S. F., Park, Y., Park, S. Y., Fraser, G. E., Jacobs, E. J., Purdue, M. P., Stolzenberg-Solomon, R. Z., Gillanders, E. M., Blot, W. J., Palmer, J. R., & Kolonel, L. N. (2014). A pooled analysis of body mass index and pancreatic cancer mortality in African Americans. Cancer Epidemiology, Biomarkers & Prevention, 23(10), 2119–2125. https://​doi.​org/​10.​1158/​1055-9965.​EPI-14-0422CrossRef
18.
Zurück zum Zitat Dawson, D. W., Hertzer, K., Moro, A., Donald, G., Chang, H. H., Go, V. L., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Li, G., Hines, O. J., Rozengurt, E., & Eibl, G. E. (2013). High Fat, high calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prevention Research (Philadelphia, Pa.), 6, 1064–1073.CrossRef Dawson, D. W., Hertzer, K., Moro, A., Donald, G., Chang, H. H., Go, V. L., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Li, G., Hines, O. J., Rozengurt, E., & Eibl, G. E. (2013). High Fat, high calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prevention Research (Philadelphia, Pa.), 6, 1064–1073.CrossRef
19.
Zurück zum Zitat Chang, H.-H., Moro, A., Takakura, K., Su, H.-Y., Mo, A., Nakanishi, M., Waldron, R. T., French, S. W., Dawson, D. W., Hines, O. J., Li, G., Go, V. L. W., Sinnett-Smith, J., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Duff, M. O., Rosenberg, D. W., Rozengurt, E., et al. (2017). Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE, 12(9), e0184455. https://doi.org/10.1371/journal.pone.0184455CrossRefPubMedPubMedCentral Chang, H.-H., Moro, A., Takakura, K., Su, H.-Y., Mo, A., Nakanishi, M., Waldron, R. T., French, S. W., Dawson, D. W., Hines, O. J., Li, G., Go, V. L. W., Sinnett-Smith, J., Pandol, S. J., Lugea, A., Gukovskaya, A. S., Duff, M. O., Rosenberg, D. W., Rozengurt, E., et al. (2017). Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE, 12(9), e0184455. https://​doi.​org/​10.​1371/​journal.​pone.​0184455CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lashinger, L. M., Harrison, L. M., Rasmussen, A. J., Logsdon, C. D., Fischer, S. M., McArthur, M. J., & Hursting, S. D. (2013). Dietary energy balance modulation of Kras- and Ink4a/Arf+/–driven pancreatic cancer: The role of insulin-like growth factor-I. Cancer Prevention Research (Philadelphia, Pa.), 6(10), 1046–1055. https://doi.org/10.1158/1940-6207.CAPR-13-0185CrossRef Lashinger, L. M., Harrison, L. M., Rasmussen, A. J., Logsdon, C. D., Fischer, S. M., McArthur, M. J., & Hursting, S. D. (2013). Dietary energy balance modulation of Kras- and Ink4a/Arf+/–driven pancreatic cancer: The role of insulin-like growth factor-I. Cancer Prevention Research (Philadelphia, Pa.), 6(10), 1046–1055. https://​doi.​org/​10.​1158/​1940-6207.​CAPR-13-0185CrossRef
21.
Zurück zum Zitat Philip, B., Roland, C. L., Daniluk, J., Liu, Y., Chatterjee, D., Gomez, S. B., Ji, B., Huang, H., Wang, H., Fleming, J. B., Logsdon, C. D., & Cruz-Monserrate, Z. (2013). A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology, 145(6), 1449–1458. https://doi.org/10.1053/j.gastro.2013.08.018CrossRefPubMed Philip, B., Roland, C. L., Daniluk, J., Liu, Y., Chatterjee, D., Gomez, S. B., Ji, B., Huang, H., Wang, H., Fleming, J. B., Logsdon, C. D., & Cruz-Monserrate, Z. (2013). A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology, 145(6), 1449–1458. https://​doi.​org/​10.​1053/​j.​gastro.​2013.​08.​018CrossRefPubMed
22.
