Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2011

01.10.2011

Biomaterials Advances in Patches for Congenital Heart Defect Repair

verfasst von: Seokwon Pok, Jeffrey G. Jacot

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

This article reviews current applications and novel candidate biomaterials for use as tissue-engineered scaffolds in pediatric cardiac tissue engineering. This overview of different types of biomaterials includes naturally derived and synthetic polymers and their biological, physical, and biomechanical properties for the use as a patch or baffle for surgical reconstruction of congenital heart defects. Applications and characteristics of composite biomaterials are highlighted with their respective feasibilities in use as cardiac scaffolds. Currently, a wide range of biomaterials has been introduced for cardiovascular reconstruction for complex congenital cardiac defects. However, there are still many remaining challenges for engineered tissue implantations.
Literatur
1.
Zurück zum Zitat Martin, J. A., Kung, H. C., Mathews, T. J., Hoyert, D. L., Strobino, D. M., Guyer, B., et al. (2008). Annual summary of vital statistics: 2006. Pediatrics, 121(4), 788–801.PubMedCrossRef Martin, J. A., Kung, H. C., Mathews, T. J., Hoyert, D. L., Strobino, D. M., Guyer, B., et al. (2008). Annual summary of vital statistics: 2006. Pediatrics, 121(4), 788–801.PubMedCrossRef
2.
Zurück zum Zitat Kung HC, H. D., Xu, J., & Murphy, S. L. (2008). Deaths: Final data for 2005. National Vital Statistics Reports, 56(10), 1–124.PubMed Kung HC, H. D., Xu, J., & Murphy, S. L. (2008). Deaths: Final data for 2005. National Vital Statistics Reports, 56(10), 1–124.PubMed
3.
Zurück zum Zitat Silka, M. J., Hardy, B. G., Menashe, V. D., & Morris, C. D. (1998). A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. Journal of the American College of Cardiology, 32(1), 245–251.PubMedCrossRef Silka, M. J., Hardy, B. G., Menashe, V. D., & Morris, C. D. (1998). A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. Journal of the American College of Cardiology, 32(1), 245–251.PubMedCrossRef
4.
Zurück zum Zitat Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Executive summary: Heart disease and stroke statistics–2010 update: A report from the American Heart Association. Circulation, 121(7), 948–954.PubMedCrossRef Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Executive summary: Heart disease and stroke statistics–2010 update: A report from the American Heart Association. Circulation, 121(7), 948–954.PubMedCrossRef
5.
Zurück zum Zitat Reller, M. D., Strickland, M. J., Riehle-Colarusso, T., Mahle, W. T., & Correa, A. (2008). Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. Journal of Pediatrics, 153(6), 807–813.PubMedCrossRef Reller, M. D., Strickland, M. J., Riehle-Colarusso, T., Mahle, W. T., & Correa, A. (2008). Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. Journal of Pediatrics, 153(6), 807–813.PubMedCrossRef
6.
Zurück zum Zitat Mirensky, T., & Breuer, C. K. (2008). The development of tissue engineered grafts for reconstructive cardiothoracic surgical applications. Pediatric Research, 63, 559–568.PubMedCrossRef Mirensky, T., & Breuer, C. K. (2008). The development of tissue engineered grafts for reconstructive cardiothoracic surgical applications. Pediatric Research, 63, 559–568.PubMedCrossRef
7.
Zurück zum Zitat Mayer, J. E., Jr. (1995). Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Seminars in Thoracic and Cardiovascular Surgery, 7(3), 130–132.PubMed Mayer, J. E., Jr. (1995). Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Seminars in Thoracic and Cardiovascular Surgery, 7(3), 130–132.PubMed
8.
Zurück zum Zitat Kim, B. S., Baez, C. E., & Atala, A. (2000). Biomaterials for tissue engineering. World Journal of Urology, 18(1), 2–9.PubMedCrossRef Kim, B. S., Baez, C. E., & Atala, A. (2000). Biomaterials for tissue engineering. World Journal of Urology, 18(1), 2–9.PubMedCrossRef
9.
Zurück zum Zitat Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., & Langer, R. (1996). Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417–1422.PubMedCrossRef Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., & Langer, R. (1996). Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417–1422.PubMedCrossRef
10.
