Skip to main content
Erschienen in: The Cerebellum 2/2012

01.06.2012

The Cerebellum and Cognition: Evidence from Functional Imaging Studies

verfasst von: Catherine J. Stoodley

Erschienen in: The Cerebellum | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual–spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of “cognitive” networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition—as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks—remains a challenge for future investigations.
Literatur
1.
Zurück zum Zitat Holmes G. Brain. The cerebellum of man. 1939;62:1–30. Holmes G. Brain. The cerebellum of man. 1939;62:1–30.
2.
Zurück zum Zitat Snider R, Eldred E. Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol. 1951;95:1–16.PubMed Snider R, Eldred E. Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol. 1951;95:1–16.PubMed
3.
Zurück zum Zitat Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60. Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60.
4.
Zurück zum Zitat Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMed Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMed
5.
Zurück zum Zitat Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMed Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMed
6.
Zurück zum Zitat Wolpert D, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMed Wolpert D, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMed
7.
Zurück zum Zitat Ito M. Cerebellum and neural control. New York: Raven; 1984. Ito M. Cerebellum and neural control. New York: Raven; 1984.
8.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMed Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMed
9.
Zurück zum Zitat Middleton F, Strick P. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.PubMed Middleton F, Strick P. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31:236–50.PubMed
10.
Zurück zum Zitat Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.PubMed Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.PubMed
11.
Zurück zum Zitat Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMed Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMed
12.
Zurück zum Zitat Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMed Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMed
13.
Zurück zum Zitat Schmahmann JD. Cerebellum and spinal cord: principles of development, anatomical organization, and functional relevance. In: Brice A, Pulst S, editors. Spinocerebellar degenerations: the ataxias and spastic paraplegias. New York: Elsevier; 2006. p. 1–60. Schmahmann JD. Cerebellum and spinal cord: principles of development, anatomical organization, and functional relevance. In: Brice A, Pulst S, editors. Spinocerebellar degenerations: the ataxias and spastic paraplegias. New York: Elsevier; 2006. p. 1–60.
14.
Zurück zum Zitat Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMed Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMed
15.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMed Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMed
16.
Zurück zum Zitat Whiting BA, Barton RA. The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol. 2003;44:3–10.PubMed Whiting BA, Barton RA. The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol. 2003;44:3–10.PubMed
17.
Zurück zum Zitat Ramnani N, Behrens T, Johansen-Berg H, Richter M, Pinsk M, Andersson J, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.PubMed Ramnani N, Behrens T, Johansen-Berg H, Richter M, Pinsk M, Andersson J, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.PubMed
18.
Zurück zum Zitat Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.PubMed Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.PubMed
19.
Zurück zum Zitat Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMed Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMed
20.
Zurück zum Zitat Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMed Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMed
21.
Zurück zum Zitat O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMed O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMed
22.
Zurück zum Zitat Heath R, Franklin D, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.PubMed Heath R, Franklin D, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.PubMed
23.
Zurück zum Zitat Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42:1493–6.PubMed Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42:1493–6.PubMed
24.
Zurück zum Zitat Botez-Marquard T, Leveille J, Botez M. Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci. 1994;21:353–7.PubMed Botez-Marquard T, Leveille J, Botez M. Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci. 1994;21:353–7.PubMed
25.
Zurück zum Zitat Levisohn L, Cronin-Golomb A, Schmahmann J. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.PubMed Levisohn L, Cronin-Golomb A, Schmahmann J. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.PubMed
26.
Zurück zum Zitat Rapoport M, Reekum Rv, Mayberg H. The role of the cerebellum in cognition and behaviour: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12:193–8.PubMed Rapoport M, Reekum Rv, Mayberg H. The role of the cerebellum in cognition and behaviour: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12:193–8.PubMed
27.
Zurück zum Zitat Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.PubMed Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.PubMed
28.
Zurück zum Zitat Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad K-O, Luthy AR, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.PubMed Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad K-O, Luthy AR, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.PubMed
29.
Zurück zum Zitat Molinari M, Petrosini L, Misciagna S, Leggio M. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.PubMed Molinari M, Petrosini L, Misciagna S, Leggio M. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.PubMed
30.
Zurück zum Zitat Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMed Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMed
31.
Zurück zum Zitat Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.PubMed Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.PubMed
32.
Zurück zum Zitat Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.PubMed Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.PubMed
33.
Zurück zum Zitat Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.PubMed Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.PubMed
34.
