Skip to main content
Erschienen in: Current Treatment Options in Cardiovascular Medicine 4/2018

01.04.2018 | Cardio-oncology (M Fradley, Section Editor)

Radiation-Induced Cardiovascular Toxicity: Mechanisms, Prevention, and Treatment

verfasst von: Johan Spetz, PhD, Javid Moslehi, MD, Kristopher Sarosiek, PhD

Erschienen in: Current Treatment Options in Cardiovascular Medicine | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

Ionizing radiation is a highly effective treatment for a wide range of malignancies, yet the cardiovascular (CV) toxicity that can result from chest radiotherapy impairs the long-term health of cancer survivors and can be a limiting factor for its use. Despite over 100 years of successful clinical use, the mechanisms by which high-energy photons damage critical components within cells of the heart’s myocardium, pericardium, vasculature, and valves remain unclear.

Recent findings

Recent studies exploring the acute and chronic effects of radiation therapy on cardiac and vascular tissue have provided new insights into the development and progression of heart disease, including the identification and understanding of age- and complication-associated risk factors. However, key questions relating to the connection from upstream signaling to fibrotic changes remain. In addition, advances in the delivery of chest radiotherapy have helped to limit heart exposure and damage, but additional refinements to delivery techniques and cardioprotective therapeutics are absolutely necessary to reduce patient mortality and morbidity.