Zurück zum Zitat Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan–gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94(1), 264–272 [Research Support, Non-U.S. Gov't].PubMed Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan–gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94(1), 264–272 [Research Support, Non-U.S. Gov't].PubMed
11.
Zurück zum Zitat Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., et al. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739–4751.PubMedCrossRef Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., et al. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739–4751.PubMedCrossRef
12.
Zurück zum Zitat Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142.PubMedCrossRef Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142.PubMedCrossRef
13.
Zurück zum Zitat Moshfeghian, A., Tillman, J., & Madihally, S. V. (2006). Characterization of emulsified chitosan–PLGA matrices formed using controlled-rate freezing and lyophilization technique. Journal of Biomedical Materials Research. Part A, 79(2), 418–430.PubMedCrossRef Moshfeghian, A., Tillman, J., & Madihally, S. V. (2006). Characterization of emulsified chitosan–PLGA matrices formed using controlled-rate freezing and lyophilization technique. Journal of Biomedical Materials Research. Part A, 79(2), 418–430.PubMedCrossRef
14.
Zurück zum Zitat Joesten, M. D., & Wood, J. L. (1993). The world of chemistry (2nd ed.). Fort Worth: Saunders College. Joesten, M. D., & Wood, J. L. (1993). The world of chemistry (2nd ed.). Fort Worth: Saunders College.
15.
Zurück zum Zitat Eschenhagen, T., & Zimmermann, W. H. (2005). Engineering myocardial tissue. Circulation Research, 97(12), 1220–1231.PubMedCrossRef Eschenhagen, T., & Zimmermann, W. H. (2005). Engineering myocardial tissue. Circulation Research, 97(12), 1220–1231.PubMedCrossRef
16.
Zurück zum Zitat Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Annals of Biomedical Engineering, 28(4), 351–362.PubMedCrossRef Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Annals of Biomedical Engineering, 28(4), 351–362.PubMedCrossRef
17.
Zurück zum Zitat Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.PubMedCrossRef Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.PubMedCrossRef
18.
Zurück zum Zitat Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717–3723.PubMedCrossRef Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717–3723.PubMedCrossRef
19.
Zurück zum Zitat Stankus, J. J., Guan, J., & Wagner, W. R. (2004). Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. Journal of Biomedical Materials Research. Part A, 70(4), 603–614.PubMed Stankus, J. J., Guan, J., & Wagner, W. R. (2004). Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. Journal of Biomedical Materials Research. Part A, 70(4), 603–614.PubMed
20.
Zurück zum Zitat Hu, M., Kurisawa, M., Deng, R., Teo, C.-M., Schumacher, A., Thong, Y.-X., et al. (2009). Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers. Biomaterials, 30(21), 3523–3531.PubMedCrossRef Hu, M., Kurisawa, M., Deng, R., Teo, C.-M., Schumacher, A., Thong, Y.-X., et al. (2009). Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers. Biomaterials, 30(21), 3523–3531.PubMedCrossRef
21.
Zurück zum Zitat Mao, J., Zhao, L., De Yao, K., Shang, Q., Yang, G., & Cao, Y. (2003). Study of novel chitosan–gelatin artificial skin in vitro. Journal of Biomedical Materials Research, 64A(2), 301–308.CrossRef Mao, J., Zhao, L., De Yao, K., Shang, Q., Yang, G., & Cao, Y. (2003). Study of novel chitosan–gelatin artificial skin in vitro. Journal of Biomedical Materials Research, 64A(2), 301–308.CrossRef
22.
Zurück zum Zitat Pangburn, S. H., Trescony, P. V., & Heller, J. (1982). Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials, 3(2), 105–108.PubMedCrossRef Pangburn, S. H., Trescony, P. V., & Heller, J. (1982). Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials, 3(2), 105–108.PubMedCrossRef
23.
Zurück zum Zitat DeLeon, S. Y., LoCicero, J., 3rd, Ilbawi, M. N., & Idriss, F. S. (1986). Repeat median sternotomy in pediatrics: experience in 164 consecutive cases. The Annals of Thoracic Surgery, 41(2), 184–188.PubMedCrossRef DeLeon, S. Y., LoCicero, J., 3rd, Ilbawi, M. N., & Idriss, F. S. (1986). Repeat median sternotomy in pediatrics: experience in 164 consecutive cases. The Annals of Thoracic Surgery, 41(2), 184–188.PubMedCrossRef
24.