Zurück zum Zitat Chung, K. M., Singh, J., Lawres, L., Dorans, K. J., Garcia, C., Burkhardt, D. B., Robbins, R., Bhutkar, A., Cardone, R., Zhao, X., Babic, A., Vayrynen, S. A., Dias Costa, A., Nowak, J. A., Chang, D. T., Dunne, R. F., Hezel, A. F., Koong, A. C., Wilhelm, J. J., et al. (2020). Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell, 181(4), 832-847.e818. https://doi.org/10.1016/j.cell.2020.03.062CrossRefPubMedPubMedCentral Chung, K. M., Singh, J., Lawres, L., Dorans, K. J., Garcia, C., Burkhardt, D. B., Robbins, R., Bhutkar, A., Cardone, R., Zhao, X., Babic, A., Vayrynen, S. A., Dias Costa, A., Nowak, J. A., Chang, D. T., Dunne, R. F., Hezel, A. F., Koong, A. C., Wilhelm, J. J., et al. (2020). Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell, 181(4), 832-847.e818. https://​doi.​org/​10.​1016/​j.​cell.​2020.​03.​062CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Flier, J. S. (2004). Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116(2), 337–350.CrossRefPubMed Flier, J. S. (2004). Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116(2), 337–350.CrossRefPubMed
25.
26.
Zurück zum Zitat Muoio, D. M., & Newgard, C. B. (2006). Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry, 75, 367–401.CrossRefPubMed Muoio, D. M., & Newgard, C. B. (2006). Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry, 75, 367–401.CrossRefPubMed
27.
Zurück zum Zitat Abbruzzese, J. L., Andersen, D. K., Borrebaeck, C. A. K., Chari, S. T., Costello, E., Cruz-Monserrate, Z., Eibl, G., Engleman, E. G., Fisher, W. E., Habtezion, A., Kim, S. K., Korc, M., Logsdon, C., Lyssiotis, C. A., Pandol, S. J., Rustgi, A., Wolfe, B. M., Zheng, L., & Powers, A. C. (2018). The interface of pancreatic cancer with diabetes, obesity, and inflammation: Research gaps and opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas, 47(5), 516–525. https://doi.org/10.1097/MPA.0000000000001037CrossRefPubMedPubMedCentral Abbruzzese, J. L., Andersen, D. K., Borrebaeck, C. A. K., Chari, S. T., Costello, E., Cruz-Monserrate, Z., Eibl, G., Engleman, E. G., Fisher, W. E., Habtezion, A., Kim, S. K., Korc, M., Logsdon, C., Lyssiotis, C. A., Pandol, S. J., Rustgi, A., Wolfe, B. M., Zheng, L., & Powers, A. C. (2018). The interface of pancreatic cancer with diabetes, obesity, and inflammation: Research gaps and opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas, 47(5), 516–525. https://​doi.​org/​10.​1097/​MPA.​0000000000001037​CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Eibl, G., Cruz-Monserrate, Z., Korc, M., Petrov, M. S., Goodarzi, M. O., Fisher, W. E., Habtezion, A., Lugea, A., Pandol, S. J., Hart, P. A., Andersen, D. K., & Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic, Cancer. (2018). Diabetes mellitus and obesity as risk factors for pancreatic cancer. Journal of the Academy of Nutrition and Dietetics, 118(4), 555–567. https://doi.org/10.1016/j.jand.2017.07.005CrossRefPubMed Eibl, G., Cruz-Monserrate, Z., Korc, M., Petrov, M. S., Goodarzi, M. O., Fisher, W. E., Habtezion, A., Lugea, A., Pandol, S. J., Hart, P. A., Andersen, D. K., & Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic, Cancer. (2018). Diabetes mellitus and obesity as risk factors for pancreatic cancer. Journal of the Academy of Nutrition and Dietetics, 118(4), 555–567. https://​doi.​org/​10.​1016/​j.​jand.​2017.​07.​005CrossRefPubMed
32.