Summary

Radiation therapy (RT)-driven CV toxicity remains a major issue for cancer survivors and more research is needed to define the precise mechanisms of toxicity. However, recent findings provide meaningful insights that may help improve patient outcomes.
Literatur
1.
Zurück zum Zitat De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, et al. Organs at risk in lung SBRT. Medica: Phys; 2017. De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, et al. Organs at risk in lung SBRT. Medica: Phys; 2017.
2.
Zurück zum Zitat Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102:269–76.CrossRefPubMed Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102:269–76.CrossRefPubMed
3.
Zurück zum Zitat Zheng HC, Onderko L, Francis SA. Cardiovascular risk in survivors of cancer. Curr Cardiol. Rep. 2017. Zheng HC, Onderko L, Francis SA. Cardiovascular risk in survivors of cancer. Curr Cardiol. Rep. 2017.
4.
Zurück zum Zitat Gernaat SAM, Ho PJ, Rijnberg N, Emaus MJ, Baak LM, Hartman M, et al. Risk of death from cardiovascular disease following breast cancer: a systematic review. Breast Cancer Res Treat. 2017;164:537–55.CrossRefPubMedPubMedCentral Gernaat SAM, Ho PJ, Rijnberg N, Emaus MJ, Baak LM, Hartman M, et al. Risk of death from cardiovascular disease following breast cancer: a systematic review. Breast Cancer Res Treat. 2017;164:537–55.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.CrossRefPubMed McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.CrossRefPubMed
6.
Zurück zum Zitat Raghunathan D, Khilji MI, Hassan SA, Yusuf SW. Radiation-induced cardiovascular disease. Curr. Atheroscler. Rep. Current Atherosclerosis Reports; 2017;19. Raghunathan D, Khilji MI, Hassan SA, Yusuf SW. Radiation-induced cardiovascular disease. Curr. Atheroscler. Rep. Current Atherosclerosis Reports; 2017;19.
7.
Zurück zum Zitat Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309:2371.CrossRefPubMedPubMedCentral Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309:2371.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat •• Fidler MM, Reulen RC, Henson K, Kelly J, Cutter D, Levitt GA, et al. Population-based long-term cardiac-specific mortality among 34,489 five-year survivors of childhood cancer in Great Britain. Circulation. 2017. Highlights the importance of monitoring cardiac diseases in survivors of childhood cancer, and suggests that recent initiatives to reduce cardiotoxicity may have a measurable impact. •• Fidler MM, Reulen RC, Henson K, Kelly J, Cutter D, Levitt GA, et al. Population-based long-term cardiac-specific mortality among 34,489 five-year survivors of childhood cancer in Great Britain. Circulation. 2017. Highlights the importance of monitoring cardiac diseases in survivors of childhood cancer, and suggests that recent initiatives to reduce cardiotoxicity may have a measurable impact.
9.
Zurück zum Zitat • Boerma M, Sridharan V, Mao X-W, Nelson GA, Cheema AK, Koturbash I, et al. Effects of ionizing radiation on the heart. Mutat Res. 2016;770:319–27. Describes acute and late radiation-induced cardiovascular toxicities, as well as epidemiology for clinical and non-clinical radiation exposure situations.CrossRefPubMedPubMedCentral • Boerma M, Sridharan V, Mao X-W, Nelson GA, Cheema AK, Koturbash I, et al. Effects of ionizing radiation on the heart. Mutat Res. 2016;770:319–27. Describes acute and late radiation-induced cardiovascular toxicities, as well as epidemiology for clinical and non-clinical radiation exposure situations.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lipshultz SE, Franco VI, Miller TL, Colan SD, Sallan SE. Cardiovascular disease in adult survivors of childhood cancer. Annu Rev Med. 2015;66:161–76.CrossRefPubMedPubMedCentral Lipshultz SE, Franco VI, Miller TL, Colan SD, Sallan SE. Cardiovascular disease in adult survivors of childhood cancer. Annu Rev Med. 2015;66:161–76.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol Nature Publishing Group. 2013;10:697–710.CrossRefPubMed Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol Nature Publishing Group. 2013;10:697–710.CrossRefPubMed
12.
Zurück zum Zitat Hutchins KK, Siddeek H, Franco VI, Lipshultz SE. Prevention of cardiotoxicity among survivors of childhood cancer. Br J Clin Pharmacol. 2017. p. 455–65. Hutchins KK, Siddeek H, Franco VI, Lipshultz SE. Prevention of cardiotoxicity among survivors of childhood cancer. Br J Clin Pharmacol. 2017. p. 455–65.
13.
Zurück zum Zitat Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol. 2016. p. 14–25. Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol. 2016. p. 14–25.
15.
Zurück zum Zitat Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 2017; Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 2017;
16.
Zurück zum Zitat Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 2015;5. Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 2015;5.
17.