Zurück zum Zitat Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. T., Jia, Z. Q., et al. (2001). The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. The Journal of Thoracic and Cardiovascular Surgery, 121(5), 932–942.PubMedCrossRef Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. T., Jia, Z. Q., et al. (2001). The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. The Journal of Thoracic and Cardiovascular Surgery, 121(5), 932–942.PubMedCrossRef
25.
Zurück zum Zitat Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Wong, H., Ozawa, S., et al. (2002). Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. The Journal of Thoracic and Cardiovascular Surgery, 124(6), 1157–1164.PubMedCrossRef Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Wong, H., Ozawa, S., et al. (2002). Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. The Journal of Thoracic and Cardiovascular Surgery, 124(6), 1157–1164.PubMedCrossRef
26.
Zurück zum Zitat Matsumura, G., Shin’oka, T., Ikada, Y., Sakamoto, T., & Kurosawa, H. (2008). Novel anti-adhesive pericardial substitute for multistage cardiac surgery. Asian Cardiovascular & Thoracic Annals, 16(4), 309–312. Matsumura, G., Shin’oka, T., Ikada, Y., Sakamoto, T., & Kurosawa, H. (2008). Novel anti-adhesive pericardial substitute for multistage cardiac surgery. Asian Cardiovascular & Thoracic Annals, 16(4), 309–312.
27.
Zurück zum Zitat VandeVord, P. J., Matthew, H. W., DeSilva, S. P., Mayton, L., Wu, B., & Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59(3), 585–590.PubMedCrossRef VandeVord, P. J., Matthew, H. W., DeSilva, S. P., Mayton, L., Wu, B., & Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59(3), 585–590.PubMedCrossRef
28.
Zurück zum Zitat Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., & Kim, C. Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 18(6), 553–557.PubMedCrossRef Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., & Kim, C. Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 18(6), 553–557.PubMedCrossRef
29.
Zurück zum Zitat Risbud, M. V., Hardikar, A. A., Bhat, S. V., & Bhonde, R. R. (2000). pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release, 68(1), 23–30.PubMedCrossRef Risbud, M. V., Hardikar, A. A., Bhat, S. V., & Bhonde, R. R. (2000). pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release, 68(1), 23–30.PubMedCrossRef
30.
Zurück zum Zitat Ishihara, M., Obara, K., Nakamura, S., Fujita, M., Masuoka, K., Kanatani, Y., et al. (2006). Chitosan hydrogel as a drug delivery carrier to control angiogenesis. Journal of Artificial Organs, 9(1), 8–16.PubMedCrossRef Ishihara, M., Obara, K., Nakamura, S., Fujita, M., Masuoka, K., Kanatani, Y., et al. (2006). Chitosan hydrogel as a drug delivery carrier to control angiogenesis. Journal of Artificial Organs, 9(1), 8–16.PubMedCrossRef
31.
Zurück zum Zitat Kurdi, M., Chidiac, R., Hoemann, C., Zouein, F., Zgheib, C., & Booz, G. W. (2010). Hydrogels as a platform for stem cell delivery to the heart. Congestive Heart Failure, 16(3), 132–135.PubMedCrossRef Kurdi, M., Chidiac, R., Hoemann, C., Zouein, F., Zgheib, C., & Booz, G. W. (2010). Hydrogels as a platform for stem cell delivery to the heart. Congestive Heart Failure, 16(3), 132–135.PubMedCrossRef
32.
Zurück zum Zitat Ren, D., Yi, H., Wang, W., & Ma, X. (2005). The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Research, 340(15), 2403–2410 [Research Support, Non-U.S. Gov’t].PubMedCrossRef Ren, D., Yi, H., Wang, W., & Ma, X. (2005). The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Research, 340(15), 2403–2410 [Research Support, Non-U.S. Gov’t].PubMedCrossRef
33.