Zurück zum Zitat Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., & Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation, 120(7), 2355–2369. https://doi.org/10.1172/jci40671CrossRefPubMedPubMedCentral Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., & Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation, 120(7), 2355–2369. https://​doi.​org/​10.​1172/​jci40671CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat de Jong, R. G., Burden, A. M., de Kort, S., van Herk-Sukel, M. P., Vissers, P. A., Janssen, P. K., Haak, H. R., Masclee, A. A., de Vries, F., & Janssen-Heijnen, M. L. (2017). No decreased risk of gastrointestinal cancers in users of metformin in the netherlands; a time-varying analysis of metformin exposure. Cancer Prevention Research (Philadelphia, Pa.), 10(5), 290–297. https://doi.org/10.1158/1940-6207.CAPR-16-0277CrossRef de Jong, R. G., Burden, A. M., de Kort, S., van Herk-Sukel, M. P., Vissers, P. A., Janssen, P. K., Haak, H. R., Masclee, A. A., de Vries, F., & Janssen-Heijnen, M. L. (2017). No decreased risk of gastrointestinal cancers in users of metformin in the netherlands; a time-varying analysis of metformin exposure. Cancer Prevention Research (Philadelphia, Pa.), 10(5), 290–297. https://​doi.​org/​10.​1158/​1940-6207.​CAPR-16-0277CrossRef
42.
Zurück zum Zitat Jang, W. I., Kim, M. S., Kang, S. H., Jo, A. J., Kim, Y. J., Tchoe, H. J., Park, C. M., Kim, H. J., Choi, J. A., Choi, H. J., Paik, E. K., Seo, Y. S., Yoo, H. J., Kang, J. K., Han, C. J., Kim, Y. J., Kim, S. B., & Ko, M. J. (2017). Association between metformin use and mortality in patients with type 2 diabetes mellitus and localized resectable pancreatic cancer: a nationwide population-based study in korea. Oncotarget, 8(6), 9587–9596. https://doi.org/10.18632/oncotarget.14525CrossRefPubMed Jang, W. I., Kim, M. S., Kang, S. H., Jo, A. J., Kim, Y. J., Tchoe, H. J., Park, C. M., Kim, H. J., Choi, J. A., Choi, H. J., Paik, E. K., Seo, Y. S., Yoo, H. J., Kang, J. K., Han, C. J., Kim, Y. J., Kim, S. B., & Ko, M. J. (2017). Association between metformin use and mortality in patients with type 2 diabetes mellitus and localized resectable pancreatic cancer: a nationwide population-based study in korea. Oncotarget, 8(6), 9587–9596. https://​doi.​org/​10.​18632/​oncotarget.​14525CrossRefPubMed
44.
46.
47.
Zurück zum Zitat Yoo, D., Kim, N., Hwang, D. W., Song, K. B., Lee, J. H., Lee, W., Kwon, J., Park, Y., Hong, S., Lee, J. W., Hwang, K., Shin, D., Tak, E., & Kim, S. C. (2020). Association between metformin use and clinical outcomes following pancreaticoduodenectomy in patients with type 2 diabetes and pancreatic ductal adenocarcinoma. Journal of Clinical Medicine, 9(6), E1953. https://doi.org/10.3390/jcm9061953CrossRefPubMed Yoo, D., Kim, N., Hwang, D. W., Song, K. B., Lee, J. H., Lee, W., Kwon, J., Park, Y., Hong, S., Lee, J. W., Hwang, K., Shin, D., Tak, E., & Kim, S. C. (2020). Association between metformin use and clinical outcomes following pancreaticoduodenectomy in patients with type 2 diabetes and pancreatic ductal adenocarcinoma. Journal of Clinical Medicine, 9(6), E1953. https://​doi.​org/​10.​3390/​jcm9061953CrossRefPubMed
50.