Zurück zum Zitat Brosius FC, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3500 rads to the heart. Am J Med. 1981;70:519–30.CrossRefPubMed Brosius FC, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3500 rads to the heart. Am J Med. 1981;70:519–30.CrossRefPubMed
18.
Zurück zum Zitat Finet JE. Management of heart failure in cancer patients and cancer survivors. Heart Fail Clin 2017. p. 253–88. Finet JE. Management of heart failure in cancer patients and cancer survivors. Heart Fail Clin 2017. p. 253–88.
19.
Zurück zum Zitat Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, et al. Abnormal exercise response in long-term survivors of Hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65:573–83.CrossRefPubMed Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, et al. Abnormal exercise response in long-term survivors of Hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65:573–83.CrossRefPubMed
20.
Zurück zum Zitat Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol. 2017. p. 255–61. Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol. 2017. p. 255–61.
21.
Zurück zum Zitat Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biol. 2010;31:363–72.CrossRef Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biol. 2010;31:363–72.CrossRef
22.
Zurück zum Zitat Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol. 2003;66:1547–54.CrossRefPubMed Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem. Pharmacol. 2003;66:1547–54.CrossRefPubMed
23.
Zurück zum Zitat Lee C-L, Moding EJ, Cuneo KC, Li Y, Sullivan JM, Mao L, et al. p53 functions in endothelial cells to prevent radiation-induced myocardial injury in mice. Sci Signal. 2012;5:ra52.CrossRefPubMedPubMedCentral Lee C-L, Moding EJ, Cuneo KC, Li Y, Sullivan JM, Mao L, et al. p53 functions in endothelial cells to prevent radiation-induced myocardial injury in mice. Sci Signal. 2012;5:ra52.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Sarosiek KA, Ni Chonghaile T, Letai A. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol. Elsevier Ltd. 2013;23:612–9.CrossRefPubMed Sarosiek KA, Ni Chonghaile T, Letai A. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol. Elsevier Ltd. 2013;23:612–9.CrossRefPubMed
25.
Zurück zum Zitat Willers H, Held KD. Introduction to clinical radiation biology. Hematol Oncol Clin North Am. 2006. p. 1–24. Willers H, Held KD. Introduction to clinical radiation biology. Hematol Oncol Clin North Am. 2006. p. 1–24.
26.
Zurück zum Zitat Bergonié J, Tribondeau L. De Quelques Résultats de la Radiotherapie et Essai de Fixation d’une Technique Rationnelle. Comptes Rendus des Séances l’Académie des Sci. 1906;143:983–5. Bergonié J, Tribondeau L. De Quelques Résultats de la Radiotherapie et Essai de Fixation d’une Technique Rationnelle. Comptes Rendus des Séances l’Académie des Sci. 1906;143:983–5.
27.
Zurück zum Zitat Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61:2319–28.CrossRefPubMed Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61:2319–28.CrossRefPubMed
28.
Zurück zum Zitat Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science (80-.). 2009;324:98–102.CrossRef Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science (80-.). 2009;324:98–102.CrossRef
29.
Zurück zum Zitat Tzahor E, Poss KD. Cardiac regeneration strategies: staying young at heart. Science (80-.). 2017;356:1035 LP–1039.CrossRef Tzahor E, Poss KD. Cardiac regeneration strategies: staying young at heart. Science (80-.). 2017;356:1035 LP–1039.CrossRef
30.
Zurück zum Zitat Yarnold J, Vozenin Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010. p. 149–61. Yarnold J, Vozenin Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010. p. 149–61.
31.
Zurück zum Zitat Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW. Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci U. S. A. 1990;87:5663–6.CrossRefPubMedPubMedCentral Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW. Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci U. S. A. 1990;87:5663–6.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Kara M, Özçağlı E, Jannuzzi AT, Alpertunga B. Oxidative stress mediated cardiac apoptosis. J Fac Pharm Istanbul Univ. 2015;45:217–32. Kara M, Özçağlı E, Jannuzzi AT, Alpertunga B. Oxidative stress mediated cardiac apoptosis. J Fac Pharm Istanbul Univ. 2015;45:217–32.
33.
Zurück zum Zitat Firsanov D, Vasilishina A, Kropotov A, Mikhailov V. Dynamics of γh2AX formation and elimination in mammalian cells after X-irradiation. Biochimie. 2012;94:2416–22.CrossRefPubMed Firsanov D, Vasilishina A, Kropotov A, Mikhailov V. Dynamics of γh2AX formation and elimination in mammalian cells after X-irradiation. Biochimie. 2012;94:2416–22.CrossRefPubMed
34.
Zurück zum Zitat Salata C, Ferreira-Machado SC, De Andrade CBV, Mencalha AL, Mandarim-De-Lacerda CA, de Almeida CE. Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy. Int J Radiat Biol. 2014;90:284–90.CrossRefPubMed Salata C, Ferreira-Machado SC, De Andrade CBV, Mencalha AL, Mandarim-De-Lacerda CA, de Almeida CE. Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy. Int J Radiat Biol. 2014;90:284–90.CrossRefPubMed