Zurück zum Zitat Sun, W., Darling, A., Starly, B., & Nam, J. (2004). Computer-aided tissue engineering: Overview, scope and challenges. Biotechnology and Applied Biochemistry, 39(Pt 1), 29–47.PubMedCrossRef Sun, W., Darling, A., Starly, B., & Nam, J. (2004). Computer-aided tissue engineering: Overview, scope and challenges. Biotechnology and Applied Biochemistry, 39(Pt 1), 29–47.PubMedCrossRef
34.
Zurück zum Zitat Blan, N. R., & Birla, R. K. (2008). Design and fabrication of heart muscle using scaffold-based tissue engineering. Journal of Biomedical Materials Research. Part A, 86(1), 195–208.PubMedCrossRef Blan, N. R., & Birla, R. K. (2008). Design and fabrication of heart muscle using scaffold-based tissue engineering. Journal of Biomedical Materials Research. Part A, 86(1), 195–208.PubMedCrossRef
35.
Zurück zum Zitat Mei, N., Chen, G., Zhou, P., Chen, X., Shao, Z. Z., Pan, L. F., et al. (2005). Biocompatibility of poly(epsilon-caprolactone) scaffold modified by chitosan—the fibroblasts proliferation in vitro. Journal of Biomaterials Applications, 19(4), 323–339.PubMedCrossRef Mei, N., Chen, G., Zhou, P., Chen, X., Shao, Z. Z., Pan, L. F., et al. (2005). Biocompatibility of poly(epsilon-caprolactone) scaffold modified by chitosan—the fibroblasts proliferation in vitro. Journal of Biomaterials Applications, 19(4), 323–339.PubMedCrossRef
36.
37.
Zurück zum Zitat Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813. Article.PubMedCrossRef Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813. Article.PubMedCrossRef
38.
Zurück zum Zitat Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., et al. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113–3121.PubMedCrossRef Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., et al. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113–3121.PubMedCrossRef
39.
Zurück zum Zitat Park, J. B., Lee, J. Y., Park, Y. J., Rhee, S. H., Lee, S. C., Kim, T. I., et al. (2007). Enhanced bone regeneration in beagle dogs with bovine bone mineral coated with a synthetic oligopeptide. Journal of Periodontology, 78(11), 2150–2155.PubMedCrossRef Park, J. B., Lee, J. Y., Park, Y. J., Rhee, S. H., Lee, S. C., Kim, T. I., et al. (2007). Enhanced bone regeneration in beagle dogs with bovine bone mineral coated with a synthetic oligopeptide. Journal of Periodontology, 78(11), 2150–2155.PubMedCrossRef
40.
Zurück zum Zitat Huang, Y. C., Dennis, R. G., Larkin, L., & Baar, K. (2005). Rapid formation of functional muscle in vitro using fibrin gels. Journal of Applied Physiology, 98(2), 706–713.PubMedCrossRef Huang, Y. C., Dennis, R. G., Larkin, L., & Baar, K. (2005). Rapid formation of functional muscle in vitro using fibrin gels. Journal of Applied Physiology, 98(2), 706–713.PubMedCrossRef
41.
Zurück zum Zitat Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., et al. (2001). Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardio-Thorac Surg., 19(4), 424–430. Proceedings Paper.CrossRef Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., et al. (2001). Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardio-Thorac Surg., 19(4), 424–430. Proceedings Paper.CrossRef
42.
Zurück zum Zitat Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q. H., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409. Article.PubMedCrossRef Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q. H., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409. Article.PubMedCrossRef
43.
Zurück zum Zitat Christman, K. L., Vardanian, A. J., Fang, Q. Z., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660. Article.PubMedCrossRef Christman, K. L., Vardanian, A. J., Fang, Q. Z., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660. Article.PubMedCrossRef
44.
Zurück zum Zitat Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108.PubMedCrossRef Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108.PubMedCrossRef
45.
Zurück zum Zitat Zhang, G., Wang, X., Wang, Z., Zhang, J., & Suggs, L. (2006). A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Engineering, 12(1), 9–19.PubMedCrossRef Zhang, G., Wang, X., Wang, Z., Zhang, J., & Suggs, L. (2006). A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Engineering, 12(1), 9–19.PubMedCrossRef
46.
