Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2022

15.03.2022 | Review

Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling

verfasst von: Husam M. Salah, Subodh Verma, Carlos G. Santos-Gallego, Ankeet S. Bhatt, Muthiah Vaduganathan, Muhammad Shahzeb Khan, Renato D. Lopes, Subhi J. Al’Aref, Darren K. McGuire, Marat Fudim

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have evident cardiovascular benefits in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease, heart failure with reduced ejection fraction, heart failure with preserved ejection fraction (only empagliflozin and dapagliflozin have been investigated in this group so far), and chronic kidney disease. Prevention and reversal of adverse cardiac remodeling is one of the mechanisms by which SGLT2 inhibitors may exert cardiovascular benefits, especially heart failure-related outcomes. Cardiac remodeling encompasses molecular, cellular, and interstitial changes that result in favorable changes in the mass, geometry, size, and function of the heart. The pathophysiological mechanisms of adverse cardiac remodeling are related to increased apoptosis and necrosis, decreased autophagy, impairments of myocardial oxygen supply and demand, and altered energy metabolism. Herein, the accumulating evidence from animal and human studies is reviewed investigating the effects of SGLT2 inhibitors on these mechanisms of cardiac remodeling.
Literatur
1.
Zurück zum Zitat Salah, H. M., Al’Aref, S. J., Khan, M. S., et al. (2021). Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes-Systematic review and meta-analysis of randomized placebo-controlled trials. American Heart Journal, 232, 10–22.PubMedCrossRef Salah, H. M., Al’Aref, S. J., Khan, M. S., et al. (2021). Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes-Systematic review and meta-analysis of randomized placebo-controlled trials. American Heart Journal, 232, 10–22.PubMedCrossRef
2.
Zurück zum Zitat Salah, H. M., Al’Aref, S. J., Khan, M. S., et al. (2021). Effects of sodium-glucose cotransporter 1 and 2 inhibitors on cardiovascular and kidney outcomes in type 2 diabetes: A meta-analysis update. American Heart Journal, 233, 86–91.PubMedCrossRef Salah, H. M., Al’Aref, S. J., Khan, M. S., et al. (2021). Effects of sodium-glucose cotransporter 1 and 2 inhibitors on cardiovascular and kidney outcomes in type 2 diabetes: A meta-analysis update. American Heart Journal, 233, 86–91.PubMedCrossRef
3.
Zurück zum Zitat McGuire, D. K., Shih, W. J., Cosentino, F., et al. (2021). Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta-analysis. JAMA Cardiology., 6(2), 148–158.PubMedCrossRef McGuire, D. K., Shih, W. J., Cosentino, F., et al. (2021). Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta-analysis. JAMA Cardiology., 6(2), 148–158.PubMedCrossRef
4.
Zurück zum Zitat Zannad, F., Ferreira, J. P., Pocock, S. J., et al. (2020). SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet., 396(10254), 819–829.CrossRef Zannad, F., Ferreira, J. P., Pocock, S. J., et al. (2020). SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet., 396(10254), 819–829.CrossRef
5.
Zurück zum Zitat Ghezzi, C., Loo, D. D. F., & Wright, E. M. (2018). Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 61(10), 2087–2097.PubMedPubMedCentralCrossRef Ghezzi, C., Loo, D. D. F., & Wright, E. M. (2018). Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 61(10), 2087–2097.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Zhou, L., Cryan, E. V., D’Andrea, M. R., Belkowski, S., Conway, B. R., & Demarest, K. T. (2003). Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). Journal of Cellular Biochemistry, 90(2), 339–346.PubMedCrossRef Zhou, L., Cryan, E. V., D’Andrea, M. R., Belkowski, S., Conway, B. R., & Demarest, K. T. (2003). Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). Journal of Cellular Biochemistry, 90(2), 339–346.PubMedCrossRef
7.
Zurück zum Zitat Vrhovac, I., Balen Eror, D., Klessen, D., et al. (2015). Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Archiv. European Journal of Physiology, 467(9), 1881–1898.PubMedCrossRef Vrhovac, I., Balen Eror, D., Klessen, D., et al. (2015). Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Archiv. European Journal of Physiology, 467(9), 1881–1898.PubMedCrossRef
8.
Zurück zum Zitat Georgianos, P. I., & Agarwal, R. (2019). Ambulatory blood pressure reduction with SGLT-2 inhibitors: Dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide. Diabetes Care, 42(4), 693–700.PubMedPubMedCentralCrossRef Georgianos, P. I., & Agarwal, R. (2019). Ambulatory blood pressure reduction with SGLT-2 inhibitors: Dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide. Diabetes Care, 42(4), 693–700.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Kawasoe, S., Maruguchi, Y., Kajiya, S., et al. (2017). Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacology and Toxicology, 18(1), 23.PubMedPubMedCentralCrossRef Kawasoe, S., Maruguchi, Y., Kajiya, S., et al. (2017). Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacology and Toxicology, 18(1), 23.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Lopaschuk, G. D., & Verma, S. (2020). Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic to Translational Science, 5(6), 632–644.PubMedPubMedCentralCrossRef Lopaschuk, G. D., & Verma, S. (2020). Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic to Translational Science, 5(6), 632–644.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M., & Cherney, D. Z. (2016). Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation, 134(10), 752–772.PubMedCrossRef Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M., & Cherney, D. Z. (2016). Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation, 134(10), 752–772.PubMedCrossRef
13.
Zurück zum Zitat Vallon, V., & Verma, S. (2021). Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annual Review of Physiology, 83, 503–528.PubMedCrossRef Vallon, V., & Verma, S. (2021). Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annual Review of Physiology, 83, 503–528.PubMedCrossRef
14.
Zurück zum Zitat Packer, M., Anker, S. D., Butler, J., et al. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413–1424.PubMedCrossRef Packer, M., Anker, S. D., Butler, J., et al. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413–1424.PubMedCrossRef
15.