35.
Zurück zum Zitat Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, et al. BID Preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell. 2013;51:751–65.CrossRefPubMedPubMedCentral Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, et al. BID Preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell. 2013;51:751–65.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Mitchel REJ, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen Y-X, et al. Low-dose radiation exposure and protection against atherosclerosis in ApoE(−/−) mice: the influence of P53 heterozygosity. Radiat Res. 2013;179:190–9.CrossRefPubMed Mitchel REJ, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen Y-X, et al. Low-dose radiation exposure and protection against atherosclerosis in ApoE(−/−) mice: the influence of P53 heterozygosity. Radiat Res. 2013;179:190–9.CrossRefPubMed
37.
Zurück zum Zitat • Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. Elsevier Inc. 2017;31:142–56. Introduces the concept of developmental regulation of apoptosis as a component of the treatment-associated toxicities observed in pediatric patients.CrossRef • Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. Elsevier Inc. 2017;31:142–56. Introduces the concept of developmental regulation of apoptosis as a component of the treatment-associated toxicities observed in pediatric patients.CrossRef
38.
Zurück zum Zitat Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRefPubMed Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRefPubMed
39.
Zurück zum Zitat • De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol. 2017;124:1–10. Comprehensive guidelines for the planning of lung cancer radiotherapy, in terms of both target volume and organs at risk.CrossRefPubMed • De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol. 2017;124:1–10. Comprehensive guidelines for the planning of lung cancer radiotherapy, in terms of both target volume and organs at risk.CrossRefPubMed
40.
Zurück zum Zitat Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE. Long-term cardiac mortality after radiotherapy of breast cancer—application of the relative seriality model. Br J Radiol. 1996;69:839–46.CrossRefPubMed Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE. Long-term cardiac mortality after radiotherapy of breast cancer—application of the relative seriality model. Br J Radiol. 1996;69:839–46.CrossRefPubMed
41.
Zurück zum Zitat Pollock S, Keall R, Keall P. Breathing guidance in radiation oncology and radiology: a systematic review of patient and healthy volunteer studies. Med Phys. 2015;42:5490–509.CrossRefPubMed Pollock S, Keall R, Keall P. Breathing guidance in radiation oncology and radiology: a systematic review of patient and healthy volunteer studies. Med Phys. 2015;42:5490–509.CrossRefPubMed
42.
Zurück zum Zitat Lymberis SC, De Wyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84:902–9.CrossRefPubMed Lymberis SC, De Wyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84:902–9.CrossRefPubMed
43.
Zurück zum Zitat Sung KH, Choi YE, Lee KC. Cardiac risk index as a simple geometric indicator to select patients for the heart-sparing radiotherapy of left-sided breast cancer. J Med Imaging Radiat Oncol. 2017;61:410–7.CrossRefPubMed Sung KH, Choi YE, Lee KC. Cardiac risk index as a simple geometric indicator to select patients for the heart-sparing radiotherapy of left-sided breast cancer. J Med Imaging Radiat Oncol. 2017;61:410–7.CrossRefPubMed
44.
Zurück zum Zitat • Nona Duma M, Herr A-C, Borm KJ, Trott KR, Molls M, Oechsner M, et al. Tangential field radiotherapy for breast cancer—the dose to the heart and heart subvolumes: what structures must be contoured in future clinical trials? Front Oncol. 2017;7:130. Highlights the importance of heart substructure-specific contouring in RT planning, especially considering late toxicities.CrossRef • Nona Duma M, Herr A-C, Borm KJ, Trott KR, Molls M, Oechsner M, et al. Tangential field radiotherapy for breast cancer—the dose to the heart and heart subvolumes: what structures must be contoured in future clinical trials? Front Oncol. 2017;7:130. Highlights the importance of heart substructure-specific contouring in RT planning, especially considering late toxicities.CrossRef
45.
Zurück zum Zitat Hedin E, Bäck A, Chakarova R. Impact of lung density on the lung dose estimation for radiotherapy of breast cancer. Phys. Imaging Radiat. Oncol. 2017;3:5–10.CrossRef Hedin E, Bäck A, Chakarova R. Impact of lung density on the lung dose estimation for radiotherapy of breast cancer. Phys. Imaging Radiat. Oncol. 2017;3:5–10.CrossRef
46.
Zurück zum Zitat Hoppe BS, Flampouri S, Su Z, Latif N, Dang NH, Lynch J, et al. Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:449–55.CrossRefPubMed Hoppe BS, Flampouri S, Su Z, Latif N, Dang NH, Lynch J, et al. Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:449–55.CrossRefPubMed
47.
