Skip to main content
Erschienen in: Inflammation 4/2021

19.05.2021 | Review

The Signaling Pathways Regulating NLRP3 Inflammasome Activation

verfasst von: Ming-ye Chen, Xun-jia Ye, Xian-hui He, Dong-yun Ouyang

Erschienen in: Inflammation | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Abstract

The NLRP3 inflammasome is a multi-molecular complex that acts as a molecular platform to mediate caspase-1 activation, leading to IL-1β/IL-18 maturation and release in cells stimulated by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This inflammasome plays an important role in the innate immunity as its activation can further promote the occurrence of inflammation, enhance the ability of host to remove pathogens, and thus facilitate the repair of injured tissues. But if the inflammasome activation is dysregulated, it will cause the development of various inflammatory diseases and metabolic disorders. Therefore, under normal conditions, the activation of inflammasome is tightly regulated by various positive and negative signaling pathways to respond to the stimuli without damaging the host itself while maintaining homeostasis. In this review, we summarize recent advances in the major signaling pathways (including TLRs, MAPK, mTOR, autophagy, PKA, AMPK, and IFNR) that regulate NLRP3 inflammasome activation, providing a brief view of the molecular network that regulates this inflammasome as a theoretical basis for therapeutic intervention of NLRP3 dysregulation-related diseases.
Literatur
2.
Zurück zum Zitat Patel, S. 2018. Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Current Allergy and Asthma Reports 18: 63.PubMedCrossRef Patel, S. 2018. Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Current Allergy and Asthma Reports 18: 63.PubMedCrossRef
3.
Zurück zum Zitat Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819–826.PubMedCrossRef Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819–826.PubMedCrossRef
5.
Zurück zum Zitat Xue, Y., D. Enosi Tuipulotu, W.H. Tan, C. Kay, and S.M. Man. 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends in Immunology 40: 1035–1052.PubMedCrossRef Xue, Y., D. Enosi Tuipulotu, W.H. Tan, C. Kay, and S.M. Man. 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends in Immunology 40: 1035–1052.PubMedCrossRef
6.
Zurück zum Zitat Platnich, J.M., and D.A. Muruve. 2019. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Archives of Biochemistry and Biophysics 670: 4–14.PubMedCrossRef Platnich, J.M., and D.A. Muruve. 2019. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Archives of Biochemistry and Biophysics 670: 4–14.PubMedCrossRef
7.
Zurück zum Zitat Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19: 477–489.PubMedPubMedCentralCrossRef Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19: 477–489.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMedCrossRef Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMedCrossRef
9.
Zurück zum Zitat Tweedell, R.E., and T.D. Kanneganti. 2020. Advances in inflammasome research: recent breakthroughs and future hurdles. Trends in Molecular Medicine 26: 969–971.PubMedCrossRefPubMedCentral Tweedell, R.E., and T.D. Kanneganti. 2020. Advances in inflammasome research: recent breakthroughs and future hurdles. Trends in Molecular Medicine 26: 969–971.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Place, D.E., and T.D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38.PubMedCrossRef Place, D.E., and T.D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38.PubMedCrossRef
11.
Zurück zum Zitat Liu, L., and B. Sun. 2019. Neutrophil pyroptosis: new perspectives on sepsis. Cellular and Molecular Life Sciences: CMLS 76: 2031–2042.PubMedCrossRef Liu, L., and B. Sun. 2019. Neutrophil pyroptosis: new perspectives on sepsis. Cellular and Molecular Life Sciences: CMLS 76: 2031–2042.PubMedCrossRef
12.
Zurück zum Zitat Jorgensen, I., J.P. Lopez, S.A. Laufer, and E.A. Miao. 2016. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. European Journal of Immunology 46: 2761–2766.PubMedPubMedCentralCrossRef Jorgensen, I., J.P. Lopez, S.A. Laufer, and E.A. Miao. 2016. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. European Journal of Immunology 46: 2761–2766.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Christgen, S., and T.D. Kanneganti. 2020. Inflammasomes and the fine line between defense and disease. Current Opinion in Immunology 62: 39–44.PubMedCrossRef Christgen, S., and T.D. Kanneganti. 2020. Inflammasomes and the fine line between defense and disease. Current Opinion in Immunology 62: 39–44.PubMedCrossRef
14.
Zurück zum Zitat Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.PubMedPubMedCentralCrossRef Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mortimer, L., F. Moreau, J.A. MacDonald, and K. Chadee. 2016. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nature Immunology 17: 1176–1186.PubMedCrossRef Mortimer, L., F. Moreau, J.A. MacDonald, and K. Chadee. 2016. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nature Immunology 17: 1176–1186.PubMedCrossRef
16.
Zurück zum Zitat Kaneko, N., M. Kurata, T. Yamamoto, S. Morikawa, and J. Masumoto. 2019. The role of interleukin-1 in general pathology. Inflammation and Regeneration 39: 12.PubMedPubMedCentralCrossRef Kaneko, N., M. Kurata, T. Yamamoto, S. Morikawa, and J. Masumoto. 2019. The role of interleukin-1 in general pathology. Inflammation and Regeneration 39: 12.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Pedraza-Alva, G., L. Pérez-Martínez, L. Valdez-Hernández, K.F. Meza-Sosa, and M. Ando-Kuri. 2015. Negative regulation of the inflammasome: keeping inflammation under control. Immunological Reviews 265: 231–257.PubMedCrossRef Pedraza-Alva, G., L. Pérez-Martínez, L. Valdez-Hernández, K.F. Meza-Sosa, and M. Ando-Kuri. 2015. Negative regulation of the inflammasome: keeping inflammation under control. Immunological Reviews 265: 231–257.PubMedCrossRef
18.
Zurück zum Zitat Rajamäki, K., M.I. Mäyränpää, A. Risco, J. Tuimala, K. Nurmi, A. Cuenda, K.K. Eklund, K. Öörni, and P.T. Kovanen. 2016. p38δ MAPK: A novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 36: 1937–1946.PubMedCrossRef Rajamäki, K., M.I. Mäyränpää, A. Risco, J. Tuimala, K. Nurmi, A. Cuenda, K.K. Eklund, K. Öörni, and P.T. Kovanen. 2016. p38δ MAPK: A novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 36: 1937–1946.PubMedCrossRef
19.
Zurück zum Zitat Dai, J., C. Jiang, H. Chen, and Y. Chai. 2019. Rapamycin attenuates high glucose-induced inflammation through modulation of mTOR/NF-κB pathways in macrophages. Frontiers in Pharmacology 10: 1292.PubMedPubMedCentralCrossRef Dai, J., C. Jiang, H. Chen, and Y. Chai. 2019. Rapamycin attenuates high glucose-induced inflammation through modulation of mTOR/NF-κB pathways in macrophages. Frontiers in Pharmacology 10: 1292.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Yang, F., Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai, and L. Wang. 2019. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. International Journal of Biological Sciences 15: 1010–1019.PubMedPubMedCentralCrossRef Yang, F., Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai, and L. Wang. 2019. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. International Journal of Biological Sciences 15: 1010–1019.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138: 28–36.PubMedCrossRef Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138: 28–36.PubMedCrossRef
22.
Zurück zum Zitat Labzin, L.I., M.A. Lauterbach, and E. Latz. 2016. Interferons and inflammasomes: cooperation and counterregulation in disease. The Journal of Allergy and Clinical Immunology 138: 37–46.PubMedCrossRef Labzin, L.I., M.A. Lauterbach, and E. Latz. 2016. Interferons and inflammasomes: cooperation and counterregulation in disease. The Journal of Allergy and Clinical Immunology 138: 37–46.PubMedCrossRef
23.
Zurück zum Zitat He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentralCrossRef He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Xing, Y., X. Yao, H. Li, G. Xue, Q. Guo, G. Yang, L. An, Y. Zhang, and G. Meng. 2017. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 199: 1561–1566.CrossRef Xing, Y., X. Yao, H. Li, G. Xue, Q. Guo, G. Yang, L. An, Y. Zhang, and G. Meng. 2017. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 199: 1561–1566.CrossRef
25.