Zurück zum Zitat McMurray, J. J. V., Docherty, K. F., & Jhund, P. S. (2020). Dapagliflozin in patients with heart failure and reduced ejection fraction. Reply. New England Journal of Medicine, 382(10), 973. McMurray, J. J. V., Docherty, K. F., & Jhund, P. S. (2020). Dapagliflozin in patients with heart failure and reduced ejection fraction. Reply. New England Journal of Medicine, 382(10), 973.
16.
Zurück zum Zitat Verma, S., McGuire, D. K., & Kosiborod, M. N. (2020). Twotales: One story. Circulation, 142(23), 2201–2204.PubMedCrossRef Verma, S., McGuire, D. K., & Kosiborod, M. N. (2020). Twotales: One story. Circulation, 142(23), 2201–2204.PubMedCrossRef
17.
Zurück zum Zitat Anker, S. D., Butler, J., Filippatos, G., et al. (2021). Empagliflozin in heart failure with a preserved ejection fraction. New England Journal of Medicine., 385(16), 1451–1461.PubMedCrossRef Anker, S. D., Butler, J., Filippatos, G., et al. (2021). Empagliflozin in heart failure with a preserved ejection fraction. New England Journal of Medicine., 385(16), 1451–1461.PubMedCrossRef
18.
Zurück zum Zitat Butler, J., Packer, M., Filippatos, G., et al. (2021). Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. European Heart Journal Butler, J., Packer, M., Filippatos, G., et al. (2021). Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. European Heart Journal
19.
Zurück zum Zitat Parizo, J. T., Goldhaber-Fiebert, J. D., Salomon, J. A., et al. (2021). Cost-effectiveness of Dapagliflozin for treatment of patients with heart failure with reduced ejection fraction. JAMA Cardiology Parizo, J. T., Goldhaber-Fiebert, J. D., Salomon, J. A., et al. (2021). Cost-effectiveness of Dapagliflozin for treatment of patients with heart failure with reduced ejection fraction. JAMA Cardiology
20.
Zurück zum Zitat Bhatt, D. L., Szarek, M., Steg, P. G., et al. (2020). Sotagliflozin in patients with diabetes and recent worsening heart failure. New England Journal of Medicine., 384(2), 117–128.PubMedCrossRef Bhatt, D. L., Szarek, M., Steg, P. G., et al. (2020). Sotagliflozin in patients with diabetes and recent worsening heart failure. New England Journal of Medicine., 384(2), 117–128.PubMedCrossRef
21.
Zurück zum Zitat Bhatt, D. L., Szarek, M., Pitt, B., et al. (2020). Sotagliflozin in patients with diabetes and chronic kidney disease. New England Journal of Medicine., 384(2), 129–139.PubMedCrossRef Bhatt, D. L., Szarek, M., Pitt, B., et al. (2020). Sotagliflozin in patients with diabetes and chronic kidney disease. New England Journal of Medicine., 384(2), 129–139.PubMedCrossRef
22.
Zurück zum Zitat Heerspink, H. J. L., Stefánsson, B. V., Correa-Rotter, R., et al. (2020). Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine., 383(15), 1436–1446.PubMedCrossRef Heerspink, H. J. L., Stefánsson, B. V., Correa-Rotter, R., et al. (2020). Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine., 383(15), 1436–1446.PubMedCrossRef
23.
Zurück zum Zitat Cannon, C. P., Pratley, R., Dagogo-Jack, S., et al. (2020). Cardiovascular outcomes with ertugliflozin in type 2 diabetes. New England Journal of Medicine., 383(15), 1425–1435.PubMedCrossRef Cannon, C. P., Pratley, R., Dagogo-Jack, S., et al. (2020). Cardiovascular outcomes with ertugliflozin in type 2 diabetes. New England Journal of Medicine., 383(15), 1425–1435.PubMedCrossRef
24.
Zurück zum Zitat Cohn, J. N., Ferrari, R., & Sharpe, N. (2000). Cardiac remodeling—concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. Journal of the American College of Cardiology, 35(3), 569–582.PubMedCrossRef Cohn, J. N., Ferrari, R., & Sharpe, N. (2000). Cardiac remodeling—concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. Journal of the American College of Cardiology, 35(3), 569–582.PubMedCrossRef
25.
Zurück zum Zitat Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R., & Zornoff, L. A. M. (2016). Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia, 106(1), 62–69.PubMedPubMedCentral Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R., & Zornoff, L. A. M. (2016). Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia, 106(1), 62–69.PubMedPubMedCentral
26.
Zurück zum Zitat Konstam, M. A., Kramer, D. G., Patel, A. R., Maron, M. S., & Udelson, J. E. (2011). Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC: Cardiovascular Imaging, 4(1), 98–108.PubMed Konstam, M. A., Kramer, D. G., Patel, A. R., Maron, M. S., & Udelson, J. E. (2011). Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC: Cardiovascular Imaging, 4(1), 98–108.PubMed
27.
Zurück zum Zitat Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A., & Zornoff, L. A. (2016). Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia, 106(1), 62–69.PubMedPubMedCentral Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A., & Zornoff, L. A. (2016). Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia, 106(1), 62–69.PubMedPubMedCentral
28.
Zurück zum Zitat Kurosaki, E., & Ogasawara, H. (2013). Ipragliflozin and other sodium–glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: Preclinical and clinical data. Pharmacology & Therapeutics., 139(1), 51–59.CrossRef Kurosaki, E., & Ogasawara, H. (2013). Ipragliflozin and other sodium–glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: Preclinical and clinical data. Pharmacology & Therapeutics., 139(1), 51–59.CrossRef
29.