Zurück zum Zitat Kim, J., Bae, Y. J., Lee, J. W., Kim, Y. S., Kim, Y., You, H. S., Kim, H. S., Choi, E. A., Han, Y. E., & Kang, H. T. (2021). Metformin use in cancer survivors with diabetes reduces all-cause mortality, based on the Korean National Health Insurance Service between 2002 and 2015. Medicine (Baltimore), 100(11), e25045. https://doi.org/10.1097/MD.0000000000025045CrossRef Kim, J., Bae, Y. J., Lee, J. W., Kim, Y. S., Kim, Y., You, H. S., Kim, H. S., Choi, E. A., Han, Y. E., & Kang, H. T. (2021). Metformin use in cancer survivors with diabetes reduces all-cause mortality, based on the Korean National Health Insurance Service between 2002 and 2015. Medicine (Baltimore), 100(11), e25045. https://​doi.​org/​10.​1097/​MD.​0000000000025045​CrossRef
56.
Zurück zum Zitat Kato, K., Iwama, H., Yamashita, T., Kobayashi, K., Fujihara, S., Fujimori, T., Kamada, H., Kobara, H., & Masaki, T. (2016). The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin. Oncology Reports, 35(3), 1582–1592. https://doi.org/10.3892/or.2015.4496CrossRefPubMed Kato, K., Iwama, H., Yamashita, T., Kobayashi, K., Fujihara, S., Fujimori, T., Kamada, H., Kobara, H., & Masaki, T. (2016). The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin. Oncology Reports, 35(3), 1582–1592. https://​doi.​org/​10.​3892/​or.​2015.​4496CrossRefPubMed
66.
Zurück zum Zitat Chang, H. H., Moro, A., Chou, C. E. N., Dawson, D. W., French, S., Schmidt, A. I., Sinnett-Smith, J., Hao, F., Hines, O. J., Eibl, G., & Rozengurt, E. (2018). Metformin decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity in the conditional KrasG12D mouse model. Science and Reports, 8(1), 5899. https://doi.org/10.1038/s41598-018-24337-8CrossRef Chang, H. H., Moro, A., Chou, C. E. N., Dawson, D. W., French, S., Schmidt, A. I., Sinnett-Smith, J., Hao, F., Hines, O. J., Eibl, G., & Rozengurt, E. (2018). Metformin decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity in the conditional KrasG12D mouse model. Science and Reports, 8(1), 5899. https://​doi.​org/​10.​1038/​s41598-018-24337-8CrossRef
67.
73.
Zurück zum Zitat Coll, A. P., Chen, M., Taskar, P., Rimmington, D., Patel, S., Tadross, J. A., Cimino, I., Yang, M., Welsh, P., Virtue, S., Goldspink, D. A., Miedzybrodzka, E. L., Konopka, A. R., Esponda, R. R., Huang, J. T., Tung, Y. C. L., Rodriguez-Cuenca, S., Tomaz, R. A., Harding, H. P., et al. (2020). GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 578(7795), 444–448. https://doi.org/10.1038/s41586-019-1911-yCrossRefPubMed Coll, A. P., Chen, M., Taskar, P., Rimmington, D., Patel, S., Tadross, J. A., Cimino, I., Yang, M., Welsh, P., Virtue, S., Goldspink, D. A., Miedzybrodzka, E. L., Konopka, A. R., Esponda, R. R., Huang, J. T., Tung, Y. C. L., Rodriguez-Cuenca, S., Tomaz, R. A., Harding, H. P., et al. (2020). GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 578(7795), 444–448. https://​doi.​org/​10.​1038/​s41586-019-1911-yCrossRefPubMed
77.
Zurück zum Zitat Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y., & Bost, F. (2008). The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 27(25), 3576–3586. https://doi.org/10.1038/sj.onc.1211024CrossRefPubMed Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y., & Bost, F. (2008). The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 27(25), 3576–3586. https://​doi.​org/​10.​1038/​sj.​onc.​1211024CrossRefPubMed
81.