Zurück zum Zitat Song, N., Z.S. Liu, W. Xue, Z.F. Bai, Q.Y. Wang, J. Dai, X. Liu, Y.J. Huang, H. Cai, X.Y. Zhan, Q.Y. Han, H. Wang, Y. Chen, H.Y. Li, A.L. Li, X.M. Zhang, T. Zhou, and T. Li. 2017. NLRP3 Phosphorylation is an essential priming event for inflammasome activation. Molecular Cell 68: 185–197.e186.PubMedCrossRef Song, N., Z.S. Liu, W. Xue, Z.F. Bai, Q.Y. Wang, J. Dai, X. Liu, Y.J. Huang, H. Cai, X.Y. Zhan, Q.Y. Han, H. Wang, Y. Chen, H.Y. Li, A.L. Li, X.M. Zhang, T. Zhou, and T. Li. 2017. NLRP3 Phosphorylation is an essential priming event for inflammasome activation. Molecular Cell 68: 185–197.e186.PubMedCrossRef
26.
Zurück zum Zitat Guan, K., C. Wei, Z. Zheng, T. Song, F. Wu, Y. Zhang, Y. Cao, S. Ma, W. Chen, Q. Xu, W. Xia, J. Gu, X. He, and H. Zhong. 2015. MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3. Journal of Immunology (Baltimore, Md. : 1950) 194: 4880–4890.CrossRef Guan, K., C. Wei, Z. Zheng, T. Song, F. Wu, Y. Zhang, Y. Cao, S. Ma, W. Chen, Q. Xu, W. Xia, J. Gu, X. He, and H. Zhong. 2015. MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3. Journal of Immunology (Baltimore, Md. : 1950) 194: 4880–4890.CrossRef
27.
Zurück zum Zitat Py, B.F., M.S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan. 2013. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Molecular Cell 49: 331–338.PubMedCrossRef Py, B.F., M.S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan. 2013. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Molecular Cell 49: 331–338.PubMedCrossRef
28.
Zurück zum Zitat Lima, H., Jr., L.S. Jacobson, M.F. Goldberg, K. Chandran, F. Diaz-Griffero, M.P. Lisanti, and J. Brojatsch. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle (Georgetown, Texas) 12: 1868–1878.CrossRef Lima, H., Jr., L.S. Jacobson, M.F. Goldberg, K. Chandran, F. Diaz-Griffero, M.P. Lisanti, and J. Brojatsch. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle (Georgetown, Texas) 12: 1868–1878.CrossRef
29.
Zurück zum Zitat Muñoz-Planillo, R., P. Kuffa, G. Martínez-Colón, B.L. Smith, T.M. Rajendiran, and G. Núñez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.PubMedPubMedCentralCrossRef Muñoz-Planillo, R., P. Kuffa, G. Martínez-Colón, B.L. Smith, T.M. Rajendiran, and G. Núñez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat He, Y., M.Y. Zeng, D. Yang, B. Motro, and G. Núñez. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530: 354–357.PubMedPubMedCentralCrossRef He, Y., M.Y. Zeng, D. Yang, B. Motro, and G. Núñez. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530: 354–357.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Groß, C.J., R. Mishra, K.S. Schneider, G. Médard, J. Wettmarshausen, D.C. Dittlein, H. Shi, O. Gorka, P.A. Koenig, S. Fromm, G. Magnani, T. Ćiković, L. Hartjes, J. Smollich, A.A.B. Robertson, M.A. Cooper, M. Schmidt-Supprian, M. Schuster, K. Schroder, P. Broz, C. Traidl-Hoffmann, B. Beutler, B. Kuster, J. Ruland, S. Schneider, F. Perocchi, and O. Groß. 2016. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45: 761–773.PubMedCrossRef Groß, C.J., R. Mishra, K.S. Schneider, G. Médard, J. Wettmarshausen, D.C. Dittlein, H. Shi, O. Gorka, P.A. Koenig, S. Fromm, G. Magnani, T. Ćiković, L. Hartjes, J. Smollich, A.A.B. Robertson, M.A. Cooper, M. Schmidt-Supprian, M. Schuster, K. Schroder, P. Broz, C. Traidl-Hoffmann, B. Beutler, B. Kuster, J. Ruland, S. Schneider, F. Perocchi, and O. Groß. 2016. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45: 761–773.PubMedCrossRef
32.
Zurück zum Zitat Rühl, S., and P. Broz. 2015. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. European Journal of Immunology 45: 2927–2936.PubMedCrossRef Rühl, S., and P. Broz. 2015. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. European Journal of Immunology 45: 2927–2936.PubMedCrossRef
33.
Zurück zum Zitat Meunier, E., M.S. Dick, R.F. Dreier, N. Schürmann, D. Kenzelmann Broz, S. Warming, M. Roose-Girma, D. Bumann, N. Kayagaki, K. Takeda, M. Yamamoto, and P. Broz. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509: 366–370.PubMedCrossRef Meunier, E., M.S. Dick, R.F. Dreier, N. Schürmann, D. Kenzelmann Broz, S. Warming, M. Roose-Girma, D. Bumann, N. Kayagaki, K. Takeda, M. Yamamoto, and P. Broz. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509: 366–370.PubMedCrossRef
34.
Zurück zum Zitat Shi, J., Y. Zhao, Y. Wang, W. Gao, J. Ding, P. Li, L. Hu, and F. Shao. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514: 187–192.PubMedCrossRef Shi, J., Y. Zhao, Y. Wang, W. Gao, J. Ding, P. Li, L. Hu, and F. Shao. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514: 187–192.PubMedCrossRef
35.
Zurück zum Zitat Gaidt, M.M., T.S. Ebert, D. Chauhan, T. Schmidt, J.L. Schmid-Burgk, F. Rapino, A.A. Robertson, M.A. Cooper, T. Graf, and V. Hornung. 2016. Human monocytes engage an alternative inflammasome pathway. Immunity 44: 833–846.PubMedCrossRef Gaidt, M.M., T.S. Ebert, D. Chauhan, T. Schmidt, J.L. Schmid-Burgk, F. Rapino, A.A. Robertson, M.A. Cooper, T. Graf, and V. Hornung. 2016. Human monocytes engage an alternative inflammasome pathway. Immunity 44: 833–846.PubMedCrossRef
36.
Zurück zum Zitat Gurung, P., P.K. Anand, R.K. Malireddi, L. Vande Walle, N. Van Opdenbosch, C.P. Dillon, R. Weinlich, D.R. Green, M. Lamkanfi, and T.D. Kanneganti. 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. Journal of Immunology (Baltimore, Md. : 1950) 192: 1835–1846.CrossRef Gurung, P., P.K. Anand, R.K. Malireddi, L. Vande Walle, N. Van Opdenbosch, C.P. Dillon, R. Weinlich, D.R. Green, M. Lamkanfi, and T.D. Kanneganti. 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. Journal of Immunology (Baltimore, Md. : 1950) 192: 1835–1846.CrossRef
37.
Zurück zum Zitat Chen, K.W., B. Demarco, R. Heilig, K. Shkarina, A. Boettcher, C.J. Farady, P. Pelczar, and P. Broz. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. The EMBO Journal 38: e101638. Chen, K.W., B. Demarco, R. Heilig, K. Shkarina, A. Boettcher, C.J. Farady, P. Pelczar, and P. Broz. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. The EMBO Journal 38: e101638.
38.