Zurück zum Zitat Hammoudi, N., Jeong, D., Singh, R., et al. (2017). Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovascular Drugs and Therapy, 31(3), 233–246.PubMedPubMedCentralCrossRef Hammoudi, N., Jeong, D., Singh, R., et al. (2017). Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovascular Drugs and Therapy, 31(3), 233–246.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Shiojima, I., Sato, K., Izumiya, Y., et al. (2005). Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. The Journal of Clinical Investigation, 115(8), 2108–2118.PubMedPubMedCentralCrossRef Shiojima, I., Sato, K., Izumiya, Y., et al. (2005). Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. The Journal of Clinical Investigation, 115(8), 2108–2118.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Younis, F., Leor, J., Abassi, Z., et al. (2018). Beneficial effect of the SGLT2 inhibitor empagliflozin on glucose homeostasis and cardiovascular parameters in the cohen rosenthal diabetic hypertensive (CRDH) rat. Journal of Cardiovascular Pharmacology and Therapeutics., 23(4), 358–371.PubMedCrossRef Younis, F., Leor, J., Abassi, Z., et al. (2018). Beneficial effect of the SGLT2 inhibitor empagliflozin on glucose homeostasis and cardiovascular parameters in the cohen rosenthal diabetic hypertensive (CRDH) rat. Journal of Cardiovascular Pharmacology and Therapeutics., 23(4), 358–371.PubMedCrossRef
32.
Zurück zum Zitat Park, S. H., Farooq, M. A., Gaertner, S., et al. (2020). Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovascular Diabetology, 19(1), 19.PubMedPubMedCentralCrossRef Park, S. H., Farooq, M. A., Gaertner, S., et al. (2020). Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovascular Diabetology, 19(1), 19.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Weir-McCall, J. R., Lambert, M., Gandy, S. J., et al. (2018). Systemic arteriosclerosis is associated with left ventricular remodeling but not atherosclerosis: A TASCFORCE study. Journal of Cardiovascular Magnetic Resonance, 20(1), 7.PubMedPubMedCentralCrossRef Weir-McCall, J. R., Lambert, M., Gandy, S. J., et al. (2018). Systemic arteriosclerosis is associated with left ventricular remodeling but not atherosclerosis: A TASCFORCE study. Journal of Cardiovascular Magnetic Resonance, 20(1), 7.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Santos-Gallego, C. G., Requena-Ibanez, J. A., San Antonio, R., et al. (2019). Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. Journal of the American College of Cardiology, 73(15), 1931–1944.PubMedCrossRef Santos-Gallego, C. G., Requena-Ibanez, J. A., San Antonio, R., et al. (2019). Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. Journal of the American College of Cardiology, 73(15), 1931–1944.PubMedCrossRef
35.
Zurück zum Zitat Santos-Gallego, C. G., Requena-Ibanez, J. A., Antonio, R. S., et al. (2021). Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure. JACC: Cardiovascular Imaging, 14(2), 393–407.PubMed Santos-Gallego, C. G., Requena-Ibanez, J. A., Antonio, R. S., et al. (2021). Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure. JACC: Cardiovascular Imaging, 14(2), 393–407.PubMed
36.
Zurück zum Zitat Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology., 62(4), 263–271.PubMedCrossRef Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology., 62(4), 263–271.PubMedCrossRef
37.
Zurück zum Zitat Yurista, S. R., Silljé, H. H. W., Oberdorf-Maass, S. U., et al. (2019). Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. European Journal of Heart Failure, 21(7), 862–873.PubMedCrossRef Yurista, S. R., Silljé, H. H. W., Oberdorf-Maass, S. U., et al. (2019). Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. European Journal of Heart Failure, 21(7), 862–873.PubMedCrossRef
38.
Zurück zum Zitat Connelly, K. A., Zhang, Y., Desjardins, J. F., et al. (2020). Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovascular Diabetology, 19(1), 13.PubMedPubMedCentralCrossRef Connelly, K. A., Zhang, Y., Desjardins, J. F., et al. (2020). Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovascular Diabetology, 19(1), 13.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Byrne, N. J., Parajuli, N., Levasseur, J. L., et al. (2017). Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic to Translational Science, 2(4), 347–354.PubMedPubMedCentralCrossRef Byrne, N. J., Parajuli, N., Levasseur, J. L., et al. (2017). Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic to Translational Science, 2(4), 347–354.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Connelly, K. A., Zhang, Y., Visram, A., et al. (2019). Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. JACC Basic to Translational Science, 4(1), 27–37.PubMedPubMedCentralCrossRef Connelly, K. A., Zhang, Y., Visram, A., et al. (2019). Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. JACC Basic to Translational Science, 4(1), 27–37.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Bode, D., Semmler, L., Wakula, P., et al. (2021). Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovascular Diabetology, 20(1), 7.PubMedPubMedCentralCrossRef Bode, D., Semmler, L., Wakula, P., et al. (2021). Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovascular Diabetology, 20(1), 7.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G., & Zhou, Y. (2019). Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovascular Diabetology, 18(1), 107.PubMedPubMedCentralCrossRef Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G., & Zhou, Y. (2019). Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovascular Diabetology, 18(1), 107.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Connelly, K. A., Zhang, Y., Desjardins, J. F., Thai, K., & Gilbert, R. E. (2018). Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovascular Diabetology, 17(1), 99.PubMedPubMedCentralCrossRef Connelly, K. A., Zhang, Y., Desjardins, J. F., Thai, K., & Gilbert, R. E. (2018). Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovascular Diabetology, 17(1), 99.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kang, S., Verma, S., Hassanabad, A. F., et al. (2020). Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: Novel translational clues to explain EMPA-REG OUTCOME results. Canadian Journal of Cardiology, 36(4), 543–553.PubMedCrossRef Kang, S., Verma, S., Hassanabad, A. F., et al. (2020). Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: Novel translational clues to explain EMPA-REG OUTCOME results. Canadian Journal of Cardiology, 36(4), 543–553.PubMedCrossRef
45.