Zurück zum Zitat Pankajakshan, D., Philipose, L. P., Palakkal, M., Krishnan, K., & Krishnan, L. K. (2008). Development of a fibrin composite-coated poly(epsilon-caprolactone) scaffold for potential vascular tissue engineering applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87(2), 570–579. Research Support, Non-U.S. Gov’t.PubMedCrossRef Pankajakshan, D., Philipose, L. P., Palakkal, M., Krishnan, K., & Krishnan, L. K. (2008). Development of a fibrin composite-coated poly(epsilon-caprolactone) scaffold for potential vascular tissue engineering applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87(2), 570–579. Research Support, Non-U.S. Gov’t.PubMedCrossRef
47.
Zurück zum Zitat Petrenko, Y. A., Ivanov, R. V., Petrenko, A. Y., & Lozinsky, V. I. (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. The Journal of Materials Science: Materials in Medicine. doi:10.1007/s10856-011-4323-6. Petrenko, Y. A., Ivanov, R. V., Petrenko, A. Y., & Lozinsky, V. I. (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. The Journal of Materials Science: Materials in Medicine. doi:10.​1007/​s10856-011-4323-6.
48.
Zurück zum Zitat Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials., 3(3), 1746–1767.CrossRef Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials., 3(3), 1746–1767.CrossRef
49.
Zurück zum Zitat Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102(19 Suppl 3), III56–III61.PubMed Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102(19 Suppl 3), III56–III61.PubMed
50.
Zurück zum Zitat Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80(10), 683–693.PubMedCrossRef Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80(10), 683–693.PubMedCrossRef
52.
Zurück zum Zitat Tudorache, I., Kostin, S., Meyer, T., Teebken, O., Bara, C., Hilfiker, A., et al. (2009). Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardio-Thorac Surg., 36(2), 306–311.CrossRef Tudorache, I., Kostin, S., Meyer, T., Teebken, O., Bara, C., Hilfiker, A., et al. (2009). Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardio-Thorac Surg., 36(2), 306–311.CrossRef
53.
Zurück zum Zitat Vesely, I., & Mako, W. J. (1998). Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium. The Journal of Heart Valve Disease, 7(1), 34–39.PubMed Vesely, I., & Mako, W. J. (1998). Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium. The Journal of Heart Valve Disease, 7(1), 34–39.PubMed
54.
Zurück zum Zitat Huanglee, L. L. H., Cheung, D. T., & Nimni, M. E. (1990). Biochemical-changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived cross-links. Journal of Biomedical Materials Research, 24(9), 1185–1201. Article.CrossRef Huanglee, L. L. H., Cheung, D. T., & Nimni, M. E. (1990). Biochemical-changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived cross-links. Journal of Biomedical Materials Research, 24(9), 1185–1201. Article.CrossRef
55.
Zurück zum Zitat Maizato, M. J. S., Pires, M. D., Canzian, M., Higa, O. Z., Pitombo, R. N. M., & Leirner, A. A. (2008). Histological evaluation of biocompatibility of lyophilized bovine pericardium implanted subcutaneously in rats. Artificial Organs, 32(4), 268–271. Proceedings Paper.PubMedCrossRef Maizato, M. J. S., Pires, M. D., Canzian, M., Higa, O. Z., Pitombo, R. N. M., & Leirner, A. A. (2008). Histological evaluation of biocompatibility of lyophilized bovine pericardium implanted subcutaneously in rats. Artificial Organs, 32(4), 268–271. Proceedings Paper.PubMedCrossRef
56.
Zurück zum Zitat Santibanez-Salgado, J. A., Olmos-Zuniga, J. R., Perez-Lopez, M., Aboitiz-Rivera, C., Gaxiola-Gaxiola, M., Jasso-Victoria, R., et al. (2010). Lyophilized glutaraldehyde-preserved bovine pericardium for experimental atrial septal defect closure. European Cells & Materials, 19, 158–165. Santibanez-Salgado, J. A., Olmos-Zuniga, J. R., Perez-Lopez, M., Aboitiz-Rivera, C., Gaxiola-Gaxiola, M., Jasso-Victoria, R., et al. (2010). Lyophilized glutaraldehyde-preserved bovine pericardium for experimental atrial septal defect closure. European Cells & Materials, 19, 158–165.