Zurück zum Zitat Zheng, M., R. Karki, P. Vogel, and T.D. Kanneganti. 2020. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181: 674–687.e613.PubMedPubMedCentralCrossRef Zheng, M., R. Karki, P. Vogel, and T.D. Kanneganti. 2020. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181: 674–687.e613.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Boucher, D., M. Monteleone, R.C. Coll, K.W. Chen, C.M. Ross, J.L. Teo, G.A. Gomez, C.L. Holley, D. Bierschenk, K.J. Stacey, A.S. Yap, J.S. Bezbradica, and K. Schroder. 2018. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. The Journal of Experimental Medicine 215: 827–840.PubMedPubMedCentralCrossRef Boucher, D., M. Monteleone, R.C. Coll, K.W. Chen, C.M. Ross, J.L. Teo, G.A. Gomez, C.L. Holley, D. Bierschenk, K.J. Stacey, A.S. Yap, J.S. Bezbradica, and K. Schroder. 2018. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. The Journal of Experimental Medicine 215: 827–840.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Chan, A.H., and K. Schroder. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. The Journal of Experimental Medicine 217: e20190314. Chan, A.H., and K. Schroder. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. The Journal of Experimental Medicine 217: e20190314.
41.
Zurück zum Zitat Wang, K., Q. Sun, X. Zhong, M. Zeng, H. Zeng, X. Shi, Z. Li, Y. Wang, Q. Zhao, F. Shao, and J. Ding. 2020. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180: 941–955.e920.PubMedCrossRef Wang, K., Q. Sun, X. Zhong, M. Zeng, H. Zeng, X. Shi, Z. Li, Y. Wang, Q. Zhao, F. Shao, and J. Ding. 2020. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180: 941–955.e920.PubMedCrossRef
42.
Zurück zum Zitat Orning, P., E. Lien, and K.A. Fitzgerald. 2019. Gasdermins and their role in immunity and inflammation. The Journal of Experimental Medicine 216: 2453–2465.PubMedPubMedCentralCrossRef Orning, P., E. Lien, and K.A. Fitzgerald. 2019. Gasdermins and their role in immunity and inflammation. The Journal of Experimental Medicine 216: 2453–2465.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Mulvihill, E., L. Sborgi, S.A. Mari, M. Pfreundschuh, S. Hiller, and D.J. Müller. 2018. Mechanism of membrane pore formation by human gasdermin-D. The EMBO Journal 37: e98321. Mulvihill, E., L. Sborgi, S.A. Mari, M. Pfreundschuh, S. Hiller, and D.J. Müller. 2018. Mechanism of membrane pore formation by human gasdermin-D. The EMBO Journal 37: e98321.
44.
Zurück zum Zitat Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48: 35–44.e36.PubMedCrossRef Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48: 35–44.e36.PubMedCrossRef
45.
Zurück zum Zitat Rühl, S., K. Shkarina, B. Demarco, R. Heilig, J.C. Santos, and P. Broz. 2018. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362: 956–960. Rühl, S., K. Shkarina, B. Demarco, R. Heilig, J.C. Santos, and P. Broz. 2018. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362: 956–960.
46.
Zurück zum Zitat Sagulenko, V., S.J. Thygesen, D.P. Sester, A. Idris, J.A. Cridland, P.R. Vajjhala, T.L. Roberts, K. Schroder, J.E. Vince, J.M. Hill, J. Silke, and K.J. Stacey. 2013. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation 20: 1149–1160.PubMedPubMedCentralCrossRef Sagulenko, V., S.J. Thygesen, D.P. Sester, A. Idris, J.A. Cridland, P.R. Vajjhala, T.L. Roberts, K. Schroder, J.E. Vince, J.M. Hill, J. Silke, and K.J. Stacey. 2013. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation 20: 1149–1160.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Rogers, C., T. Fernandes-Alnemri, L. Mayes, D. Alnemri, G. Cingolani, and E.S. Alnemri. 2017. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications 8: 14128.PubMedPubMedCentralCrossRef Rogers, C., T. Fernandes-Alnemri, L. Mayes, D. Alnemri, G. Cingolani, and E.S. Alnemri. 2017. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications 8: 14128.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Tsuchiya, K., S. Nakajima, S. Hosojima, D. Thi Nguyen, T. Hattori, T. Manh Le, O. Hori, M.R. Mahib, Y. Yamaguchi, M. Miura, T. Kinoshita, H. Kushiyama, M. Sakurai, T. Shiroishi, and T. Suda. 2019. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nature Communications 10: 2091.PubMedPubMedCentralCrossRef Tsuchiya, K., S. Nakajima, S. Hosojima, D. Thi Nguyen, T. Hattori, T. Manh Le, O. Hori, M.R. Mahib, Y. Yamaguchi, M. Miura, T. Kinoshita, H. Kushiyama, M. Sakurai, T. Shiroishi, and T. Suda. 2019. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nature Communications 10: 2091.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Heilig, R., M. Dilucca, D. Boucher, K.W. Chen, D. Hancz, B. Demarco, K. Shkarina, and P. Broz. 2020. Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD. Life Science Alliance 3: e202000735.PubMedPubMedCentralCrossRef Heilig, R., M. Dilucca, D. Boucher, K.W. Chen, D. Hancz, B. Demarco, K. Shkarina, and P. Broz. 2020. Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD. Life Science Alliance 3: e202000735.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.PubMedCrossRef Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.PubMedCrossRef
51.
Zurück zum Zitat Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650.PubMedCrossRef Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650.PubMedCrossRef
52.
Zurück zum Zitat Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Scientific Reports 6: 27460.PubMedPubMedCentralCrossRef Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Scientific Reports 6: 27460.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Su, Q., L. Li, Y. Sun, H. Yang, Z. Ye, and J. Zhao. 2018. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 47: 1497–1508.CrossRef Su, Q., L. Li, Y. Sun, H. Yang, Z. Ye, and J. Zhao. 2018. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 47: 1497–1508.CrossRef
54.
Zurück zum Zitat Hu, X., Q. Chi, Q. Liu, D. Wang, Y. Zhang, and S. Li. 2019. Atmospheric H(2) S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237: 124427.PubMedCrossRef Hu, X., Q. Chi, Q. Liu, D. Wang, Y. Zhang, and S. Li. 2019. Atmospheric H(2) S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237: 124427.PubMedCrossRef
55.
Zurück zum Zitat Juliana, C., T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E.S. Alnemri. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of Biological Chemistry 287: 36617–36622.PubMedPubMedCentralCrossRef Juliana, C., T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E.S. Alnemri. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of Biological Chemistry 287: 36617–36622.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Fernandes-Alnemri, T., S. Kang, C. Anderson, J. Sagara, K.A. Fitzgerald, and E.S. Alnemri. 2013. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 191: 3995–3999.CrossRef Fernandes-Alnemri, T., S. Kang, C. Anderson, J. Sagara, K.A. Fitzgerald, and E.S. Alnemri. 2013. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 191: 3995–3999.CrossRef
57.
Zurück zum Zitat Okada, M., A. Matsuzawa, A. Yoshimura, and H. Ichijo. 2014. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. The Journal of Biological Chemistry 289: 32926–32936.PubMedPubMedCentralCrossRef Okada, M., A. Matsuzawa, A. Yoshimura, and H. Ichijo. 2014. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. The Journal of Biological Chemistry 289: 32926–32936.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Kim, J., and K.L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology 21: 63–71.PubMedCrossRef Kim, J., and K.L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology 21: 63–71.PubMedCrossRef
60.
Zurück zum Zitat Dhingra, R., H. Gang, Y. Wang, A.K. Biala, Y. Aviv, V. Margulets, A. Tee, and L.A. Kirshenbaum. 2013. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circulation. Heart Failure 6: 335–343.PubMedCrossRef Dhingra, R., H. Gang, Y. Wang, A.K. Biala, Y. Aviv, V. Margulets, A. Tee, and L.A. Kirshenbaum. 2013. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circulation. Heart Failure 6: 335–343.PubMedCrossRef
61.
Zurück zum Zitat Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.PubMedCrossRef Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.PubMedCrossRef
62.