Zurück zum Zitat Verma, S., Mazer, C. D., Yan, A. T., et al. (2019). Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation, 140(21), 1693–1702.PubMedCrossRef Verma, S., Mazer, C. D., Yan, A. T., et al. (2019). Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation, 140(21), 1693–1702.PubMedCrossRef
46.
Zurück zum Zitat Mason, T., Coelho-Filho, O. R., Verma, S., et al. (2021). Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging Mason, T., Coelho-Filho, O. R., Verma, S., et al. (2021). Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging
47.
Zurück zum Zitat Shim, C. Y., Seo, J., Cho, I., et al. (2021). Randomized, Controlled trial to evaluate the effect of dapagliflozin on left ventricular diastolic function in patients with type 2 diabetes mellitus. Circulation, 143(5), 510–512.PubMedCrossRef Shim, C. Y., Seo, J., Cho, I., et al. (2021). Randomized, Controlled trial to evaluate the effect of dapagliflozin on left ventricular diastolic function in patients with type 2 diabetes mellitus. Circulation, 143(5), 510–512.PubMedCrossRef
48.
Zurück zum Zitat Brown, A. J. M., Gandy, S., McCrimmon, R., Houston, J. G., Struthers, A. D., & Lang, C. C. (2020). A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. European Heart Journal., 41(36), 3421–3432.PubMedPubMedCentralCrossRef Brown, A. J. M., Gandy, S., McCrimmon, R., Houston, J. G., Struthers, A. D., & Lang, C. C. (2020). A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. European Heart Journal., 41(36), 3421–3432.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Nagai, T., Anzai, T., Kaneko, H., et al. (2011). C-reactive protein overexpression exacerbates pressure overload-induced cardiac remodeling through enhanced inflammatory response. Hypertension, 57(2), 208–215.PubMedCrossRef Nagai, T., Anzai, T., Kaneko, H., et al. (2011). C-reactive protein overexpression exacerbates pressure overload-induced cardiac remodeling through enhanced inflammatory response. Hypertension, 57(2), 208–215.PubMedCrossRef
50.
Zurück zum Zitat Santos-Gallego, C. G., Vargas-Delgado, A. P., Requena-Ibanez, J. A., et al. (2021). Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. Journal of the American College of Cardiology., 77(3), 243–255.PubMedCrossRef Santos-Gallego, C. G., Vargas-Delgado, A. P., Requena-Ibanez, J. A., et al. (2021). Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. Journal of the American College of Cardiology., 77(3), 243–255.PubMedCrossRef
51.
Zurück zum Zitat Lee, M. M. Y., Brooksbank, K. J. M., Wetherall, K., et al. (2021). Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation, 143(6), 516–525.PubMedCrossRef Lee, M. M. Y., Brooksbank, K. J. M., Wetherall, K., et al. (2021). Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation, 143(6), 516–525.PubMedCrossRef
52.
Zurück zum Zitat Omar, M., Jensen, J., Ali, M., et al. (2021). Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial. JAMA Cardiology Omar, M., Jensen, J., Ali, M., et al. (2021). Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the empire HF randomized clinical trial. JAMA Cardiology
53.
Zurück zum Zitat Singh, J. S. S., Mordi, I. R., Vickneson, K., et al. (2020). Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM trial. Diabetes Care, 43(6), 1356–1359.PubMedPubMedCentralCrossRef Singh, J. S. S., Mordi, I. R., Vickneson, K., et al. (2020). Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM trial. Diabetes Care, 43(6), 1356–1359.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Nassif, M. E., Qintar, M., Windsor, S. L., et al. (2021). Empagliflozin effects on pulmonary artery pressure in patients with heart failure. Circulation, 143(17), 1673–1686.PubMedCrossRef Nassif, M. E., Qintar, M., Windsor, S. L., et al. (2021). Empagliflozin effects on pulmonary artery pressure in patients with heart failure. Circulation, 143(17), 1673–1686.PubMedCrossRef
55.
Zurück zum Zitat Wang, C., & Wang, X. (2015). The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochimica et Biophysica Acta, 1852(2), 188–194.PubMedCrossRef Wang, C., & Wang, X. (2015). The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochimica et Biophysica Acta, 1852(2), 188–194.PubMedCrossRef
56.
Zurück zum Zitat Tarone, G., & Brancaccio, M. (2014). Keep your heart in shape: Molecular chaperone networks for treating heart disease. Cardiovascular Research, 102(3), 346–361.PubMedCrossRef Tarone, G., & Brancaccio, M. (2014). Keep your heart in shape: Molecular chaperone networks for treating heart disease. Cardiovascular Research, 102(3), 346–361.PubMedCrossRef
57.
58.
Zurück zum Zitat Shirakabe, A., Zhai, P., Ikeda, Y., et al. (2016). Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation, 133(13), 1249–1263.PubMedPubMedCentralCrossRef Shirakabe, A., Zhai, P., Ikeda, Y., et al. (2016). Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation, 133(13), 1249–1263.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Nakai, A., Yamaguchi, O., Takeda, T., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13(5), 619–624.PubMedCrossRef Nakai, A., Yamaguchi, O., Takeda, T., et al. (2007). The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 13(5), 619–624.PubMedCrossRef
60.
Zurück zum Zitat Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J., & Otsu, K. (2009). The role of autophagy in the heart. Cell Death & Differentiation., 16(1), 31–38.CrossRef Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J., & Otsu, K. (2009). The role of autophagy in the heart. Cell Death & Differentiation., 16(1), 31–38.CrossRef
61.
Zurück zum Zitat Mancini, S. J., Boyd, D., Katwan, O. J., et al. (2018). Canagliflozin inhibits interleukin-1beta-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Science and Reports, 8(1), 5276.CrossRef Mancini, S. J., Boyd, D., Katwan, O. J., et al. (2018). Canagliflozin inhibits interleukin-1beta-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Science and Reports, 8(1), 5276.CrossRef
62.