Zurück zum Zitat Gottwald B, Wilde B, Mihajlovic Z, Mehdorn H. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1124–31. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn H. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1124–31.
35.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.PubMed Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.PubMed
36.
Zurück zum Zitat Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.PubMed Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.PubMed
37.
Zurück zum Zitat Gross-Tsur V, Ben-Bashat D, Shalev RS, Levav M, Sira LB. Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia. 2006;44:2569–72.PubMed Gross-Tsur V, Ben-Bashat D, Shalev RS, Levav M, Sira LB. Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia. 2006;44:2569–72.PubMed
38.
Zurück zum Zitat Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13:161–70.PubMed Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13:161–70.PubMed
39.
Zurück zum Zitat Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.PubMed Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.PubMed
40.
Zurück zum Zitat Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5:241–9.PubMed Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5:241–9.PubMed
41.
Zurück zum Zitat Bushara K, Wheat J, Khan A, Mock B, Turski P, Sorenson J, et al. Multiple tactile maps in the human cerebellum. Neuroreport. 2001;12:2483–6.PubMed Bushara K, Wheat J, Khan A, Mock B, Turski P, Sorenson J, et al. Multiple tactile maps in the human cerebellum. Neuroreport. 2001;12:2483–6.PubMed
42.
Zurück zum Zitat Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73.PubMed Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73.PubMed
43.
Zurück zum Zitat Grodd W, Hulsmann E, Ackermann H. Functional MRI localizing in the cerebellum. Neurosurg Clin N Am. 2005;16:77–99.PubMed Grodd W, Hulsmann E, Ackermann H. Functional MRI localizing in the cerebellum. Neurosurg Clin N Am. 2005;16:77–99.PubMed
44.
Zurück zum Zitat Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.PubMed Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.PubMed
45.
Zurück zum Zitat Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16:765–80.PubMed Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16:765–80.PubMed
46.
Zurück zum Zitat Laird A, Fox M, Price C, Glahn D, Uecker A, Lancaster J, et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25:155–64.PubMed Laird A, Fox M, Price C, Glahn D, Uecker A, Lancaster J, et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25:155–64.PubMed
47.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMed Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMed
48.
Zurück zum Zitat Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.PubMed Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.PubMed
49.
Zurück zum Zitat Ojemann JG, Buckner RL, Akbudak E, Snyder AZ, Ollinger JM, McKinstry RC, et al. Functional MRI studies of word-stem completion: reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6:203–15.PubMed Ojemann JG, Buckner RL, Akbudak E, Snyder AZ, Ollinger JM, McKinstry RC, et al. Functional MRI studies of word-stem completion: reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6:203–15.PubMed
50.
Zurück zum Zitat Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998;64:492–8.PubMed Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998;64:492–8.PubMed
51.
Zurück zum Zitat Lurito JT, Kareken DA, Lowe MJ, Chen SH, Mathews VP. Comparison of rhyming and word generation with FMRI. Hum Brain Mapp. 2000;10:99–106.PubMed Lurito JT, Kareken DA, Lowe MJ, Chen SH, Mathews VP. Comparison of rhyming and word generation with FMRI. Hum Brain Mapp. 2000;10:99–106.PubMed
52.
Zurück zum Zitat Seger CA, Desmond JE, Glover GH, Gabrieli JD. Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology. 2000;14:361–9.PubMed Seger CA, Desmond JE, Glover GH, Gabrieli JD. Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology. 2000;14:361–9.PubMed
53.
Zurück zum Zitat Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002;125:1024–38.PubMed Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002;125:1024–38.PubMed
54.
Zurück zum Zitat Noppeney U, Price CJ. A PET study of stimulus- and task-induced semantic processing. Neuroimage. 2002;15:927–35.PubMed Noppeney U, Price CJ. A PET study of stimulus- and task-induced semantic processing. Neuroimage. 2002;15:927–35.PubMed
55.
Zurück zum Zitat McDermott KB, Petersen SE, Watson JM, Ojemann JG. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia. 2003;41:293–303.PubMed McDermott KB, Petersen SE, Watson JM, Ojemann JG. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia. 2003;41:293–303.PubMed
56.
Zurück zum Zitat Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, et al. Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp. 2003;18:208–14.PubMed Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, et al. Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp. 2003;18:208–14.PubMed
57.