Zurück zum Zitat Tannahill, G.M., A.M. Curtis, J. Adamik, E.M. Palsson-McDermott, A.F. McGettrick, G. Goel, C. Frezza, N.J. Bernard, B. Kelly, N.H. Foley, L. Zheng, A. Gardet, Z. Tong, S.S. Jany, S.C. Corr, M. Haneklaus, B.E. Caffrey, K. Pierce, S. Walmsley, F.C. Beasley, E. Cummins, V. Nizet, M. Whyte, C.T. Taylor, H. Lin, S.L. Masters, E. Gottlieb, V.P. Kelly, C. Clish, P.E. Auron, R.J. Xavier, and L.A. O'Neill. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496: 238–242.PubMedPubMedCentralCrossRef Tannahill, G.M., A.M. Curtis, J. Adamik, E.M. Palsson-McDermott, A.F. McGettrick, G. Goel, C. Frezza, N.J. Bernard, B. Kelly, N.H. Foley, L. Zheng, A. Gardet, Z. Tong, S.S. Jany, S.C. Corr, M. Haneklaus, B.E. Caffrey, K. Pierce, S. Walmsley, F.C. Beasley, E. Cummins, V. Nizet, M. Whyte, C.T. Taylor, H. Lin, S.L. Masters, E. Gottlieb, V.P. Kelly, C. Clish, P.E. Auron, R.J. Xavier, and L.A. O'Neill. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496: 238–242.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Covarrubias, A.J., H.I. Aksoylar, and T. Horng. 2015. Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in Immunology 27: 286–296.PubMedPubMedCentralCrossRef Covarrubias, A.J., H.I. Aksoylar, and T. Horng. 2015. Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in Immunology 27: 286–296.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Woo, Y., H. Kim, K.C. Kim, J.A. Han, and Y.J. Jung. 2018. Tumor-secreted factors induce IL-1β maturation via the glucose-mediated synergistic axis of mTOR and NF-κB pathways in mouse macrophages. PLoS One 13: e0209653.PubMedPubMedCentralCrossRef Woo, Y., H. Kim, K.C. Kim, J.A. Han, and Y.J. Jung. 2018. Tumor-secreted factors induce IL-1β maturation via the glucose-mediated synergistic axis of mTOR and NF-κB pathways in mouse macrophages. PLoS One 13: e0209653.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Li, X., X. Zhang, Y. Pan, G. Shi, J. Ren, H. Fan, H. Dou, and Y. Hou. 2018. mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus. Acta Biochimica et Biophysica Sinica 50: 888–896.PubMedCrossRef Li, X., X. Zhang, Y. Pan, G. Shi, J. Ren, H. Fan, H. Dou, and Y. Hou. 2018. mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus. Acta Biochimica et Biophysica Sinica 50: 888–896.PubMedCrossRef
66.
Zurück zum Zitat Choi, Y.J., K.M. Moon, K.W. Chung, J.W. Jeong, D. Park, D.H. Kim, B.P. Yu, and H.Y. Chung. 2016. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget 7: 52685–52694.PubMedPubMedCentralCrossRef Choi, Y.J., K.M. Moon, K.W. Chung, J.W. Jeong, D. Park, D.H. Kim, B.P. Yu, and H.Y. Chung. 2016. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget 7: 52685–52694.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Sørensen, M.V., B. Saha, I.S. Jensen, P. Wu, N. Ayasse, C.E. Gleason, S.L. Svendsen, W.H. Wang, and D. Pearce. 2019. Potassium acts through mTOR to regulate its own secretion. JCI Insight 5: e126910. Sørensen, M.V., B. Saha, I.S. Jensen, P. Wu, N. Ayasse, C.E. Gleason, S.L. Svendsen, W.H. Wang, and D. Pearce. 2019. Potassium acts through mTOR to regulate its own secretion. JCI Insight 5: e126910.
68.
Zurück zum Zitat Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37–40.PubMedCrossRef Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37–40.PubMedCrossRef
69.
Zurück zum Zitat Arthur, J.S., and S.C. Ley. 2013. Mitogen-activated protein kinases in innate immunity. Nature Reviews. Immunology 13: 679–692.PubMedCrossRef Arthur, J.S., and S.C. Ley. 2013. Mitogen-activated protein kinases in innate immunity. Nature Reviews. Immunology 13: 679–692.PubMedCrossRef
70.
Zurück zum Zitat Rezatabar, S., A. Karimian, V. Rameshknia, H. Parsian, M. Majidinia, T.A. Kopi, A. Bishayee, A. Sadeghinia, M. Yousefi, M. Monirialamdari, and B. Yousefi. 2019. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. Journal of Cellular Physiology 234: 14951–14965.CrossRef Rezatabar, S., A. Karimian, V. Rameshknia, H. Parsian, M. Majidinia, T.A. Kopi, A. Bishayee, A. Sadeghinia, M. Yousefi, M. Monirialamdari, and B. Yousefi. 2019. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. Journal of Cellular Physiology 234: 14951–14965.CrossRef
71.
Zurück zum Zitat Morrison, D.K. 2012. MAP kinase pathways. Cold Spring Harbor Perspectives in Biology 4: a011254. Morrison, D.K. 2012. MAP kinase pathways. Cold Spring Harbor Perspectives in Biology 4: a011254.
72.
Zurück zum Zitat Kovtun, Y., W.L. Chiu, G. Tena, and J. Sheen. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America 97: 2940–2945.PubMedPubMedCentralCrossRef Kovtun, Y., W.L. Chiu, G. Tena, and J. Sheen. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America 97: 2940–2945.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat McCubrey, J.A., M.M. Lahair, and R.A. Franklin. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling 8: 1775–1789.CrossRef McCubrey, J.A., M.M. Lahair, and R.A. Franklin. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling 8: 1775–1789.CrossRef
74.
Zurück zum Zitat Wang, W., X.Q. Ding, T.T. Gu, L. Song, J.M. Li, Q.C. Xue, and L.D. Kong. 2015. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radical Biology & Medicine 83: 214–226.CrossRef Wang, W., X.Q. Ding, T.T. Gu, L. Song, J.M. Li, Q.C. Xue, and L.D. Kong. 2015. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radical Biology & Medicine 83: 214–226.CrossRef
75.
Zurück zum Zitat Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.PubMedCrossRef Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.PubMedCrossRef
76.
Zurück zum Zitat Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.CrossRefPubMed Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.CrossRefPubMed
77.
Zurück zum Zitat Park, Y.J., S.J. Yoon, H.W. Suh, D.O. Kim, J.R. Park, H. Jung, T.D. Kim, S.R. Yoon, J.K. Min, H.J. Na, S.J. Lee, H.G. Lee, Y.H. Lee, H.B. Lee, and I. Choi. 2013. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathogens 9: e1003646.PubMedPubMedCentralCrossRef Park, Y.J., S.J. Yoon, H.W. Suh, D.O. Kim, J.R. Park, H. Jung, T.D. Kim, S.R. Yoon, J.K. Min, H.J. Na, S.J. Lee, H.G. Lee, Y.H. Lee, H.B. Lee, and I. Choi. 2013. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathogens 9: e1003646.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Mishra, B.B., V.A. Rathinam, G.W. Martens, A.J. Martinot, H. Kornfeld, K.A. Fitzgerald, and C.M. Sassetti. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nature Immunology 14: 52–60.PubMedCrossRef Mishra, B.B., V.A. Rathinam, G.W. Martens, A.J. Martinot, H. Kornfeld, K.A. Fitzgerald, and C.M. Sassetti. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nature Immunology 14: 52–60.PubMedCrossRef
79.
Zurück zum Zitat Gan, P., Z. Gao, X. Zhao, and G. Qi. 2016. Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity. Scientific Reports 6: 39303.PubMedPubMedCentralCrossRef Gan, P., Z. Gao, X. Zhao, and G. Qi. 2016. Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity. Scientific Reports 6: 39303.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. International Journal of Biological sciences 15: 1571–1581. Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. International Journal of Biological sciences 15: 1571–1581.