Zurück zum Zitat Hawley, S. A., Ford, R. J., Smith, B. K., et al. (2016). The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes, 65(9), 2784–2794.PubMedCrossRef Hawley, S. A., Ford, R. J., Smith, B. K., et al. (2016). The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes, 65(9), 2784–2794.PubMedCrossRef
63.
Zurück zum Zitat Sayour, A. A., Korkmaz-Icoz, S., Loganathan, S., et al. (2019). Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. Journal of Translational Medicine, 17(1), 127.PubMedPubMedCentralCrossRef Sayour, A. A., Korkmaz-Icoz, S., Loganathan, S., et al. (2019). Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. Journal of Translational Medicine, 17(1), 127.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Inoue, M. K., Matsunaga, Y., Nakatsu, Y., et al. (2019). Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetology and Metabolic Syndrome, 11, 57.PubMedPubMedCentralCrossRef Inoue, M. K., Matsunaga, Y., Nakatsu, Y., et al. (2019). Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetology and Metabolic Syndrome, 11, 57.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Lu, Q., Liu, J., Li, X., et al. (2020). Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Molecular and Cellular Endocrinology, 501, 110642.PubMedCrossRef Lu, Q., Liu, J., Li, X., et al. (2020). Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Molecular and Cellular Endocrinology, 501, 110642.PubMedCrossRef
66.
Zurück zum Zitat Kim, J. W., Lee, Y. J., You, Y. H., et al. (2018). Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and alpha-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. Journal of Cellular Biochemistry Kim, J. W., Lee, Y. J., You, Y. H., et al. (2018). Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and alpha-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. Journal of Cellular Biochemistry
67.
Zurück zum Zitat Ye, Y., Jia, X., Bajaj, M., & Birnbaum, Y. (2018). Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovascular Drugs and Therapy, 32(6), 553–558.PubMedCrossRef Ye, Y., Jia, X., Bajaj, M., & Birnbaum, Y. (2018). Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovascular Drugs and Therapy, 32(6), 553–558.PubMedCrossRef
68.
Zurück zum Zitat Kim, S., Jo, C. H., & Kim, G. H. (2019). Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertension Research, 42(12), 1905–1915.PubMedPubMedCentralCrossRef Kim, S., Jo, C. H., & Kim, G. H. (2019). Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertension Research, 42(12), 1905–1915.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Chang, Y. K., Choi, H., Jeong, J. Y., et al. (2016). Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One., 11(7), e0158810.PubMedPubMedCentralCrossRef Chang, Y. K., Choi, H., Jeong, J. Y., et al. (2016). Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One., 11(7), e0158810.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Packer, M. (2020). Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors. European Journal of Heart Failure., 22(4), 618–628.PubMedCrossRef Packer, M. (2020). Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors. European Journal of Heart Failure., 22(4), 618–628.PubMedCrossRef
71.
Zurück zum Zitat Packer, M. (2020). SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care, 43(3), 508–511.PubMedCrossRef Packer, M. (2020). SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care, 43(3), 508–511.PubMedCrossRef
72.
Zurück zum Zitat Takimoto, E., & Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49(2), 241–248.PubMedCrossRef Takimoto, E., & Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49(2), 241–248.PubMedCrossRef
73.
Zurück zum Zitat Sabri, A., Hughie, H. H., & Lucchesi, P. A. (2003). Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxidants & Redox Signaling, 5(6), 731–740.CrossRef Sabri, A., Hughie, H. H., & Lucchesi, P. A. (2003). Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxidants & Redox Signaling, 5(6), 731–740.CrossRef
74.
Zurück zum Zitat Rababa’h, A. M., Guillory, A. N., Mustafa, R., & Hijjawi, T. (2018). Oxidative stress and cardiac remodeling: An updated edge. Current Cardiology Reviews, 14(1), 53–59.PubMedPubMedCentralCrossRef Rababa’h, A. M., Guillory, A. N., Mustafa, R., & Hijjawi, T. (2018). Oxidative stress and cardiac remodeling: An updated edge. Current Cardiology Reviews, 14(1), 53–59.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Li, C., Zhang, J., Xue, M., et al. (2019). SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovascular Diabetology, 18(1), 15.PubMedPubMedCentralCrossRef Li, C., Zhang, J., Xue, M., et al. (2019). SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovascular Diabetology, 18(1), 15.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Campos, D. H., Leopoldo, A. S., Lima-Leopoldo, A. P., et al. (2014). Obesity preserves myocardial function during blockade of the glycolytic pathway. Arquivos Brasileiros de Cardiologia, 103(4), 330–337.PubMedPubMedCentral Campos, D. H., Leopoldo, A. S., Lima-Leopoldo, A. P., et al. (2014). Obesity preserves myocardial function during blockade of the glycolytic pathway. Arquivos Brasileiros de Cardiologia, 103(4), 330–337.PubMedPubMedCentral
77.
78.
Zurück zum Zitat Ferrannini, E., Mark, M., & Mayoux, E. (2016). CV Protection in the EMPA-REG OUTCOME Trial: A “thrifty substrate” hypothesis. Diabetes Care, 39(7), 1108–1114.PubMedCrossRef Ferrannini, E., Mark, M., & Mayoux, E. (2016). CV Protection in the EMPA-REG OUTCOME Trial: A “thrifty substrate” hypothesis. Diabetes Care, 39(7), 1108–1114.PubMedCrossRef
79.
Zurück zum Zitat Byrne, N. J., Soni, S., Takahara, S., et al. (2020). Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circulation: Heart Failure, 13(6), e006573. Byrne, N. J., Soni, S., Takahara, S., et al. (2020). Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circulation: Heart Failure, 13(6), e006573.
80.
Zurück zum Zitat Maejima, Y. (2019). SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Frontiers in Cardiovascular Medicine, 6, 186.PubMedCrossRef Maejima, Y. (2019). SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Frontiers in Cardiovascular Medicine, 6, 186.PubMedCrossRef
81.