Zurück zum Zitat Vogel J, Lin L, Simone CB, Berman AT. Risk of major cardiac events following adjuvant proton versus photon radiation therapy for patients with thymic malignancies. Acta Oncol. (Madr). 2017;56:1060–4.CrossRef Vogel J, Lin L, Simone CB, Berman AT. Risk of major cardiac events following adjuvant proton versus photon radiation therapy for patients with thymic malignancies. Acta Oncol. (Madr). 2017;56:1060–4.CrossRef
48.
Zurück zum Zitat Amino M, Yoshioka K, Shima M, Okada T, Nakajima M, Furusawa Y, et al. Changes in arrhythmogenic properties and five-year prognosis after carbon-ion radiotherapy in patients with mediastinum cancer. Ann Noninvasive Electrocardiol. 2017;1–13. Amino M, Yoshioka K, Shima M, Okada T, Nakajima M, Furusawa Y, et al. Changes in arrhythmogenic properties and five-year prognosis after carbon-ion radiotherapy in patients with mediastinum cancer. Ann Noninvasive Electrocardiol. 2017;1–13.
49.
Zurück zum Zitat Stick LB, Yu J, Maraldo MV, Aznar MC, Pedersen AN, Bentzen SM, et al. Joint estimation of cardiac toxicity and recurrence risks after comprehensive nodal photon versus proton therapy for breast cancer. Int J Radiat Oncol Biol Phys Elsevier Inc. 2017;97:754–61.CrossRef Stick LB, Yu J, Maraldo MV, Aznar MC, Pedersen AN, Bentzen SM, et al. Joint estimation of cardiac toxicity and recurrence risks after comprehensive nodal photon versus proton therapy for breast cancer. Int J Radiat Oncol Biol Phys Elsevier Inc. 2017;97:754–61.CrossRef
50.
Zurück zum Zitat Wu S, Tao L, Wang J, Xu Z, Wang J, Xue Y, et al. Amifostine pretreatment attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis and oxidative stress. Oxid Med Cell Longev. 2017;2017:1–12. Wu S, Tao L, Wang J, Xu Z, Wang J, Xue Y, et al. Amifostine pretreatment attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis and oxidative stress. Oxid Med Cell Longev. 2017;2017:1–12.
51.
Zurück zum Zitat De Freitas RB, Boligon AA, Rovani BT, Piana M, De Brum TF, Da Silva JR, et al. Effect of black grape juice against heart damage from acute gamma TBI in rats. Molecules. 2013;18:12154–67.CrossRefPubMed De Freitas RB, Boligon AA, Rovani BT, Piana M, De Brum TF, Da Silva JR, et al. Effect of black grape juice against heart damage from acute gamma TBI in rats. Molecules. 2013;18:12154–67.CrossRefPubMed
52.
Zurück zum Zitat Qian L, Cao F, Cui J, Wang Y, Huang Y, Chuai Y, et al. The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res. 2010;51:741–7.CrossRefPubMed Qian L, Cao F, Cui J, Wang Y, Huang Y, Chuai Y, et al. The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res. 2010;51:741–7.CrossRefPubMed
53.
Zurück zum Zitat Fan Z, Han Y, Ye Y, Liu C, Cai H. L-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signaling in hearts exposed to irradiation. Eur. J. Pharmacol. 2017;804:7–12.CrossRefPubMed Fan Z, Han Y, Ye Y, Liu C, Cai H. L-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signaling in hearts exposed to irradiation. Eur. J. Pharmacol. 2017;804:7–12.CrossRefPubMed
54.
Zurück zum Zitat Zhang W, Li Y, Li R, Wang Y, Zhu M, Wang B, et al. Sodium tanshinone IIA sulfonate prevents radiation-induced toxicity in H9c2 ardiomyocytes. Evidence-based Complement Altern Med 2017;2017. Zhang W, Li Y, Li R, Wang Y, Zhu M, Wang B, et al. Sodium tanshinone IIA sulfonate prevents radiation-induced toxicity in H9c2 ardiomyocytes. Evidence-based Complement Altern Med 2017;2017.
55.
Zurück zum Zitat Zhang ZY, Li Y, Li R, Zhang AA, Shang B, Yu J, et al. Tetrahydrobiopterin protects against radiation-induced growth inhibition in H9c2 cardiomyocytes. Chin. Med. J. (Engl). 2016;129:2733–40.CrossRef Zhang ZY, Li Y, Li R, Zhang AA, Shang B, Yu J, et al. Tetrahydrobiopterin protects against radiation-induced growth inhibition in H9c2 cardiomyocytes. Chin. Med. J. (Engl). 2016;129:2733–40.CrossRef
56.
Zurück zum Zitat Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 2011. p. 1–16. Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 2011. p. 1–16.
57.
Zurück zum Zitat Elitok A, Oz F, Ahmet Y, Kilic L, Ciftci R, Sen F, et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J. 2014;21:509–15.CrossRefPubMed Elitok A, Oz F, Ahmet Y, Kilic L, Ciftci R, Sen F, et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J. 2014;21:509–15.CrossRefPubMed
58.
Zurück zum Zitat Panel M, Ghaleh B, Morin D. Targeting mitochondrial permeability as a pharmacological cardioprotective strategy. Med Res Arch. 2017;5 Panel M, Ghaleh B, Morin D. Targeting mitochondrial permeability as a pharmacological cardioprotective strategy. Med Res Arch. 2017;5
59.
Zurück zum Zitat Frankenreiter S, Bednarczyk P, Kniess A, Bork N, Straubinger J, Koprowski P, et al. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017; Frankenreiter S, Bednarczyk P, Kniess A, Bork N, Straubinger J, Koprowski P, et al. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017;
60.
Zurück zum Zitat Guo X, Yin H, Li L, Chen Y, Li J, Doan J, et al. Cardioprotective role of TRAF2 by suppressing apoptosis and necroptosis. Circulation. 2017; Guo X, Yin H, Li L, Chen Y, Li J, Doan J, et al. Cardioprotective role of TRAF2 by suppressing apoptosis and necroptosis. Circulation. 2017;