81.
Zurück zum Zitat Shibutani, S.T., T. Saitoh, H. Nowag, C. Münz, and T. Yoshimori. 2015. Autophagy and autophagy-related proteins in the immune system. Nature Immunology 16: 1014–1024.PubMedCrossRef Shibutani, S.T., T. Saitoh, H. Nowag, C. Münz, and T. Yoshimori. 2015. Autophagy and autophagy-related proteins in the immune system. Nature Immunology 16: 1014–1024.PubMedCrossRef
83.
Zurück zum Zitat Nguyen, H.T., P. Lapaquette, M.A. Bringer, and A. Darfeuille-Michaud. 2013. Autophagy and Crohn’s disease. Journal of Innate Immunity 5: 434–443.PubMedPubMedCentralCrossRef Nguyen, H.T., P. Lapaquette, M.A. Bringer, and A. Darfeuille-Michaud. 2013. Autophagy and Crohn’s disease. Journal of Innate Immunity 5: 434–443.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Allison, S.J. 2016. Systemic lupus erythematosus: defective noncanonical autophagy in SLE-like disease. Nature Reviews. Nephrology 12: 375.PubMedCrossRef Allison, S.J. 2016. Systemic lupus erythematosus: defective noncanonical autophagy in SLE-like disease. Nature Reviews. Nephrology 12: 375.PubMedCrossRef
85.
Zurück zum Zitat Spalinger, M.R., S. Lang, C. Gottier, X. Dai, D.J. Rawlings, A.C. Chan, G. Rogler, and M. Scharl. 2017. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 13: 1590–1601.PubMedPubMedCentralCrossRef Spalinger, M.R., S. Lang, C. Gottier, X. Dai, D.J. Rawlings, A.C. Chan, G. Rogler, and M. Scharl. 2017. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 13: 1590–1601.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264–268.PubMedCrossRef Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264–268.PubMedCrossRef
87.
Zurück zum Zitat Lee, J., H.R. Kim, C. Quinley, J. Kim, J. Gonzalez-Navajas, R. Xavier, and E. Raz. 2012. Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. The Journal of Biological Chemistry 287: 4033–4040.PubMedCrossRef Lee, J., H.R. Kim, C. Quinley, J. Kim, J. Gonzalez-Navajas, R. Xavier, and E. Raz. 2012. Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. The Journal of Biological Chemistry 287: 4033–4040.PubMedCrossRef
88.
Zurück zum Zitat Seveau, S., J. Turner, M.A. Gavrilin, J.B. Torrelles, L. Hall-Stoodley, J.S. Yount, and A.O. Amer. 2018. Checks and balances between autophagy and inflammasomes during infection. Journal of Molecular Biology 430: 174–192.PubMedCrossRef Seveau, S., J. Turner, M.A. Gavrilin, J.B. Torrelles, L. Hall-Stoodley, J.S. Yount, and A.O. Amer. 2018. Checks and balances between autophagy and inflammasomes during infection. Journal of Molecular Biology 430: 174–192.PubMedCrossRef
89.
Zurück zum Zitat Lupfer, C., P.G. Thomas, P.K. Anand, P. Vogel, S. Milasta, J. Martinez, G. Huang, M. Green, M. Kundu, H. Chi, R.J. Xavier, D.R. Green, M. Lamkanfi, C.A. Dinarello, P.C. Doherty, and T.D. Kanneganti. 2013. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology 14: 480–488.PubMedPubMedCentralCrossRef Lupfer, C., P.G. Thomas, P.K. Anand, P. Vogel, S. Milasta, J. Martinez, G. Huang, M. Green, M. Kundu, H. Chi, R.J. Xavier, D.R. Green, M. Lamkanfi, C.A. Dinarello, P.C. Doherty, and T.D. Kanneganti. 2013. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology 14: 480–488.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat B'Chir, W., A.C. Maurin, V. Carraro, J. Averous, C. Jousse, Y. Muranishi, L. Parry, G. Stepien, P. Fafournoux, and A. Bruhat. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research 41: 7683–7699.PubMedPubMedCentralCrossRef B'Chir, W., A.C. Maurin, V. Carraro, J. Averous, C. Jousse, Y. Muranishi, L. Parry, G. Stepien, P. Fafournoux, and A. Bruhat. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research 41: 7683–7699.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Chen, X., X. Guo, Q. Ge, Y. Zhao, H. Mu, and J. Zhang. 2019. ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Medicine and Cellular Longevity 2019: 3462530.PubMedPubMedCentral Chen, X., X. Guo, Q. Ge, Y. Zhao, H. Mu, and J. Zhang. 2019. ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Medicine and Cellular Longevity 2019: 3462530.PubMedPubMedCentral
92.
Zurück zum Zitat Shi, C.S., K. Shenderov, N.N. Huang, J. Kabat, M. Abu-Asab, K.A. Fitzgerald, A. Sher, and J.H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology 13: 255–263.PubMedPubMedCentralCrossRef Shi, C.S., K. Shenderov, N.N. Huang, J. Kabat, M. Abu-Asab, K.A. Fitzgerald, A. Sher, and J.H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology 13: 255–263.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Chen, J., and Z.J. Chen. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564: 71–76.PubMedCrossRef Chen, J., and Z.J. Chen. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564: 71–76.PubMedCrossRef
94.
Zurück zum Zitat Li, X., S. Thome, X. Ma, M. Amrute-Nayak, A. Finigan, L. Kitt, L. Masters, J.R. James, Y. Shi, G. Meng, and Z. Mallat. 2017. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nature Communications 8: 15986.PubMedPubMedCentralCrossRef Li, X., S. Thome, X. Ma, M. Amrute-Nayak, A. Finigan, L. Kitt, L. Masters, J.R. James, Y. Shi, G. Meng, and Z. Mallat. 2017. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nature Communications 8: 15986.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Li, C.G., Q.Z. Zeng, M.Y. Chen, L.H. Xu, C.C. Zhang, F.Y. Mai, C.Y. Zeng, X.H. He, and D.Y. Ouyang. 2019. Evodiamine augments nlrp3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation. Frontiers in Pharmacology 10: 290.PubMedPubMedCentralCrossRef Li, C.G., Q.Z. Zeng, M.Y. Chen, L.H. Xu, C.C. Zhang, F.Y. Mai, C.Y. Zeng, X.H. He, and D.Y. Ouyang. 2019. Evodiamine augments nlrp3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation. Frontiers in Pharmacology 10: 290.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Magupalli, V.G., R. Negro, Y. Tian, A.V. Hauenstein, G. Di Caprio, W. Skillern, Q. Deng, P. Orning, H.B. Alam, Z. Maliga, H. Sharif, J.J. Hu, C.L. Evavold, J.C. Kagan, F.I. Schmidt, K.A. Fitzgerald, T. Kirchhausen, Y. Li, and H. Wu. 2020. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369: eaas8995. Magupalli, V.G., R. Negro, Y. Tian, A.V. Hauenstein, G. Di Caprio, W. Skillern, Q. Deng, P. Orning, H.B. Alam, Z. Maliga, H. Sharif, J.J. Hu, C.L. Evavold, J.C. Kagan, F.I. Schmidt, K.A. Fitzgerald, T. Kirchhausen, Y. Li, and H. Wu. 2020. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369: eaas8995.
97.
Zurück zum Zitat Cao, Z., Y. Wang, Z. Long, and G. He. 2019. Interaction between autophagy and the NLRP3 inflammasome. Acta Biochimica et Biophysica Sinica 51: 1087–1095.PubMedCrossRef Cao, Z., Y. Wang, Z. Long, and G. He. 2019. Interaction between autophagy and the NLRP3 inflammasome. Acta Biochimica et Biophysica Sinica 51: 1087–1095.PubMedCrossRef
98.