Zurück zum Zitat Bao, B., Wang, Z., Ali, S., Ahmad, A., Azmi, A. S., Sarkar, S. H., Banerjee, S., Kong, D., Li, Y., Thakur, S., & Sarkar, F. H. (2012). Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 5(3), 355–364. https://doi.org/10.1158/1940-6207.CAPR-11-0299CrossRef Bao, B., Wang, Z., Ali, S., Ahmad, A., Azmi, A. S., Sarkar, S. H., Banerjee, S., Kong, D., Li, Y., Thakur, S., & Sarkar, F. H. (2012). Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 5(3), 355–364. https://​doi.​org/​10.​1158/​1940-6207.​CAPR-11-0299CrossRef
82.
Zurück zum Zitat Nair, V., Sreevalsan, S., Basha, R., Abdelrahim, M., Abudayyeh, A., Rodrigues Hoffman, A., & Safe, S. (2014). Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: Role of specificity protein (Sp) transcription factors. Journal of Biological Chemistry, 289(40), 27692–27701. https://doi.org/10.1074/jbc.M114.592576CrossRefPubMedPubMedCentral Nair, V., Sreevalsan, S., Basha, R., Abdelrahim, M., Abudayyeh, A., Rodrigues Hoffman, A., & Safe, S. (2014). Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: Role of specificity protein (Sp) transcription factors. Journal of Biological Chemistry, 289(40), 27692–27701. https://​doi.​org/​10.​1074/​jbc.​M114.​592576CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251–262.CrossRefPubMedPubMedCentral Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251–262.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews Molecular Cell Biology, 7(2), 85–96.CrossRefPubMed Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews Molecular Cell Biology, 7(2), 85–96.CrossRefPubMed
98.
100.
Zurück zum Zitat Um, S. H., D’Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393–402.CrossRefPubMed Um, S. H., D’Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393–402.CrossRefPubMed
101.
Zurück zum Zitat Ali, S. M., & Sabatini, D. M. (2005). Structure of S6 kinase 1 determines whether Raptor-mTOR or Rictor-mTOR phosphorylates its hydrophobic motif site. Journal of Biological Chemistry, 280, 19445–19448.CrossRefPubMed Ali, S. M., & Sabatini, D. M. (2005). Structure of S6 kinase 1 determines whether Raptor-mTOR or Rictor-mTOR phosphorylates its hydrophobic motif site. Journal of Biological Chemistry, 280, 19445–19448.CrossRefPubMed
102.
Zurück zum Zitat Long, X., Muller, F., & Avruch, J. (2004). TOR action in mammalian cells and in Caenorhabditis elegans. Current Topics in Microbiology and Immunology, 279, 115–138.PubMed Long, X., Muller, F., & Avruch, J. (2004). TOR action in mammalian cells and in Caenorhabditis elegans. Current Topics in Microbiology and Immunology, 279, 115–138.PubMed
103.
Zurück zum Zitat Armengol, G., Rojo, F., Castellvi, J., Iglesias, C., Cuatrecasas, M., Pons, B., Baselga, J., & Ramon y Cajal, S. . (2007). 4E-binding protein 1: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Research, 67(16), 7551–7555.CrossRefPubMed Armengol, G., Rojo, F., Castellvi, J., Iglesias, C., Cuatrecasas, M., Pons, B., Baselga, J., & Ramon y Cajal, S. . (2007). 4E-binding protein 1: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Research, 67(16), 7551–7555.CrossRefPubMed
106.
Zurück zum Zitat Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968. https://doi.org/10.1016/j.cell.2006.06.055CrossRefPubMed Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968. https://​doi.​org/​10.​1016/​j.​cell.​2006.​06.​055CrossRefPubMed
108.
113.