57.
Zurück zum Zitat Prevel, C. D., Eppley, B. L., Summerlin, D. J., Sidner, R., Jackson, J. R., McCarty, M., et al. (1995). Small intestinal submucosa: Utilization as a wound dressing in full-thickness rodent wounds. Annals of Plastic Surgery, 35(4), 381–388.PubMedCrossRef Prevel, C. D., Eppley, B. L., Summerlin, D. J., Sidner, R., Jackson, J. R., McCarty, M., et al. (1995). Small intestinal submucosa: Utilization as a wound dressing in full-thickness rodent wounds. Annals of Plastic Surgery, 35(4), 381–388.PubMedCrossRef
58.
Zurück zum Zitat Badylak, S. F., Tullius, R., Kokini, K., Shelbourne, K. D., Klootwyk, T., Voytik, S. L., et al. (1995). The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. Journal of Biomedical Materials Research, 29(8), 977–985.PubMedCrossRef Badylak, S. F., Tullius, R., Kokini, K., Shelbourne, K. D., Klootwyk, T., Voytik, S. L., et al. (1995). The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. Journal of Biomedical Materials Research, 29(8), 977–985.PubMedCrossRef
59.
Zurück zum Zitat Kropp, B. P., Eppley, B. L., Prevel, C. D., Rippy, M. K., Harruff, R. C., Badylak, S. F., et al. (1995). Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology, 46(3), 396–400.PubMedCrossRef Kropp, B. P., Eppley, B. L., Prevel, C. D., Rippy, M. K., Harruff, R. C., Badylak, S. F., et al. (1995). Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology, 46(3), 396–400.PubMedCrossRef
60.
Zurück zum Zitat Badylak, S., Obermiller, J., Geddes, L., & Matheny, R. (2003). Extracellular matrix for myocardial repair. The Heart Surgery Forum, 6(2), E20–E26.PubMed Badylak, S., Obermiller, J., Geddes, L., & Matheny, R. (2003). Extracellular matrix for myocardial repair. The Heart Surgery Forum, 6(2), E20–E26.PubMed
61.
Zurück zum Zitat Crapo, P. M., & Wang, Y. D. (2010). Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 6(6), 2091–2096. Article.PubMedCrossRef Crapo, P. M., & Wang, Y. D. (2010). Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 6(6), 2091–2096. Article.PubMedCrossRef
62.
Zurück zum Zitat Tottey, S., Johnson, S. A., Crapo, P. M., Reing, J. E., Zhang, L., Jiang, H., et al. (2011). The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials, 32(1), 128–136.PubMedCrossRef Tottey, S., Johnson, S. A., Crapo, P. M., Reing, J. E., Zhang, L., Jiang, H., et al. (2011). The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials, 32(1), 128–136.PubMedCrossRef
63.
Zurück zum Zitat Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 38(4), 1139–1151.PubMedCrossRef Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 38(4), 1139–1151.PubMedCrossRef
64.
Zurück zum Zitat Pok, S. W., Wallace, K. N., & Madihally, S. V. (2010). In vitro characterization of polycaprolactone matrices generated in aqueous media. Acta Biomaterialia, 6(3), 1061–1068.PubMedCrossRef Pok, S. W., Wallace, K. N., & Madihally, S. V. (2010). In vitro characterization of polycaprolactone matrices generated in aqueous media. Acta Biomaterialia, 6(3), 1061–1068.PubMedCrossRef
65.
Zurück zum Zitat Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185.PubMedCrossRef Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185.PubMedCrossRef
66.
Zurück zum Zitat Nguyen, T. H., & Lee, B. T. (2010). Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science. Materials in Medicine, 21(6), 1969–1978.CrossRef Nguyen, T. H., & Lee, B. T. (2010). Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science. Materials in Medicine, 21(6), 1969–1978.CrossRef
67.
Zurück zum Zitat van der Giessen, W. J., Lincoff, A. M., Schwartz, R. S., van Beusekom, H. M., Serruys, P. W., Holmes, D. R., Jr., et al. (1996). Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 94(7), 1690–1697.PubMed van der Giessen, W. J., Lincoff, A. M., Schwartz, R. S., van Beusekom, H. M., Serruys, P. W., Holmes, D. R., Jr., et al. (1996). Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 94(7), 1690–1697.PubMed
68.