Zurück zum Zitat Misawa, T., M. Takahama, T. Kozaki, H. Lee, J. Zou, T. Saitoh, and S. Akira. 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature Immunology 14: 454–460.PubMedCrossRef Misawa, T., M. Takahama, T. Kozaki, H. Lee, J. Zou, T. Saitoh, and S. Akira. 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature Immunology 14: 454–460.PubMedCrossRef
99.
Zurück zum Zitat Brandwein, S.R. 1986. Regulation of interleukin 1 production by mouse peritoneal macrophages. Effects of arachidonic acid metabolites, cyclic nucleotides, and interferons. The Journal of Biological Chemistry 261: 8624–8632.PubMedCrossRef Brandwein, S.R. 1986. Regulation of interleukin 1 production by mouse peritoneal macrophages. Effects of arachidonic acid metabolites, cyclic nucleotides, and interferons. The Journal of Biological Chemistry 261: 8624–8632.PubMedCrossRef
100.
Zurück zum Zitat Taskén, K., and E.M. Aandahl. 2004. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiological Reviews 84: 137–167.PubMedCrossRef Taskén, K., and E.M. Aandahl. 2004. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiological Reviews 84: 137–167.PubMedCrossRef
101.
Zurück zum Zitat Sokolowska, M., L.Y. Chen, Y. Liu, A. Martinez-Anton, H.Y. Qi, C. Logun, S. Alsaaty, Y.H. Park, D.L. Kastner, J.J. Chae, and J.H. Shelhamer. 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. Journal of Immunology (Baltimore, Md. : 1950) 194: 5472–5487.CrossRef Sokolowska, M., L.Y. Chen, Y. Liu, A. Martinez-Anton, H.Y. Qi, C. Logun, S. Alsaaty, Y.H. Park, D.L. Kastner, J.J. Chae, and J.H. Shelhamer. 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. Journal of Immunology (Baltimore, Md. : 1950) 194: 5472–5487.CrossRef
102.
Zurück zum Zitat Yan, Y., W. Jiang, L. Liu, X. Wang, C. Ding, Z. Tian, and R. Zhou. 2015. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160: 62–73.PubMedCrossRef Yan, Y., W. Jiang, L. Liu, X. Wang, C. Ding, Z. Tian, and R. Zhou. 2015. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160: 62–73.PubMedCrossRef
103.
Zurück zum Zitat Guo, C., S. Xie, Z. Chi, J. Zhang, Y. Liu, L. Zhang, M. Zheng, X. Zhang, D. Xia, Y. Ke, L. Lu, and D. Wang. 2016. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45: 802–816.PubMedCrossRef Guo, C., S. Xie, Z. Chi, J. Zhang, Y. Liu, L. Zhang, M. Zheng, X. Zhang, D. Xia, Y. Ke, L. Lu, and D. Wang. 2016. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45: 802–816.PubMedCrossRef
104.
Zurück zum Zitat Liu, Y., Y.Y. Jing, C.Y. Zeng, C.G. Li, L.H. Xu, L. Yan, W.J. Bai, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Frontiers in Pharmacology 8: 975.PubMedCrossRef Liu, Y., Y.Y. Jing, C.Y. Zeng, C.G. Li, L.H. Xu, L. Yan, W.J. Bai, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Frontiers in Pharmacology 8: 975.PubMedCrossRef
105.
Zurück zum Zitat Pan, H., Y. Lin, J. Dou, Z. Fu, Y. Yao, S. Ye, S. Zhang, N. Wang, A. Liu, X. Li, F. Zhang, and D. Chen. 2020. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Proliferation 53: e12868.PubMedPubMedCentral Pan, H., Y. Lin, J. Dou, Z. Fu, Y. Yao, S. Ye, S. Zhang, N. Wang, A. Liu, X. Li, F. Zhang, and D. Chen. 2020. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Proliferation 53: e12868.PubMedPubMedCentral
106.
Zurück zum Zitat Ye J., B. Zeng, M. Zhong, H. Li, L. Xu, J. Shu, Y. Wang, F. Yang, C. Zhong, X. Ye, D. Ouyang, X. He. 2020. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharmaceutica Sinica B 11: 112–126. Ye J., B. Zeng, M. Zhong, H. Li, L. Xu, J. Shu, Y. Wang, F. Yang, C. Zhong, X. Ye, D. Ouyang, X. He. 2020. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharmaceutica Sinica B 11: 112–126.
107.
Zurück zum Zitat Chen, R., L. Zeng, S. Zhu, J. Liu, H.J. Zeh, G. Kroemer, H. Wang, T.R. Billiar, J. Jiang, D. Tang, and R. Kang. 2019. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances 5: eaav5562.PubMedPubMedCentralCrossRef Chen, R., L. Zeng, S. Zhu, J. Liu, H.J. Zeh, G. Kroemer, H. Wang, T.R. Billiar, J. Jiang, D. Tang, and R. Kang. 2019. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances 5: eaav5562.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Ollivier, V., G.C. Parry, R.R. Cobb, D. de Prost, and N. Mackman. 1996. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. The Journal of Biological Chemistry 271: 20828–20835.PubMedCrossRef Ollivier, V., G.C. Parry, R.R. Cobb, D. de Prost, and N. Mackman. 1996. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. The Journal of Biological Chemistry 271: 20828–20835.PubMedCrossRef
109.
Zurück zum Zitat Chen, B.C., C.C. Liao, M.J. Hsu, Y.T. Liao, C.C. Lin, J.R. Sheu, and C.H. Lin. 2006. Peptidoglycan-induced IL-6 production in RAW 264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4 receptors, protein kinase A, I kappa B kinase, and NF-kappa B. Journal of Immunology (Baltimore, Md. : 1950) 177: 681–693.CrossRef Chen, B.C., C.C. Liao, M.J. Hsu, Y.T. Liao, C.C. Lin, J.R. Sheu, and C.H. Lin. 2006. Peptidoglycan-induced IL-6 production in RAW 264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4 receptors, protein kinase A, I kappa B kinase, and NF-kappa B. Journal of Immunology (Baltimore, Md. : 1950) 177: 681–693.CrossRef
110.
Zurück zum Zitat Steinberg, G.R., and B.E. Kemp. 2009. AMPK in Health and Disease. Physiological Reviews 89: 1025–1078.PubMedCrossRef Steinberg, G.R., and B.E. Kemp. 2009. AMPK in Health and Disease. Physiological Reviews 89: 1025–1078.PubMedCrossRef
111.
Zurück zum Zitat Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews. Molecular Cell Biology 13: 251–262.PubMedPubMedCentralCrossRef Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews. Molecular Cell Biology 13: 251–262.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Sag, D., D. Carling, R.D. Stout, and J. Suttles. 2008. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of Immunology (Baltimore, Md. : 1950) 181: 8633–8641.CrossRef Sag, D., D. Carling, R.D. Stout, and J. Suttles. 2008. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of Immunology (Baltimore, Md. : 1950) 181: 8633–8641.CrossRef
113.
Zurück zum Zitat Ouslimani, N., J. Peynet, D. Bonnefont-Rousselot, P. Thérond, A. Legrand, and J.L. Beaudeux. 2005. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism, Clinical and Experimental 54: 829–834.CrossRef Ouslimani, N., J. Peynet, D. Bonnefont-Rousselot, P. Thérond, A. Legrand, and J.L. Beaudeux. 2005. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism, Clinical and Experimental 54: 829–834.CrossRef
114.