Zurück zum Zitat Daniele, G., Xiong, J., Solis-Herrera, C., et al. (2016). Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care, 39(11), 2036–2041.PubMedPubMedCentralCrossRef Daniele, G., Xiong, J., Solis-Herrera, C., et al. (2016). Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care, 39(11), 2036–2041.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Cai, T., Ke, Q., Fang, Y., et al. (2020). Sodium-glucose cotransporter 2 inhibition suppresses HIF-1alpha-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death & Disease, 11(5), 390.CrossRef Cai, T., Ke, Q., Fang, Y., et al. (2020). Sodium-glucose cotransporter 2 inhibition suppresses HIF-1alpha-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death & Disease, 11(5), 390.CrossRef
83.
Zurück zum Zitat Lauritsen, K. M., Nielsen, B. R. R., Tolbod, L. P., et al. (2021). SGLT2 inhibition does not affect myocardial fatty acid oxidation or uptake, but reduces myocardial glucose uptake and blood flow in individuals with type 2 diabetes: A randomized double-blind, placebo-controlled crossover trial. Diabetes, 70(3), 800–808.PubMedCrossRef Lauritsen, K. M., Nielsen, B. R. R., Tolbod, L. P., et al. (2021). SGLT2 inhibition does not affect myocardial fatty acid oxidation or uptake, but reduces myocardial glucose uptake and blood flow in individuals with type 2 diabetes: A randomized double-blind, placebo-controlled crossover trial. Diabetes, 70(3), 800–808.PubMedCrossRef
84.
Zurück zum Zitat Verma, S., Rawat, S., Ho, K. L., et al. (2018). Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic to Translational Science, 3(5), 575–587.PubMedPubMedCentralCrossRef Verma, S., Rawat, S., Ho, K. L., et al. (2018). Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic to Translational Science, 3(5), 575–587.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Olgar, Y., Tuncay, E., Degirmenci, S., et al. (2020). Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca(2+) homeostasis and promotes cardiac dysfunction. Journal of Cellular and Molecular Medicine, 24(15), 8567–8578.PubMedPubMedCentralCrossRef Olgar, Y., Tuncay, E., Degirmenci, S., et al. (2020). Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca(2+) homeostasis and promotes cardiac dysfunction. Journal of Cellular and Molecular Medicine, 24(15), 8567–8578.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Takagi, S., Li, J., Takagaki, Y., et al. (2018). Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. Journal of Diabetes Investigation, 9(5), 1025–1032.PubMedPubMedCentralCrossRef Takagi, S., Li, J., Takagaki, Y., et al. (2018). Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. Journal of Diabetes Investigation, 9(5), 1025–1032.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Sun, M., Chen, M., Dawood, F., et al. (2007). Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation, 115(11), 1398–1407.PubMedCrossRef Sun, M., Chen, M., Dawood, F., et al. (2007). Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation, 115(11), 1398–1407.PubMedCrossRef
88.
Zurück zum Zitat Schirone, L., Forte, M., Palmerio, S., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity, 2017, 3920195.PubMedPubMedCentralCrossRef Schirone, L., Forte, M., Palmerio, S., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity, 2017, 3920195.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Heerspink, H. J. L., Perco, P., Mulder, S., et al. (2019). Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia, 62(7), 1154–1166.PubMedPubMedCentralCrossRef Heerspink, H. J. L., Perco, P., Mulder, S., et al. (2019). Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia, 62(7), 1154–1166.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Kim, S. R., Lee, S. G., Kim, S. H., et al. (2020). SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nature Communications, 11(1), 2127.PubMedPubMedCentralCrossRef Kim, S. R., Lee, S. G., Kim, S. H., et al. (2020). SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nature Communications, 11(1), 2127.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Sokolova, M., Sjaastad, I., Louwe, M. C., et al. (2019). NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Frontiers in Immunology, 10, 1621.PubMedPubMedCentralCrossRef Sokolova, M., Sjaastad, I., Louwe, M. C., et al. (2019). NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Frontiers in Immunology, 10, 1621.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Byrne, N. J., Matsumura, N., Maayah, Z. H., et al. (2020). Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circulation: Heart Failure, 13(1), e006277. Byrne, N. J., Matsumura, N., Maayah, Z. H., et al. (2020). Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circulation: Heart Failure, 13(1), e006277.
93.
Zurück zum Zitat Yerra, V. G., Batchu, S. N., Kabir, G., et al. (2021). Empagliflozin disrupts a Tnfrsf12a-mediated feed forward loop that promotes left ventricular hypertrophy. Cardiovascular Drugs and Therapy Yerra, V. G., Batchu, S. N., Kabir, G., et al. (2021). Empagliflozin disrupts a Tnfrsf12a-mediated feed forward loop that promotes left ventricular hypertrophy. Cardiovascular Drugs and Therapy
94.
Zurück zum Zitat Camici, P. G., & Lorenzoni, R. (1994). Microcirculation and remodelling. Cardiologia, 39(12 Suppl 1), 197–201.PubMed Camici, P. G., & Lorenzoni, R. (1994). Microcirculation and remodelling. Cardiologia, 39(12 Suppl 1), 197–201.PubMed
95.
Zurück zum Zitat Miličić, D., Jakuš, N., & Fabijanović, D. (2018). Microcirculation and heart failure. Current Pharmaceutical Design, 24(25), 2954–2959.PubMedCrossRef Miličić, D., Jakuš, N., & Fabijanović, D. (2018). Microcirculation and heart failure. Current Pharmaceutical Design, 24(25), 2954–2959.PubMedCrossRef
96.
