Skip to main content
Erschienen in: The Cerebellum 4/2008

01.12.2008

Cerebellum Predicts the Future Motor State

verfasst von: Timothy J. Ebner, Siavash Pasalar

Erschienen in: The Cerebellum | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Feed forward control and estimates of the future state of the motor system are critical for fast and coordinated movements. One framework for generating these predictive signals is based on the central nervous system implementing internal models. Internal models provide for representations of the input–output properties of the motor apparatus or their inverses. It has been widely hypothesized that the cerebellum acquires and stores internal models of the motor apparatus. The results of psychophysical, functional imaging and transcranial magnetic stimulation studies in normal subjects support this hypothesis. Also, the deficits in patients with cerebellar dysfunction can be attributed to a failure of predictive feed forward control and/or to accurately estimate the consequences of motor commands. Furthermore, the computation performed by the cerebellar-like electrosensory lobes in several groups of fishes is to predict the sensory consequences of motor commands. However, only a few electrophysiological investigations have directly tested whether neurons in the cerebellar cortex have the requisite signals compatible with either an inverse or forward internal model. Our studies in the monkey performing manual pursuit tracking demonstrate that the simple spike discharge of Purkinje cells does not have the dynamics-related signals required to be the output of an inverse dynamics model. However, Purkinje cell firing has several of the characteristics of a forward internal model of the arm. A synthesis of the evidence suggests that the cerebellum is involved in integrating the current state of the motor system with internally generated motor commands to predict the future state.
Literatur
1.
Zurück zum Zitat Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649PubMedCrossRef Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649PubMedCrossRef
2.
Zurück zum Zitat Bell CC (1981) An efference copy which is modified by reafferent input. Science 214(4519):450–453PubMedCrossRef Bell CC (1981) An efference copy which is modified by reafferent input. Science 214(4519):450–453PubMedCrossRef
3.
Zurück zum Zitat Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253PubMed Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253PubMed
4.
Zurück zum Zitat Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24 Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24
5.
Zurück zum Zitat Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281PubMedCrossRef Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281PubMedCrossRef
6.
Zurück zum Zitat Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of Physiology, Sect. 1, The Nervous System, Vol. II. Motor Control, Part 2. Williams and Wilkins, Baltimore, pp 735–830 Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of Physiology, Sect. 1, The Nervous System, Vol. II. Motor Control, Part 2. Williams and Wilkins, Baltimore, pp 735–830
7.
Zurück zum Zitat Bodznick D, Montgomery JC, Carey M (1999) Adaptive mechanisms in the elasmobranch hindbrain. J Exp Biol 202(Pt 10):1357–1364PubMed Bodznick D, Montgomery JC, Carey M (1999) Adaptive mechanisms in the elasmobranch hindbrain. J Exp Biol 202(Pt 10):1357–1364PubMed
8.
Zurück zum Zitat Bursztyn LLCD, Ganesh G, Imamizu H, Kawato M, Flanagan JR (2006) Neural correlates of internal-model loading. Current Biology 16(24):2440–2445PubMedCrossRef Bursztyn LLCD, Ganesh G, Imamizu H, Kawato M, Flanagan JR (2006) Neural correlates of internal-model loading. Current Biology 16(24):2440–2445PubMedCrossRef
9.
Zurück zum Zitat Coltz JD, Johnson MT, Ebner TJ (1999) Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci 19(5):1782–1803PubMed Coltz JD, Johnson MT, Ebner TJ (1999) Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci 19(5):1782–1803PubMed
10.
Zurück zum Zitat Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25(43):9919–9931PubMedCrossRef Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25(43):9919–9931PubMedCrossRef
11.
Zurück zum Zitat Flanagan J, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528PubMed Flanagan J, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528PubMed
12.
Zurück zum Zitat Fu QG, Flament D, Coltz JD, Ebner TJ (1997) Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 78(1):478–491PubMed Fu QG, Flament D, Coltz JD, Ebner TJ (1997) Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 78(1):478–491PubMed
13.
Zurück zum Zitat Gomi H, Shidara M, Takemura A, Inoue Y, Kawano K, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J Neurophysiol 80(2):818–831 Gomi H, Shidara M, Takemura A, Inoue Y, Kawano K, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J Neurophysiol 80(2):818–831
14.
Zurück zum Zitat Han VZ, Grant K, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27(3):611–622PubMedCrossRef Han VZ, Grant K, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27(3):611–622PubMedCrossRef
15.
Zurück zum Zitat Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72(2):479–493PubMed Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in stance. J Neurophysiol 72(2):479–493PubMed
16.
Zurück zum Zitat Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403(6766):192–195PubMedCrossRef Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403(6766):192–195PubMedCrossRef
17.