Zurück zum Zitat Wang, S., M. Zhang, B. Liang, J. Xu, Z. Xie, C. Liu, B. Viollet, D. Yan, and M.H. Zou. 2010. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P) H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circulation Research 106: 1117–1128.PubMedPubMedCentralCrossRef Wang, S., M. Zhang, B. Liang, J. Xu, Z. Xie, C. Liu, B. Viollet, D. Yan, and M.H. Zou. 2010. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P) H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circulation Research 106: 1117–1128.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Wen, H., D. Gris, Y. Lei, S. Jha, L. Zhang, M.T. Huang, W.J. Brickey, and J.P. Ting. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology 12: 408–415.PubMedPubMedCentralCrossRef Wen, H., D. Gris, Y. Lei, S. Jha, L. Zhang, M.T. Huang, W.J. Brickey, and J.P. Ting. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology 12: 408–415.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biology 12: 311–324.PubMedPubMedCentralCrossRef Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biology 12: 311–324.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Walters, D.M., H.Y. Cho, and S.R. Kleeberger. 2008. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & Redox Signaling 10: 321–332.CrossRef Walters, D.M., H.Y. Cho, and S.R. Kleeberger. 2008. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & Redox Signaling 10: 321–332.CrossRef
118.
Zurück zum Zitat Zha, Q.B., H.X. Wei, C.G. Li, Y.D. Liang, L.H. Xu, W.J. Bai, H. Pan, X.H. He, and D.Y. Ouyang. 2016. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Frontiers in Immunology 7: 597.PubMedPubMedCentralCrossRef Zha, Q.B., H.X. Wei, C.G. Li, Y.D. Liang, L.H. Xu, W.J. Bai, H. Pan, X.H. He, and D.Y. Ouyang. 2016. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Frontiers in Immunology 7: 597.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Li, C.G., L. Yan, Y.Y. Jing, L.H. Xu, Y.D. Liang, H.X. Wei, B. Hu, H. Pan, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 8: 95–109.PubMedCrossRef Li, C.G., L. Yan, Y.Y. Jing, L.H. Xu, Y.D. Liang, H.X. Wei, B. Hu, H. Pan, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 8: 95–109.PubMedCrossRef
121.
Zurück zum Zitat Robb, R.J., and G.R. Hill. 2012. The interferon-dependent orchestration of innate and adaptive immunity after transplantation. Blood 119: 5351–5358.PubMedCrossRef Robb, R.J., and G.R. Hill. 2012. The interferon-dependent orchestration of innate and adaptive immunity after transplantation. Blood 119: 5351–5358.PubMedCrossRef
122.
Zurück zum Zitat Schneider, W.M., M.D. Chevillotte, and C.M. Rice. 2014. Interferon-stimulated genes: a complex web of host defenses. Annual Review of Immunology 32: 513–545.PubMedPubMedCentralCrossRef Schneider, W.M., M.D. Chevillotte, and C.M. Rice. 2014. Interferon-stimulated genes: a complex web of host defenses. Annual Review of Immunology 32: 513–545.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O'Garra. 2015. Type I interferons in infectious disease. Nature Reviews. Immunology 15: 87–103.PubMedPubMedCentralCrossRef McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O'Garra. 2015. Type I interferons in infectious disease. Nature Reviews. Immunology 15: 87–103.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Negishi, H., T. Taniguchi, and H. Yanai. 2018. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harbor Perspectives in Biology 10: a028423. Negishi, H., T. Taniguchi, and H. Yanai. 2018. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harbor Perspectives in Biology 10: a028423.
125.
Zurück zum Zitat Schauvliege, R., J. Vanrobaeys, P. Schotte, and R. Beyaert. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1. The Journal of Biological Chemistry 277: 41624–41630.PubMedCrossRef Schauvliege, R., J. Vanrobaeys, P. Schotte, and R. Beyaert. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1. The Journal of Biological Chemistry 277: 41624–41630.PubMedCrossRef
126.
Zurück zum Zitat Rathinam, V.A., S.K. Vanaja, L. Waggoner, A. Sokolovska, C. Becker, L.M. Stuart, J.M. Leong, and K.A. Fitzgerald. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150: 606–619.PubMedPubMedCentralCrossRef Rathinam, V.A., S.K. Vanaja, L. Waggoner, A. Sokolovska, C. Becker, L.M. Stuart, J.M. Leong, and K.A. Fitzgerald. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150: 606–619.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszyński, L.S. Forsberg, R.W. Carlson, and V.M. Dixit. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, N.Y.) 341: 1246–1249.CrossRef Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszyński, L.S. Forsberg, R.W. Carlson, and V.M. Dixit. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, N.Y.) 341: 1246–1249.CrossRef
128.
Zurück zum Zitat Py, B.F., M. Jin, B.N. Desai, A. Penumaka, H. Zhu, M. Kober, A. Dietrich, M.M. Lipinski, T. Henry, D.E. Clapham, and J. Yuan. 2014. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Reports 6: 1122–1128.PubMedCrossRef Py, B.F., M. Jin, B.N. Desai, A. Penumaka, H. Zhu, M. Kober, A. Dietrich, M.M. Lipinski, T. Henry, D.E. Clapham, and J. Yuan. 2014. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Reports 6: 1122–1128.PubMedCrossRef
129.
Zurück zum Zitat Man, S.M., R. Karki, M. Sasai, D.E. Place, S. Kesavardhana, J. Temirov, S. Frase, Q. Zhu, R.K.S. Malireddi, T. Kuriakose, J.L. Peters, G. Neale, S.A. Brown, M. Yamamoto, and T.D. Kanneganti. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167: 382–396.e317.PubMedPubMedCentralCrossRef Man, S.M., R. Karki, M. Sasai, D.E. Place, S. Kesavardhana, J. Temirov, S. Frase, Q. Zhu, R.K.S. Malireddi, T. Kuriakose, J.L. Peters, G. Neale, S.A. Brown, M. Yamamoto, and T.D. Kanneganti. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167: 382–396.e317.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Santos, J.C., M.S. Dick, B. Lagrange, D. Degrandi, K. Pfeffer, M. Yamamoto, E. Meunier, P. Pelczar, T. Henry, and P. Broz. 2018. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. The EMBO Journal 37: e98089. Santos, J.C., M.S. Dick, B. Lagrange, D. Degrandi, K. Pfeffer, M. Yamamoto, E. Meunier, P. Pelczar, T. Henry, and P. Broz. 2018. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. The EMBO Journal 37: e98089.
131.
Zurück zum Zitat Santos, J.C., D. Boucher, L.K. Schneider, B. Demarco, M. Dilucca, K. Shkarina, R. Heilig, K.W. Chen, R.Y.H. Lim, and P. Broz. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nature Communications 11: 3276.PubMedPubMedCentralCrossRef Santos, J.C., D. Boucher, L.K. Schneider, B. Demarco, M. Dilucca, K. Shkarina, R. Heilig, K.W. Chen, R.Y.H. Lim, and P. Broz. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nature Communications 11: 3276.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Kuriakose, T., S.M. Man, R.K. Malireddi, R. Karki, S. Kesavardhana, D.E. Place, G. Neale, P. Vogel, and T.D. Kanneganti. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1: aag2045. Kuriakose, T., S.M. Man, R.K. Malireddi, R. Karki, S. Kesavardhana, D.E. Place, G. Neale, P. Vogel, and T.D. Kanneganti. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1: aag2045.
133.
Zurück zum Zitat Xie, C.B., L. Qin, G. Li, C. Fang, N.C. Kirkiles-Smith, G. Tellides, J.S. Pober, and D. Jane-Wit. 2019. Complement membrane attack complexes assemble NLRP3 inflammasomes triggering IL-1 activation of IFN-γ-primed human endothelium. Circulation Research 124: 1747–1759.PubMedPubMedCentralCrossRef Xie, C.B., L. Qin, G. Li, C. Fang, N.C. Kirkiles-Smith, G. Tellides, J.S. Pober, and D. Jane-Wit. 2019. Complement membrane attack complexes assemble NLRP3 inflammasomes triggering IL-1 activation of IFN-γ-primed human endothelium. Circulation Research 124: 1747–1759.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Nguyen, V.T., and E.N. Benveniste. 2000. Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. The Journal of Biological Chemistry 275: 23674–23684.PubMedCrossRef Nguyen, V.T., and E.N. Benveniste. 2000. Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. The Journal of Biological Chemistry 275: 23674–23684.PubMedCrossRef
135.