Zurück zum Zitat Adingupu, D. D., Göpel, S. O., Grönros, J., et al. (2019). SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice. Cardiovascular Diabetology, 18(1), 16.PubMedPubMedCentralCrossRef Adingupu, D. D., Göpel, S. O., Grönros, J., et al. (2019). SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob(-/-) mice. Cardiovascular Diabetology, 18(1), 16.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Juni, R. P., Kuster, D. W. D., Goebel, M., et al. (2019). Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic to Translational Science., 4(5), 575–591.PubMedPubMedCentralCrossRef Juni, R. P., Kuster, D. W. D., Goebel, M., et al. (2019). Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic to Translational Science., 4(5), 575–591.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Ott, C., Jumar, A., Striepe, K., et al. (2017). A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovascular Diabetology, 16(1), 26.PubMedPubMedCentralCrossRef Ott, C., Jumar, A., Striepe, K., et al. (2017). A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovascular Diabetology, 16(1), 26.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Herat, L. Y., Magno, A. L., Rudnicka, C., et al. (2020). SGLT2 inhibitor-induced sympathoinhibition: A novel mechanism for cardiorenal protection. JACC Basic to Translational Science, 5(2), 169–179.PubMedPubMedCentralCrossRef Herat, L. Y., Magno, A. L., Rudnicka, C., et al. (2020). SGLT2 inhibitor-induced sympathoinhibition: A novel mechanism for cardiorenal protection. JACC Basic to Translational Science, 5(2), 169–179.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Verma, S. (2020). Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system? JACC Basic to Translational Science, 5(2), 180–182.PubMedPubMedCentralCrossRef Verma, S. (2020). Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system? JACC Basic to Translational Science, 5(2), 180–182.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Shimizu, W., Kubota, Y., Hoshika, Y., et al. (2020). Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial. Cardiovascular Diabetology., 19(1), 148.PubMedPubMedCentralCrossRef Shimizu, W., Kubota, Y., Hoshika, Y., et al. (2020). Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial. Cardiovascular Diabetology., 19(1), 148.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Spiegel, J. (2010). Diagnostic and pathophysiological impact of myocardial MIBG scintigraphy in Parkinson’s disease. Parkinson’s Disease, 2010, 295346.PubMed Spiegel, J. (2010). Diagnostic and pathophysiological impact of myocardial MIBG scintigraphy in Parkinson’s disease. Parkinson’s Disease, 2010, 295346.PubMed
103.
Zurück zum Zitat Garg, V., Verma, S., Connelly, K. A., et al. (2020). Does empagliflozin modulate the autonomic nervous system among individuals with type 2 diabetes and coronary artery disease? The EMPA-HEART CardioLink-6 Holter analysis. Metabology Open, 7, 100039.CrossRef Garg, V., Verma, S., Connelly, K. A., et al. (2020). Does empagliflozin modulate the autonomic nervous system among individuals with type 2 diabetes and coronary artery disease? The EMPA-HEART CardioLink-6 Holter analysis. Metabology Open, 7, 100039.CrossRef
104.
Zurück zum Zitat Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology & Medicine, 63, 338–349.CrossRef Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology & Medicine, 63, 338–349.CrossRef
105.
Zurück zum Zitat Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115–122.PubMedCrossRef Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115–122.PubMedCrossRef
106.
Zurück zum Zitat Philippaert K, Kalyaanamoorthy S, Fatehi M, et al. The cardiac late sodium channel current is a molecular target for the sodium-glucose co-transporter 2 inhibitor empagliflozin. Circulation.0(0). Philippaert K, Kalyaanamoorthy S, Fatehi M, et al. The cardiac late sodium channel current is a molecular target for the sodium-glucose co-transporter 2 inhibitor empagliflozin. Circulation.0(0).
107.
Zurück zum Zitat Uthman, L., Baartscheer, A., Bleijlevens, B., et al. (2018). Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia, 61(3), 722–726.PubMedCrossRef Uthman, L., Baartscheer, A., Bleijlevens, B., et al. (2018). Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia, 61(3), 722–726.PubMedCrossRef
108.
Zurück zum Zitat Baartscheer, A., Schumacher, C. A., Wüst, R. C., et al. (2017). Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia, 60(3), 568–573.PubMedCrossRef Baartscheer, A., Schumacher, C. A., Wüst, R. C., et al. (2017). Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia, 60(3), 568–573.PubMedCrossRef
109.
Zurück zum Zitat Chung, Y. J., Park, K. C., Tokar, S., et al. (2020). Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovascular Research Chung, Y. J., Park, K. C., Tokar, S., et al. (2020). Off-target effects of sodium-glucose co-transporter 2 blockers: Empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovascular Research
110.
Zurück zum Zitat Tomek, J., & Bub, G. (2017). Hypertension-induced remodelling: On the interactions of cardiac risk factors. Journal of Physiology, 595(12), 4027–4036.PubMedPubMedCentralCrossRef Tomek, J., & Bub, G. (2017). Hypertension-induced remodelling: On the interactions of cardiac risk factors. Journal of Physiology, 595(12), 4027–4036.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat González, A., Ravassa, S., López, B., et al. (2018). Myocardial remodeling in hypertension. Hypertension, 72(3), 549–558.PubMedCrossRef González, A., Ravassa, S., López, B., et al. (2018). Myocardial remodeling in hypertension. Hypertension, 72(3), 549–558.PubMedCrossRef
112.
Zurück zum Zitat Tikkanen, I., Narko, K., Zeller, C., et al. (2015). Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care, 38(3), 420–428.PubMedCrossRef Tikkanen, I., Narko, K., Zeller, C., et al. (2015). Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care, 38(3), 420–428.PubMedCrossRef
113.
Zurück zum Zitat Majewski, C., & Bakris, G. L. (2015). Blood pressure reduction: An added benefit of sodium–glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care, 38(3), 429–430.PubMedPubMedCentralCrossRef Majewski, C., & Bakris, G. L. (2015). Blood pressure reduction: An added benefit of sodium–glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care, 38(3), 429–430.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Oliva, R. V., & Bakris, G. L. (2014). Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. Journal of the American Society of Hypertension, 8(5), 330–339.PubMedCrossRef Oliva, R. V., & Bakris, G. L. (2014). Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. Journal of the American Society of Hypertension, 8(5), 330–339.PubMedCrossRef
115.