Zurück zum Zitat Seki A, Okada T, Koeda T, Sadato N. Phonemic manipulation in Japanese: an fMRI study. Brain Res Cogn Brain Res. 2004;20:261–72.PubMed Seki A, Okada T, Koeda T, Sadato N. Phonemic manipulation in Japanese: an fMRI study. Brain Res Cogn Brain Res. 2004;20:261–72.PubMed
58.
Zurück zum Zitat Tieleman A, Seurinck R, Deblaere K, Vandemaele P, Vingerhoets G, Achten E. Stimulus pacing affects the activation of the medial temporal lobe during a semantic classification task: an fMRI study. Neuroimage. 2005;26:565–72.PubMed Tieleman A, Seurinck R, Deblaere K, Vandemaele P, Vingerhoets G, Achten E. Stimulus pacing affects the activation of the medial temporal lobe during a semantic classification task: an fMRI study. Neuroimage. 2005;26:565–72.PubMed
59.
Zurück zum Zitat Frings M, Dimitrova A, Schorn C, Elles H-G, Hein-Kropp C, Gizewski E, et al. Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett. 2006;409:19–23.PubMed Frings M, Dimitrova A, Schorn C, Elles H-G, Hein-Kropp C, Gizewski E, et al. Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett. 2006;409:19–23.PubMed
60.
Zurück zum Zitat Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.PubMed Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.PubMed
61.
Zurück zum Zitat Raichle M, Fiez J, Videen T, MacLeod A, Pardo J, Fox P, et al. Practice-related changes in human functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.PubMed Raichle M, Fiez J, Videen T, MacLeod A, Pardo J, Fox P, et al. Practice-related changes in human functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.PubMed
62.
Zurück zum Zitat Fiez J, Raichle M. Linguistic processing. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 233–54. Fiez J, Raichle M. Linguistic processing. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 233–54.
63.
Zurück zum Zitat Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.PubMed Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.PubMed
64.
Zurück zum Zitat Jansen A, Floel A, Randenborgh JV, Konrad C, Rotte M, Forster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24:165–72.PubMed Jansen A, Floel A, Randenborgh JV, Konrad C, Rotte M, Forster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24:165–72.PubMed
65.
Zurück zum Zitat Hubrich-Ungureanu P, Kaemmerer N, Henn F, Braus D. Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett. 2002;319:91–4.PubMed Hubrich-Ungureanu P, Kaemmerer N, Henn F, Braus D. Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett. 2002;319:91–4.PubMed
66.
Zurück zum Zitat Booth J, Wood L, Lu D, Houk J, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007;1133:136–44.PubMed Booth J, Wood L, Lu D, Houk J, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007;1133:136–44.PubMed
67.
Zurück zum Zitat Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19:433–44.PubMed Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19:433–44.PubMed
68.
Zurück zum Zitat Hagoort P, Indefrey P, Brown C, Herzog H, Steinmetz H, Seitz RJ. The neural circuitry involved in the reading of German words and pseudowords: a PET study. J Cogn Neurosci. 1999;11:383–98.PubMed Hagoort P, Indefrey P, Brown C, Herzog H, Steinmetz H, Seitz RJ. The neural circuitry involved in the reading of German words and pseudowords: a PET study. J Cogn Neurosci. 1999;11:383–98.PubMed
69.
Zurück zum Zitat Tan LH, Spinks JA, Gao JH, Liu HL, Perfetti CA, Xiong J, et al. Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp. 2000;10:16–27.PubMed Tan LH, Spinks JA, Gao JH, Liu HL, Perfetti CA, Xiong J, et al. Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp. 2000;10:16–27.PubMed
70.
Zurück zum Zitat Xu B, Grafman J, Gaillard WD, Ishii K, Vega-Bermudez F, Pietrini P, et al. Conjoint and extended neural networks for the computation of speech codes: the neural basis of selective impairment in reading words and pseudowords. Cereb Cortex. 2001;11:267–77.PubMed Xu B, Grafman J, Gaillard WD, Ishii K, Vega-Bermudez F, Pietrini P, et al. Conjoint and extended neural networks for the computation of speech codes: the neural basis of selective impairment in reading words and pseudowords. Cereb Cortex. 2001;11:267–77.PubMed
71.
Zurück zum Zitat Mechelli A, Gorno-Tempini ML, Price CJ. Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J Cogn Neurosci. 2003;15:260–71.PubMed Mechelli A, Gorno-Tempini ML, Price CJ. Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J Cogn Neurosci. 2003;15:260–71.PubMed
72.