Zurück zum Zitat Gaikwad, S., D. Patel, and R. Agrawal-Rajput. 2017. CD40 negatively regulates ATP-TLR4-activated inflammasome in microglia. Cellular and Molecular Neurobiology 37: 351–359.PubMedCrossRef Gaikwad, S., D. Patel, and R. Agrawal-Rajput. 2017. CD40 negatively regulates ATP-TLR4-activated inflammasome in microglia. Cellular and Molecular Neurobiology 37: 351–359.PubMedCrossRef
136.
Zurück zum Zitat Guarda, G., M. Braun, F. Staehli, A. Tardivel, C. Mattmann, I. Förster, M. Farlik, T. Decker, R.A. Du Pasquier, P. Romero, and J. Tschopp. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34: 213–223.PubMedCrossRef Guarda, G., M. Braun, F. Staehli, A. Tardivel, C. Mattmann, I. Förster, M. Farlik, T. Decker, R.A. Du Pasquier, P. Romero, and J. Tschopp. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34: 213–223.PubMedCrossRef
138.
Zurück zum Zitat Petrulea, M.S., T.S. Plantinga, J.W. Smit, C.E. Georgescu, and R.T. Netea-Maier. 2015. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treatment Reviews 41: 707–713.PubMedCrossRef Petrulea, M.S., T.S. Plantinga, J.W. Smit, C.E. Georgescu, and R.T. Netea-Maier. 2015. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treatment Reviews 41: 707–713.PubMedCrossRef
139.
Zurück zum Zitat Yang, Y., Y. Sun, J. Xu, K. Bao, M. Luo, X. Liu, and Y. Wang. 2018. Epithelial cells attenuate toll-like receptor-mediated inflammatory responses in monocyte-derived macrophage-like cells to mycobacterium tuberculosis by modulating the PI3K/Akt/mTOR signaling pathway. Mediators of Inflammation 2018: 3685948.PubMedPubMedCentral Yang, Y., Y. Sun, J. Xu, K. Bao, M. Luo, X. Liu, and Y. Wang. 2018. Epithelial cells attenuate toll-like receptor-mediated inflammatory responses in monocyte-derived macrophage-like cells to mycobacterium tuberculosis by modulating the PI3K/Akt/mTOR signaling pathway. Mediators of Inflammation 2018: 3685948.PubMedPubMedCentral
140.
Zurück zum Zitat Settembre, C., C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D.C. Rubinsztein, and A. Ballabio. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–33. Settembre, C., C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D.C. Rubinsztein, and A. Ballabio. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–33.
141.
Zurück zum Zitat Krieg, S., B. Lüscher, J. Vervoorts, and M. Dohmen. 2018. Studying the role of AMPK in autophagy. Methods in Molecular Biology (Clifton, N.J.) 1732: 373–391.CrossRef Krieg, S., B. Lüscher, J. Vervoorts, and M. Dohmen. 2018. Studying the role of AMPK in autophagy. Methods in Molecular Biology (Clifton, N.J.) 1732: 373–391.CrossRef
142.
Zurück zum Zitat Kim, S.H., G. Kim, D.H. Han, M. Lee, I. Kim, B. Kim, K.H. Kim, Y.M. Song, J.E. Yoo, H.J. Wang, S.H. Bae, Y.H. Lee, B.W. Lee, E.S. Kang, B.S. Cha, and M.S. Lee. 2017. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13: 1767–1781.PubMedPubMedCentralCrossRef Kim, S.H., G. Kim, D.H. Han, M. Lee, I. Kim, B. Kim, K.H. Kim, Y.M. Song, J.E. Yoo, H.J. Wang, S.H. Bae, Y.H. Lee, B.W. Lee, E.S. Kang, B.S. Cha, and M.S. Lee. 2017. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13: 1767–1781.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Inoki, K., T. Zhu, and K.L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.PubMedCrossRef Inoki, K., T. Zhu, and K.L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.PubMedCrossRef
144.
Zurück zum Zitat Gwinn, D.M., D.B. Shackelford, D.F. Egan, M.M. Mihaylova, A. Mery, D.S. Vasquez, B.E. Turk, and R.J. Shaw. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 30: 214–226.PubMedPubMedCentralCrossRef Gwinn, D.M., D.B. Shackelford, D.F. Egan, M.M. Mihaylova, A. Mery, D.S. Vasquez, B.E. Turk, and R.J. Shaw. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 30: 214–226.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Salminen, A., and K. Kaarniranta. 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews 11: 230–241.PubMedCrossRef Salminen, A., and K. Kaarniranta. 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews 11: 230–241.PubMedCrossRef
146.
Zurück zum Zitat Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13: 539–548.PubMedCrossRef Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13: 539–548.PubMedCrossRef
147.
Zurück zum Zitat Fitzgerald, K.A., S.M. McWhirter, K.L. Faia, D.C. Rowe, E. Latz, D.T. Golenbock, A.J. Coyle, S.M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology 4: 491–496.PubMedCrossRef Fitzgerald, K.A., S.M. McWhirter, K.L. Faia, D.C. Rowe, E. Latz, D.T. Golenbock, A.J. Coyle, S.M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology 4: 491–496.PubMedCrossRef
148.
Zurück zum Zitat Tamura, T., H. Yanai, D. Savitsky, and T. Taniguchi. 2008. The IRF family transcription factors in immunity and oncogenesis. Annual Review of Immunology 26: 535–584.PubMedCrossRef Tamura, T., H. Yanai, D. Savitsky, and T. Taniguchi. 2008. The IRF family transcription factors in immunity and oncogenesis. Annual Review of Immunology 26: 535–584.PubMedCrossRef
149.
Zurück zum Zitat Samie, M., J. Lim, E. Verschueren, J.M. Baughman, I. Peng, A. Wong, Y. Kwon, Y. Senbabaoglu, J.A. Hackney, M. Keir, B. McKenzie, D.S. Kirkpatrick, M. van Lookeren Campagne, and A. Murthy. 2018. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nature Immunology 19: 246–254.PubMedCrossRef Samie, M., J. Lim, E. Verschueren, J.M. Baughman, I. Peng, A. Wong, Y. Kwon, Y. Senbabaoglu, J.A. Hackney, M. Keir, B. McKenzie, D.S. Kirkpatrick, M. van Lookeren Campagne, and A. Murthy. 2018. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nature Immunology 19: 246–254.PubMedCrossRef
150.
Zurück zum Zitat Meares, G.P., H. Qin, Y. Liu, A.T. Holdbrooks, and E.N. Benveniste. 2013. AMP-activated protein kinase restricts IFN-γ signaling. Journal of Immunology (Baltimore, Md. : 1950) 190: 372–380.CrossRef Meares, G.P., H. Qin, Y. Liu, A.T. Holdbrooks, and E.N. Benveniste. 2013. AMP-activated protein kinase restricts IFN-γ signaling. Journal of Immunology (Baltimore, Md. : 1950) 190: 372–380.CrossRef
Metadaten
Titel
The Signaling Pathways Regulating NLRP3 Inflammasome Activation
verfasst von
Ming-ye Chen
Xun-jia Ye
Xian-hui He
Dong-yun Ouyang
Publikationsdatum
19.05.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01439-6

Weitere Artikel der Ausgabe 4/2021

Inflammation 4/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Hereditäres Angioödem: Tablette könnte Akuttherapie erleichtern

05.06.2024 Hereditäres Angioödem Nachrichten

Medikamente zur Bedarfstherapie bei hereditärem Angioödem sind bisher nur als Injektionen und Infusionen verfügbar. Der Arzneistoff Sebetralstat kann oral verabreicht werden und liefert vielversprechende Daten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.