Zurück zum Zitat Kario, K., Okada, K., Kato, M., et al. (2019). Twenty-four-hour blood pressure-lowering effect of a sodium-glucose cotransporter 2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension. Circulation, 139(18), 2089–2097.CrossRef Kario, K., Okada, K., Kato, M., et al. (2019). Twenty-four-hour blood pressure-lowering effect of a sodium-glucose cotransporter 2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension. Circulation, 139(18), 2089–2097.CrossRef
116.
Zurück zum Zitat Kaesler, N., Babler, A., Floege, J., & Kramann, R. (2020). Cardiac remodeling in chronic kidney disease. Toxins (Basel), 12(3). Kaesler, N., Babler, A., Floege, J., & Kramann, R. (2020). Cardiac remodeling in chronic kidney disease. Toxins (Basel), 12(3).
117.
Zurück zum Zitat Rasić, S., Kulenović, I., Haracić, A., & Catović, A. (2004). Left ventricular hypertrophy and risk factors for its development in uraemic patients. Bosnian Journal of Basic Medical Sciences, 4(1), 34–40.PubMedPubMedCentralCrossRef Rasić, S., Kulenović, I., Haracić, A., & Catović, A. (2004). Left ventricular hypertrophy and risk factors for its development in uraemic patients. Bosnian Journal of Basic Medical Sciences, 4(1), 34–40.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Kramann, R., Erpenbeck, J., Schneider, R. K., et al. (2014). Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. Journal of the American Society of Nephrology, 25(10), 2351–2365.PubMedPubMedCentralCrossRef Kramann, R., Erpenbeck, J., Schneider, R. K., et al. (2014). Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. Journal of the American Society of Nephrology, 25(10), 2351–2365.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Heerspink, H. J. L., Stefansson, B. V., Correa-Rotter, R., et al. (2020). Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine, 383(15), 1436–1446.PubMedCrossRef Heerspink, H. J. L., Stefansson, B. V., Correa-Rotter, R., et al. (2020). Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine, 383(15), 1436–1446.PubMedCrossRef
120.
Zurück zum Zitat Perkovic, V., Jardine, M. J., Neal, B., et al. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New England Journal of Medicine, 380(24), 2295–2306.PubMedCrossRef Perkovic, V., Jardine, M. J., Neal, B., et al. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New England Journal of Medicine, 380(24), 2295–2306.PubMedCrossRef
121.
Zurück zum Zitat Simon, T. G., Bamira, D. G., Chung, R. T., Weiner, R. B., & Corey, K. E. (2017). Nonalcoholic steatohepatitis is associated with cardiac remodeling and dysfunction. Obesity (Silver Spring), 25(8), 1313–1316.CrossRef Simon, T. G., Bamira, D. G., Chung, R. T., Weiner, R. B., & Corey, K. E. (2017). Nonalcoholic steatohepatitis is associated with cardiac remodeling and dysfunction. Obesity (Silver Spring), 25(8), 1313–1316.CrossRef
122.
Zurück zum Zitat Salah, H. M., Pandey, A., Soloveva, A., et al. (2021). Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC Basic to Translational Science, 6(11), 918–932.PubMedPubMedCentralCrossRef Salah, H. M., Pandey, A., Soloveva, A., et al. (2021). Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC Basic to Translational Science, 6(11), 918–932.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Xing, B., Zhao, Y., Dong, B., Zhou, Y., Lv, W., & Zhao, W. (2020). Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Journal of Diabetes Investigation, 11(5), 1238–1247.PubMedPubMedCentralCrossRef Xing, B., Zhao, Y., Dong, B., Zhou, Y., Lv, W., & Zhao, W. (2020). Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Journal of Diabetes Investigation, 11(5), 1238–1247.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Nishiya, D., Omura, T., Shimada, K., et al. (2006). Effects of erythropoietin on cardiac remodeling after myocardial infarction. Journal of Pharmacological Sciences, 101(1), 31–39.PubMedCrossRef Nishiya, D., Omura, T., Shimada, K., et al. (2006). Effects of erythropoietin on cardiac remodeling after myocardial infarction. Journal of Pharmacological Sciences, 101(1), 31–39.PubMedCrossRef
125.
Zurück zum Zitat Sano, M., & Goto, S. (2019). Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation, 139(17), 1985–1987.PubMedCrossRef Sano, M., & Goto, S. (2019). Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation, 139(17), 1985–1987.PubMedCrossRef
126.
Zurück zum Zitat Mazer, C. D., Hare, G. M. T., Connelly, P. W., et al. (2020). Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation, 141(8), 704–707.PubMedCrossRef Mazer, C. D., Hare, G. M. T., Connelly, P. W., et al. (2020). Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation, 141(8), 704–707.PubMedCrossRef
127.
Zurück zum Zitat Maruyama, T., Takashima, H., Oguma, H., et al. (2019). Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technology & Therapeutics, 21(12), 713–720.CrossRef Maruyama, T., Takashima, H., Oguma, H., et al. (2019). Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technology & Therapeutics, 21(12), 713–720.CrossRef
Metadaten
Titel
Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling
verfasst von
Husam M. Salah
Subodh Verma
Carlos G. Santos-Gallego
Ankeet S. Bhatt
Muthiah Vaduganathan
Muhammad Shahzeb Khan
Renato D. Lopes
Subhi J. Al’Aref
Darren K. McGuire
Marat Fudim
Publikationsdatum
15.03.2022
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2022
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-022-10220-5

Weitere Artikel der Ausgabe 5/2022

Journal of Cardiovascular Translational Research 5/2022 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.