Zurück zum Zitat Johansson RS, Cole KJ (1992) Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2(6):815–823PubMedCrossRef Johansson RS, Cole KJ (1992) Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2(6):815–823PubMedCrossRef
18.
Zurück zum Zitat Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727PubMedCrossRef Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727PubMedCrossRef
19.
Zurück zum Zitat Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188PubMedCrossRef Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188PubMedCrossRef
20.
Zurück zum Zitat Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol 80(2):832–848PubMed Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol 80(2):832–848PubMed
21.
Zurück zum Zitat Lang CE, Bastian AJ (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82(5):2108–2119PubMed Lang CE, Bastian AJ (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82(5):2108–2119PubMed
22.
Zurück zum Zitat Leung HC, Suh M, Kettner RE (2000) Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey. J Neurophysiol 83(1):13–30PubMed Leung HC, Suh M, Kettner RE (2000) Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey. J Neurophysiol 83(1):13–30PubMed
23.
Zurück zum Zitat Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91(1):230–238PubMedCrossRef Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91(1):230–238PubMedCrossRef
24.
Zurück zum Zitat Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27(25):6832–6842PubMedCrossRef Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27(25):6832–6842PubMedCrossRef
25.
Zurück zum Zitat Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5(11):e316PubMedCrossRef Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5(11):e316PubMedCrossRef
26.
Zurück zum Zitat Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25(3):203–216PubMed Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25(3):203–216PubMed
27.
Zurück zum Zitat Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116PubMedCrossRef Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116PubMedCrossRef
28.
Zurück zum Zitat Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138(2):251–257PubMedCrossRef Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138(2):251–257PubMedCrossRef
29.
Zurück zum Zitat Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3(4):227–235PubMedCrossRef Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3(4):227–235PubMedCrossRef
30.
Zurück zum Zitat Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288PubMedCrossRef Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288PubMedCrossRef
31.
Zurück zum Zitat Pasalar S, Ebner TJ (2007) Invariant prediction of movement kinematics by Purkinje cell simple spike discharge [Abstract]. Soc Neurosci Abstr Pasalar S, Ebner TJ (2007) Invariant prediction of movement kinematics by Purkinje cell simple spike discharge [Abstract]. Soc Neurosci Abstr
32.
Zurück zum Zitat Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411PubMedCrossRef Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411PubMedCrossRef
33.
Zurück zum Zitat Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng 2(3):S219–S234PubMedCrossRef Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng 2(3):S219–S234PubMedCrossRef
34.
Zurück zum Zitat Pollok B, Gross J, Kamp D, Schnitzler A (2008) Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci 20(5):828–840PubMedCrossRef Pollok B, Gross J, Kamp D, Schnitzler A (2008) Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci 20(5):828–840PubMedCrossRef
35.
Zurück zum Zitat Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25(40):9244–9257PubMedCrossRef Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25(40):9244–9257PubMedCrossRef
36.
Zurück zum Zitat Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94PubMedCrossRef Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94PubMedCrossRef
37.
Zurück zum Zitat Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277(5327):821–825PubMedCrossRef Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277(5327):821–825PubMedCrossRef
38.
Zurück zum Zitat Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed
39.
Zurück zum Zitat Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(6441):50–52PubMedCrossRef Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(6441):50–52PubMedCrossRef
40.
Zurück zum Zitat Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93(5):2809–2821PubMedCrossRef Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93(5):2809–2821PubMedCrossRef
41.
Zurück zum Zitat Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72(4):967–1017PubMed Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72(4):967–1017PubMed
42.
Zurück zum Zitat Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19(19):8573–8588PubMed Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19(19):8573–8588PubMed
43.
Zurück zum Zitat Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62 Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62
44.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRef Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRef
45.
Zurück zum Zitat Yamamoto K, Kawato M, Kotosaka S, Kitazawa S (2006) Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97:1588–1599PubMedCrossRef Yamamoto K, Kawato M, Kotosaka S, Kitazawa S (2006) Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol 97:1588–1599PubMedCrossRef
Metadaten
Titel
Cerebellum Predicts the Future Motor State
verfasst von
Timothy J. Ebner
Siavash Pasalar
Publikationsdatum
01.12.2008
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 4/2008
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0059-3

Weitere Artikel der Ausgabe 4/2008

The Cerebellum 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.