Zurück zum Zitat Li, W. J., Cooper, J. A., Jr., Mauck, R. L., & Tuan, R. S. (2006). Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomaterialia, 2(4), 377–385.PubMedCrossRef Li, W. J., Cooper, J. A., Jr., Mauck, R. L., & Tuan, R. S. (2006). Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomaterialia, 2(4), 377–385.PubMedCrossRef
69.
Zurück zum Zitat Htay, A. S., Teoh, S. H., & Hutmacher, D. W. (2004). Development of perforated microthin poly(epsilon-caprolactone) films as matrices for membrane tissue engineering. Journal of Biomaterials Science, Polymer Edition, 15(5), 683–700.CrossRef Htay, A. S., Teoh, S. H., & Hutmacher, D. W. (2004). Development of perforated microthin poly(epsilon-caprolactone) films as matrices for membrane tissue engineering. Journal of Biomaterials Science, Polymer Edition, 15(5), 683–700.CrossRef
70.
Zurück zum Zitat Aliabadi, H. M., Mahmud, A., Sharifabadi, A. D., & Lavasanifar, A. (2005). Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. Journal of Controlled Release, 104(2), 301–311.PubMedCrossRef Aliabadi, H. M., Mahmud, A., Sharifabadi, A. D., & Lavasanifar, A. (2005). Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. Journal of Controlled Release, 104(2), 301–311.PubMedCrossRef
71.
Zurück zum Zitat Pitt, C. G., Gratzl, M. M., Kimmel, G. L., Surles, J., & Schindler, A. (1981). Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220. Research Support, U.S. Gov’t, P.H.S.PubMedCrossRef Pitt, C. G., Gratzl, M. M., Kimmel, G. L., Surles, J., & Schindler, A. (1981). Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220. Research Support, U.S. Gov’t, P.H.S.PubMedCrossRef
72.
Zurück zum Zitat Shin’oka, T., Matsumura, G., Hibino, N., Naito, Y., Watanabe, M., Konuma, T., et al. (2005). Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. The Journal of Thoracic and Cardiovascular Surgery, 129(6), 1330–1338.PubMedCrossRef Shin’oka, T., Matsumura, G., Hibino, N., Naito, Y., Watanabe, M., Konuma, T., et al. (2005). Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. The Journal of Thoracic and Cardiovascular Surgery, 129(6), 1330–1338.PubMedCrossRef
73.
Zurück zum Zitat Hutmacher, D. W., Goh, J. C., & Teoh, S. H. (2001). An introduction to biodegradable materials for tissue engineering applications. Annals Of The Academy Of Medicine, Singapore., 30(2), 183–191.PubMed Hutmacher, D. W., Goh, J. C., & Teoh, S. H. (2001). An introduction to biodegradable materials for tissue engineering applications. Annals Of The Academy Of Medicine, Singapore., 30(2), 183–191.PubMed
74.
Zurück zum Zitat Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells & Materials, 5, 1–16. discussion. Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells & Materials, 5, 1–16. discussion.
75.
Zurück zum Zitat Ke, Q., Yang, Y., Rana, J. S., Chen, Y., Morgan, J. P., & Xiao, Y. F. (2005). Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao, 57(6), 673–681.PubMed Ke, Q., Yang, Y., Rana, J. S., Chen, Y., Morgan, J. P., & Xiao, Y. F. (2005). Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao, 57(6), 673–681.PubMed
76.
Zurück zum Zitat Falco, E. E., Patel, M., & Fisher, J. P. (2008). Recent developments in cyclic acetal biomaterials for tissue engineering applications. Pharmaceutical Research, 25(10), 2348–2356.PubMedCrossRef Falco, E. E., Patel, M., & Fisher, J. P. (2008). Recent developments in cyclic acetal biomaterials for tissue engineering applications. Pharmaceutical Research, 25(10), 2348–2356.PubMedCrossRef
77.
Zurück zum Zitat Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472–480.PubMedCrossRef Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472–480.PubMedCrossRef
78.