Zurück zum Zitat Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N., & Huang, L. (2014). Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A, 111(1), E89-98. https://doi.org/10.1073/pnas.1319190110CrossRefPubMed Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N., & Huang, L. (2014). Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A, 111(1), E89-98. https://​doi.​org/​10.​1073/​pnas.​1319190110CrossRefPubMed
119.
Zurück zum Zitat Zhang, W., Nandakumar, N., Shi, Y., Manzano, M., Smith, A., Graham, G., Gupta, S., Vietsch, E. E., Laughlin, S. Z., Wadhwa, M., Chetram, M., Joshi, M., Wang, F., Kallakury, B., Toretsky, J., Wellstein, A., & Yi, C. (2014). Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Science Signaling, 7(324), ra42. https://doi.org/10.1126/scisignal.2005049CrossRefPubMedPubMedCentral Zhang, W., Nandakumar, N., Shi, Y., Manzano, M., Smith, A., Graham, G., Gupta, S., Vietsch, E. E., Laughlin, S. Z., Wadhwa, M., Chetram, M., Joshi, M., Wang, F., Kallakury, B., Toretsky, J., Wellstein, A., & Yi, C. (2014). Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Science Signaling, 7(324), ra42. https://​doi.​org/​10.​1126/​scisignal.​2005049CrossRefPubMedPubMedCentral
121.
Zurück zum Zitat Tu, B., Yao, J., Ferri-Borgogno, S., Zhao, J., Chen, S., Wang, Q., Yan, L., Zhou, X., Zhu, C., Bang, S., Chang, Q., Bristow, C. A., Kang, Y., Zheng, H., Wang, H., Fleming, J. B., Kim, M., Heffernan, T. P., Draetta, G. F., et al. (2019). YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight, 4(21), e130811. https://doi.org/10.1172/jci.insight.130811CrossRefPubMedCentral Tu, B., Yao, J., Ferri-Borgogno, S., Zhao, J., Chen, S., Wang, Q., Yan, L., Zhou, X., Zhu, C., Bang, S., Chang, Q., Bristow, C. A., Kang, Y., Zheng, H., Wang, H., Fleming, J. B., Kim, M., Heffernan, T. P., Draetta, G. F., et al. (2019). YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight, 4(21), e130811. https://​doi.​org/​10.​1172/​jci.​insight.​130811CrossRefPubMedCentral
125.
Zurück zum Zitat Morvaridi, S., Dhall, D., Greene, M. I., Pandol, S. J., & Wang, Q. (2015). Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Science and Reports, 5, 16759. https://doi.org/10.1038/srep16759CrossRef Morvaridi, S., Dhall, D., Greene, M. I., Pandol, S. J., & Wang, Q. (2015). Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Science and Reports, 5, 16759. https://​doi.​org/​10.​1038/​srep16759CrossRef
127.
Zurück zum Zitat Mueller, S., Engleitner, T., Maresch, R., Zukowska, M., Lange, S., Kaltenbacher, T., Konukiewitz, B., Ollinger, R., Zwiebel, M., Strong, A., Yen, H. Y., Banerjee, R., Louzada, S., Fu, B., Seidler, B., Gotzfried, J., Schuck, K., Hassan, Z., Arbeiter, A., et al. (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 554(7690), 62–68. https://doi.org/10.1038/nature25459CrossRefPubMedPubMedCentral Mueller, S., Engleitner, T., Maresch, R., Zukowska, M., Lange, S., Kaltenbacher, T., Konukiewitz, B., Ollinger, R., Zwiebel, M., Strong, A., Yen, H. Y., Banerjee, R., Louzada, S., Fu, B., Seidler, B., Gotzfried, J., Schuck, K., Hassan, Z., Arbeiter, A., et al. (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 554(7690), 62–68. https://​doi.​org/​10.​1038/​nature25459CrossRefPubMedPubMedCentral
128.
130.