61.
Zurück zum Zitat Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol. 2017;95:1236–44.CrossRefPubMed Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol. 2017;95:1236–44.CrossRefPubMed
62.
Zurück zum Zitat Children’s Oncology Group. Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancer Long-Term Follow-Up Guidelines, Version 4.0. 2013;1–241. Children’s Oncology Group. Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancer Long-Term Follow-Up Guidelines, Version 4.0. 2013;1–241.
63.
Zurück zum Zitat Spewak MB, Williamson RS, Mertens AC, Border WL, Meacham LR, Wasilewski-Masker KJ. Yield of screening echocardiograms during pediatric follow-up in survivors treated with anthracyclines and cardiotoxic radiation. Pediatr Blood Cancer. 2017;64. Spewak MB, Williamson RS, Mertens AC, Border WL, Meacham LR, Wasilewski-Masker KJ. Yield of screening echocardiograms during pediatric follow-up in survivors treated with anthracyclines and cardiotoxic radiation. Pediatr Blood Cancer. 2017;64.
64.
Zurück zum Zitat • Sritharan HP, Delaney GP, Lo Q, Batumalai V, Xuan W, Thomas L. Evaluation of traditional and novel echocardiographic methods of cardiac diastolic dysfunction post radiotherapy in breast cancer. Int J Cardiol. 2017;243:204–8. Describes the current status of echocardiographic diagnostics, and the need for novel methods in future guidelines.CrossRefPubMed • Sritharan HP, Delaney GP, Lo Q, Batumalai V, Xuan W, Thomas L. Evaluation of traditional and novel echocardiographic methods of cardiac diastolic dysfunction post radiotherapy in breast cancer. Int J Cardiol. 2017;243:204–8. Describes the current status of echocardiographic diagnostics, and the need for novel methods in future guidelines.CrossRefPubMed
65.
Zurück zum Zitat Patel AA, Labovitz AJ. Advanced echocardiographic techniques in detection of cardiotoxicity. Curr. Treat. Options Cardiovasc. Med. 2016. p. 1–13. Patel AA, Labovitz AJ. Advanced echocardiographic techniques in detection of cardiotoxicity. Curr. Treat. Options Cardiovasc. Med. 2016. p. 1–13.
66.
Zurück zum Zitat Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: Pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128:1927–55.CrossRefPubMed Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: Pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128:1927–55.CrossRefPubMed
67.
Zurück zum Zitat Yusuf SW, Sami S, Daher IN. Radiation-induced heart disease: a clinical update. Cardiol Res Pract. 2011;2011:1–9. Yusuf SW, Sami S, Daher IN. Radiation-induced heart disease: a clinical update. Cardiol Res Pract. 2011;2011:1–9.
68.
Zurück zum Zitat Wu W, Masri A, Popovic ZB, Smedira NG, Lytle BW, Marwick TH, et al. Long-term survival of patients with radiation heart disease undergoing cardiac surgery: A cohort study. Circulation. 2013;127:1476–84.CrossRefPubMed Wu W, Masri A, Popovic ZB, Smedira NG, Lytle BW, Marwick TH, et al. Long-term survival of patients with radiation heart disease undergoing cardiac surgery: A cohort study. Circulation. 2013;127:1476–84.CrossRefPubMed
69.
Zurück zum Zitat •• Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2017;70:252–89. Comprehensive clinical guidelines applicable to patients with or at risk of developing valvular heart disease.CrossRefPubMed •• Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2017;70:252–89. Comprehensive clinical guidelines applicable to patients with or at risk of developing valvular heart disease.CrossRefPubMed
70.
Zurück zum Zitat Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al. ESC guidelines for the diagnosis and management of pericardial diseases. Eur Heart J. 2015;2015:2921–64.CrossRef Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al. ESC guidelines for the diagnosis and management of pericardial diseases. Eur Heart J. 2015;2015:2921–64.CrossRef
71.
Zurück zum Zitat Johnston DR. Surgical management of pericardial diseases. Prog. Cardiovasc. Dis. 2017. p. 407–16. Johnston DR. Surgical management of pericardial diseases. Prog. Cardiovasc. Dis. 2017. p. 407–16.
72.
Zurück zum Zitat Lee Y, Naruse Y, Tanaka K. Effectiveness and long-term outcomes of surgical intervention for constrictive epicardium in constrictive pericarditis. Gen. Thorac. Cardiovasc. Surg. Springer Japan; 2017;0:0. Lee Y, Naruse Y, Tanaka K. Effectiveness and long-term outcomes of surgical intervention for constrictive epicardium in constrictive pericarditis. Gen. Thorac. Cardiovasc. Surg. Springer Japan; 2017;0:0.
Metadaten
Titel
Radiation-Induced Cardiovascular Toxicity: Mechanisms, Prevention, and Treatment
verfasst von
Johan Spetz, PhD
Javid Moslehi, MD
Kristopher Sarosiek, PhD
Publikationsdatum
01.04.2018
Verlag
Springer US
Erschienen in
Current Treatment Options in Cardiovascular Medicine / Ausgabe 4/2018
Print ISSN: 1092-8464
Elektronische ISSN: 1534-3189
DOI
https://doi.org/10.1007/s11936-018-0627-x