Zurück zum Zitat Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology. Animal, 41(7), 188–196. Article.CrossRef Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology. Animal, 41(7), 188–196. Article.CrossRef
79.
Zurück zum Zitat Natarajan, A., Chun, C. J., Hickman, J. J., & Molnar, P. (2008). Growth and electrophysiological properties of rat embryonic cardiomyocytes on hydroxyl- and carboxyl-modified surfaces. Journal of Biomaterials Science, Polymer Edition, 19(10), 1319–1331. Article.CrossRef Natarajan, A., Chun, C. J., Hickman, J. J., & Molnar, P. (2008). Growth and electrophysiological properties of rat embryonic cardiomyocytes on hydroxyl- and carboxyl-modified surfaces. Journal of Biomaterials Science, Polymer Edition, 19(10), 1319–1331. Article.CrossRef
80.
Zurück zum Zitat Baskett, R. J., Ross, D. B., Nanton, M. A., & Murphy, D. A. (1996). Factors in the early failure of cryopreserved homograft pulmonary valves in children: Preserved immunogenicity? The Journal of Thoracic and Cardiovascular Surgery, 112(5), 1170–1178. discussion 8–9.PubMedCrossRef Baskett, R. J., Ross, D. B., Nanton, M. A., & Murphy, D. A. (1996). Factors in the early failure of cryopreserved homograft pulmonary valves in children: Preserved immunogenicity? The Journal of Thoracic and Cardiovascular Surgery, 112(5), 1170–1178. discussion 8–9.PubMedCrossRef
81.
Zurück zum Zitat Seo, N. M., Ko, J. H., Park, Y. H., & Chun, H. J. (2011). In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med, 8(1), 16–22. Article. Seo, N. M., Ko, J. H., Park, Y. H., & Chun, H. J. (2011). In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med, 8(1), 16–22. Article.
82.
Zurück zum Zitat Amato, J. J., Cotroneo, J. V., Galdieri, R. J., Alboliras, E., Antillon, J., & Vogel, R. L. (1989). Experience with the polytetrafluoroethylene surgical membrane for pericardial closure in operations for congenital cardiac defects. The Journal of Thoracic and Cardiovascular Surgery, 97(6), 929–934. Article.PubMed Amato, J. J., Cotroneo, J. V., Galdieri, R. J., Alboliras, E., Antillon, J., & Vogel, R. L. (1989). Experience with the polytetrafluoroethylene surgical membrane for pericardial closure in operations for congenital cardiac defects. The Journal of Thoracic and Cardiovascular Surgery, 97(6), 929–934. Article.PubMed
83.
Zurück zum Zitat Kay, P. H., & Ross, D. N. (1985). Fifteen years’ experience with the aortic homograft: the conduit of choice for right ventricular outflow tract reconstruction. The Annals of Thoracic Surgery, 40(4), 360–364.PubMedCrossRef Kay, P. H., & Ross, D. N. (1985). Fifteen years’ experience with the aortic homograft: the conduit of choice for right ventricular outflow tract reconstruction. The Annals of Thoracic Surgery, 40(4), 360–364.PubMedCrossRef
84.
Zurück zum Zitat Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(19 Suppl), II63–II69.PubMed Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(19 Suppl), II63–II69.PubMed
85.
Zurück zum Zitat Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: Porous scaffolds and toxicity. Macromolecular Bioscience, 7(9–10), 1160–1167.PubMedCrossRef Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: Porous scaffolds and toxicity. Macromolecular Bioscience, 7(9–10), 1160–1167.PubMedCrossRef
86.
Zurück zum Zitat Francis, L., Meng, D., Knowles, J. C., Roy, I., & Boccaccini, A. R. (2010). Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomaterialia, 6(7), 2773–2786.PubMedCrossRef Francis, L., Meng, D., Knowles, J. C., Roy, I., & Boccaccini, A. R. (2010). Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomaterialia, 6(7), 2773–2786.PubMedCrossRef
Metadaten
Titel
Biomaterials Advances in Patches for Congenital Heart Defect Repair
verfasst von
Seokwon Pok
Jeffrey G. Jacot
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2011
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9289-8

Weitere Artikel der Ausgabe 5/2011

Journal of Cardiovascular Translational Research 5/2011 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.