Zurück zum Zitat Jin, D., Guo, J., Wu, Y., Chen, W., Du, J., Yang, L., Wang, X., Gong, K., Dai, J., Miao, S., Li, X., & Su, G. (2020). Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. Journal of Experimental & Clinical Cancer Research, 39(1), 6. https://doi.org/10.1186/s13046-019-1503-6CrossRef Jin, D., Guo, J., Wu, Y., Chen, W., Du, J., Yang, L., Wang, X., Gong, K., Dai, J., Miao, S., Li, X., & Su, G. (2020). Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. Journal of Experimental & Clinical Cancer Research, 39(1), 6. https://​doi.​org/​10.​1186/​s13046-019-1503-6CrossRef
131.
Zurück zum Zitat Wu, Y., Zheng, Q., Li, Y., Wang, G., Gao, S., Zhang, X., Yan, X., Zhang, X., Xie, J., Wang, Y., Sun, X., Meng, X., Yin, B., & Wang, B. (2019). Metformin targets a YAP1-TEAD4 complex via AMPKalpha to regulate CCNE1/2 in bladder cancer cells. Journal of Experimental & Clinical Cancer Research, 38(1), 376. https://doi.org/10.1186/s13046-019-1346-1CrossRef Wu, Y., Zheng, Q., Li, Y., Wang, G., Gao, S., Zhang, X., Yan, X., Zhang, X., Xie, J., Wang, Y., Sun, X., Meng, X., Yin, B., & Wang, B. (2019). Metformin targets a YAP1-TEAD4 complex via AMPKalpha to regulate CCNE1/2 in bladder cancer cells. Journal of Experimental & Clinical Cancer Research, 38(1), 376. https://​doi.​org/​10.​1186/​s13046-019-1346-1CrossRef
136.
Zurück zum Zitat Omkumar, R. V., Darnay, B. G., & Rodwell, V. W. (1994). Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem, 269(9), 6810–6814.CrossRefPubMed Omkumar, R. V., Darnay, B. G., & Rodwell, V. W. (1994). Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem, 269(9), 6810–6814.CrossRefPubMed
143.
Zurück zum Zitat Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., Xu, D., Yang, F., Fu, D., Wang, C., Hu, B., Zhang, Z., Li, T., Yan, S., Wang, X., Nelson, P. J., Bruns, C., Qin, L., & Dong, Q. (2020). Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduction and Targeted Therapy, 5(1), 53. https://doi.org/10.1038/s41392-020-0146-6CrossRefPubMedPubMedCentral Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., Xu, D., Yang, F., Fu, D., Wang, C., Hu, B., Zhang, Z., Li, T., Yan, S., Wang, X., Nelson, P. J., Bruns, C., Qin, L., & Dong, Q. (2020). Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduction and Targeted Therapy, 5(1), 53. https://​doi.​org/​10.​1038/​s41392-020-0146-6CrossRefPubMedPubMedCentral
156.
Zurück zum Zitat Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H. K., Arumugam, M., Kristiansen, K., Voigt, A. Y., Vestergaard, H., Hercog, R., Costea, P. I., Kultima, J. R., Li, J., Jorgensen, T., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766CrossRefPubMedPubMedCentral Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H. K., Arumugam, M., Kristiansen, K., Voigt, A. Y., Vestergaard, H., Hercog, R., Costea, P. I., Kultima, J. R., Li, J., Jorgensen, T., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://​doi.​org/​10.​1038/​nature15766CrossRefPubMedPubMedCentral
157.
Zurück zum Zitat Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Manneras-Holm, L., Stahlman, M., Olsson, L. M., Serino, M., Planas-Felix, M., Xifra, G., Mercader, J. M., Torrents, D., Burcelin, R., Ricart, W., Perkins, R., Fernandez-Real, J. M., & Backhed, F. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 23(7), 850–858. https://doi.org/10.1038/nm.4345CrossRefPubMed Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Manneras-Holm, L., Stahlman, M., Olsson, L. M., Serino, M., Planas-Felix, M., Xifra, G., Mercader, J. M., Torrents, D., Burcelin, R., Ricart, W., Perkins, R., Fernandez-Real, J. M., & Backhed, F. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 23(7), 850–858. https://​doi.​org/​10.​1038/​nm.​4345CrossRefPubMed
159.