Weitere Artikel der Ausgabe 4/2018

Current Treatment Options in Cardiovascular Medicine 4/2018 Zur Ausgabe

Cardio-oncology (M Fradley, Section Editor)

Evaluation and Management of Cardiac Tumors

Ist Fasten vor Koronarinterventionen wirklich nötig?

Wenn Eingriffe wie eine Koronarangiografie oder eine Koronarangioplastie anstehen, wird häufig empfohlen, in den Stunden zuvor nüchtern zu bleiben. Ein französisches Forscherteam hat diese Maßnahme hinterfragt.

PET kann infarktgefährdete Koronararterien entdecken

04.06.2024 Koronare Herzerkrankung Nachrichten

Der Nachweis aktiver Plaques mittels 18F-Natriumfluorid-PET hilft nicht nur, infarktgefährdete Patienten, sondern auch infarktgefährdete Koronararterien zu erkennen. Von einer gezielten Behandlung vulnerabler Plaques ist man trotzdem weit entfernt.

GLP-1-Agonist Semaglutid wirkt kardio- und nephroprotektiv

03.06.2024 Semaglutid Nachrichten

Der GLP-1-Agonist Semaglutid hat in der FLOW-Studie bewiesen, dass sich damit die Progression chronischer Nierenerkrankungen bei Patienten mit Typ-2-Diabetes bremsen lässt. Auch in kardiovaskulärer Hinsicht war die Therapie erfolgreich.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.