Zurück zum Zitat Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, et al. Neural correlates of lexical and sublexical processes in reading. Brain Lang. 2004;89:9–20.PubMed Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, et al. Neural correlates of lexical and sublexical processes in reading. Brain Lang. 2004;89:9–20.PubMed
73.
Zurück zum Zitat Stowe LA, Paans AM, Wijers AA, Zwarts F. Activations of "motor" and other non-language structures during sentence comprehension. Brain Lang. 2004;89:290–9.PubMed Stowe LA, Paans AM, Wijers AA, Zwarts F. Activations of "motor" and other non-language structures during sentence comprehension. Brain Lang. 2004;89:290–9.PubMed
74.
Zurück zum Zitat Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, et al. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30:547–89.PubMed Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, et al. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30:547–89.PubMed
75.
Zurück zum Zitat Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M. Neural networks for Braille reading by the blind. Brain. 1998;121:1213–29.PubMed Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M. Neural networks for Braille reading by the blind. Brain. 1998;121:1213–29.PubMed
76.
Zurück zum Zitat Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp. 2004;22:229–35.PubMed Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp. 2004;22:229–35.PubMed
77.
Zurück zum Zitat Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.PubMed Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.PubMed
78.
Zurück zum Zitat Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMed Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMed
79.
Zurück zum Zitat Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, et al. Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage. 2010;50:626–38.PubMed Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, et al. Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage. 2010;50:626–38.PubMed
80.
Zurück zum Zitat Chen S, Desmond J. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.PubMed Chen S, Desmond J. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.PubMed
81.
Zurück zum Zitat Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMed Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMed
82.
Zurück zum Zitat Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMed Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMed
83.
Zurück zum Zitat Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32:821–41.PubMed Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32:821–41.PubMed
84.
Zurück zum Zitat Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, et al. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54:1324–31.PubMed Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, et al. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54:1324–31.PubMed
85.
Zurück zum Zitat Bonda E, Petrides M, Frey S, Evans A. Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci U S A. 1995;92:11180–4.PubMed Bonda E, Petrides M, Frey S, Evans A. Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci U S A. 1995;92:11180–4.PubMed
86.
Zurück zum Zitat Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–8.PubMed Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–8.PubMed
87.
Zurück zum Zitat Zacks JM, Ollinger JM, Sheridan MA, Tversky B. A parametric study of mental spatial transformations of bodies. Neuroimage. 2002;16:857–72.PubMed Zacks JM, Ollinger JM, Sheridan MA, Tversky B. A parametric study of mental spatial transformations of bodies. Neuroimage. 2002;16:857–72.PubMed
88.
Zurück zum Zitat Creem-Regehr SH, Neil JA, Yeh HJ. Neural correlates of two imagined egocentric transformations. Neuroimage. 2007;35:916–27.PubMed Creem-Regehr SH, Neil JA, Yeh HJ. Neural correlates of two imagined egocentric transformations. Neuroimage. 2007;35:916–27.PubMed
89.
Zurück zum Zitat Weiss MM, Wolbers T, Peller M, Witt K, Marshall L, Buchel C, et al. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. Neuroimage. 2009;44:1063–73.PubMed Weiss MM, Wolbers T, Peller M, Witt K, Marshall L, Buchel C, et al. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. Neuroimage. 2009;44:1063–73.PubMed
90.
Zurück zum Zitat Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK, et al. The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia. 2005;43:1870–7.PubMed Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK, et al. The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia. 2005;43:1870–7.PubMed
91.
Zurück zum Zitat Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett. 2002;322:182–6.PubMed Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett. 2002;322:182–6.PubMed
92.
Zurück zum Zitat Jordan K, Heinze H-J, Lutz K, Kanowski M, Jancke L. Cortical activations during the mental rotation of different visual objects. NeuroImage. 2001;13:143–52.PubMed Jordan K, Heinze H-J, Lutz K, Kanowski M, Jancke L. Cortical activations during the mental rotation of different visual objects. NeuroImage. 2001;13:143–52.PubMed
93.
Zurück zum Zitat Vingerhoets G, Lange Fd, Vandemaele P, Deblaere K, Achten E. Motor imagery in mental rotation: an fMRI study. NeuroImage. 2002;17:1623–33.PubMed Vingerhoets G, Lange Fd, Vandemaele P, Deblaere K, Achten E. Motor imagery in mental rotation: an fMRI study. NeuroImage. 2002;17:1623–33.PubMed
94.