160.
Zurück zum Zitat Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., Zhang, L., Sharma, U., Giri, B., Garg, B., Ferrantella, A., Vickers, S. M., Banerjee, S., Dawra, R., Roy, S., Ramakrishnan, S., Saluja, A., & Dudeja, V. (2018). Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology, 155(1), 33-37.e36. https://doi.org/10.1053/j.gastro.2018.04.001CrossRefPubMed Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., Zhang, L., Sharma, U., Giri, B., Garg, B., Ferrantella, A., Vickers, S. M., Banerjee, S., Dawra, R., Roy, S., Ramakrishnan, S., Saluja, A., & Dudeja, V. (2018). Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology, 155(1), 33-37.e36. https://​doi.​org/​10.​1053/​j.​gastro.​2018.​04.​001CrossRefPubMed
161.
Zurück zum Zitat Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C. P., Kurz, E., Mishra, A., Mohan, N., Aykut, B., Usyk, M., Torres, L. E., Werba, G., Zhang, K., Guo, Y., Li, Q., Akkad, N., Lall, S., Wadowski, B., Gutierrez, J., Kochen Rossi, J. A., et al. (2018). The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 8(4), 403–416. https://doi.org/10.1158/2159-8290.CD-17-1134CrossRefPubMedPubMedCentral Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C. P., Kurz, E., Mishra, A., Mohan, N., Aykut, B., Usyk, M., Torres, L. E., Werba, G., Zhang, K., Guo, Y., Li, Q., Akkad, N., Lall, S., Wadowski, B., Gutierrez, J., Kochen Rossi, J. A., et al. (2018). The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 8(4), 403–416. https://​doi.​org/​10.​1158/​2159-8290.​CD-17-1134CrossRefPubMedPubMedCentral
162.
Zurück zum Zitat Mannucci, E., Tesi, F., Bardini, G., Ognibene, A., Petracca, M. G., Ciani, S., Pezzatini, A., Brogi, M., Dicembrini, I., Cremasco, F., Messeri, G., & Rotella, C. M. (2004). Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without Type 2 diabetes. Diabetes, Nutrition & Metabolism, 17(6), 336–342. Mannucci, E., Tesi, F., Bardini, G., Ognibene, A., Petracca, M. G., Ciani, S., Pezzatini, A., Brogi, M., Dicembrini, I., Cremasco, F., Messeri, G., & Rotella, C. M. (2004). Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without Type 2 diabetes. Diabetes, Nutrition & Metabolism, 17(6), 336–342.
165.
Zurück zum Zitat Yang, M., Darwish, T., Larraufie, P., Rimmington, D., Cimino, I., Goldspink, D. A., Jenkins, B., Koulman, A., Brighton, C. A., Ma, M., Lam, B. Y. H., Coll, A. P., O’Rahilly, S., Reimann, F., & Gribble, F. M. (2021). Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Science and Reports, 11(1), 2529. https://doi.org/10.1038/s41598-021-81349-7CrossRef Yang, M., Darwish, T., Larraufie, P., Rimmington, D., Cimino, I., Goldspink, D. A., Jenkins, B., Koulman, A., Brighton, C. A., Ma, M., Lam, B. Y. H., Coll, A. P., O’Rahilly, S., Reimann, F., & Gribble, F. M. (2021). Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Science and Reports, 11(1), 2529. https://​doi.​org/​10.​1038/​s41598-021-81349-7CrossRef
Metadaten
Titel
Metformin: review of epidemiology and mechanisms of action in pancreatic cancer
verfasst von
Guido Eibl
Enrique Rozengurt
Publikationsdatum
17.06.2021
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2021
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-09977-z

Weitere Artikel der Ausgabe 3/2021

Cancer and Metastasis Reviews 3/2021 Zur Ausgabe

EditorialNotes

Preface

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.