Zurück zum Zitat Neuner I, Stocker T, Kellermann T, Kircher T, Zilles K, Schneider F, et al. Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Res. 2007;1177:66–78.PubMed Neuner I, Stocker T, Kellermann T, Kircher T, Zilles K, Schneider F, et al. Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Res. 2007;1177:66–78.PubMed
95.
Zurück zum Zitat Molinari M, Leggio M. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.PubMed Molinari M, Leggio M. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.PubMed
96.
Zurück zum Zitat Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.PubMed Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.PubMed
97.
Zurück zum Zitat Stein J, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMed Stein J, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMed
98.
Zurück zum Zitat Hanakawa T, Honda M, Okada T, Fukuyama H, Shibasaki H. Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: a functional magnetic resonance imaging study. Neurosci Lett. 2003;347:199–201.PubMed Hanakawa T, Honda M, Okada T, Fukuyama H, Shibasaki H. Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: a functional magnetic resonance imaging study. Neurosci Lett. 2003;347:199–201.PubMed
99.
Zurück zum Zitat Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18:2775–88.PubMed Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18:2775–88.PubMed
100.
Zurück zum Zitat Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res. 2006;175:544–55.PubMed Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res. 2006;175:544–55.PubMed
101.
Zurück zum Zitat Fiez J, Raife E, Balota D, Schwarz J, Raichle M, Petersen S. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16:808–22.PubMed Fiez J, Raife E, Balota D, Schwarz J, Raichle M, Petersen S. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16:808–22.PubMed
102.
Zurück zum Zitat Desmond J, Gabrieli J, Wagner A, Ginier B, Glover G. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.PubMed Desmond J, Gabrieli J, Wagner A, Ginier B, Glover G. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.PubMed
103.
Zurück zum Zitat LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10:695–704.PubMed LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10:695–704.PubMed
104.
Zurück zum Zitat Honey G, Bullmore E, Sharma T. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage. 2000;12:495–503.PubMed Honey G, Bullmore E, Sharma T. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage. 2000;12:495–503.PubMed
105.
Zurück zum Zitat Chen S, Desmond J. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24:332–8.PubMed Chen S, Desmond J. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24:332–8.PubMed
106.
Zurück zum Zitat Beneventi H, Barndon R, Ersland L, Hugdahl K. An fMRI study of working memory for schematic facial expressions. Scand J Psychol. 2007;48:81–6.PubMed Beneventi H, Barndon R, Ersland L, Hugdahl K. An fMRI study of working memory for schematic facial expressions. Scand J Psychol. 2007;48:81–6.PubMed
107.
Zurück zum Zitat Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage. 2009;47:2073–82.PubMed Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage. 2009;47:2073–82.PubMed
108.
Zurück zum Zitat Tomasi D, Caparelli EC, Chang L, Ernst T. fMRI-acoustic noise alters brain activation during working memory tasks. Neuroimage. 2005;27:377–86.PubMed Tomasi D, Caparelli EC, Chang L, Ernst T. fMRI-acoustic noise alters brain activation during working memory tasks. Neuroimage. 2005;27:377–86.PubMed
109.
Zurück zum Zitat Hayter A, Langdon D, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36:943–54.PubMed Hayter A, Langdon D, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36:943–54.PubMed
110.
Zurück zum Zitat Cardinal KS, Wilson SM, Giesser BS, Drain AE, Sicotte NL. A longitudinal fMRI study of the paced auditory serial addition task. Mult Scler. 2008;14:465–71.PubMed Cardinal KS, Wilson SM, Giesser BS, Drain AE, Sicotte NL. A longitudinal fMRI study of the paced auditory serial addition task. Mult Scler. 2008;14:465–71.PubMed
111.
Zurück zum Zitat Forn C, Ventura-Campos N, Belenguer A, Belloch V, Parcet MA, Avila C. A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasks. Hum Brain Mapp. 2008;29:644–50.PubMed Forn C, Ventura-Campos N, Belenguer A, Belloch V, Parcet MA, Avila C. A comparison of brain activation patterns during covert and overt paced auditory serial addition test tasks. Hum Brain Mapp. 2008;29:644–50.PubMed
112.
Zurück zum Zitat Kirschen M, Chen S, Schraedley-Desmond P, Desmond J. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;24:462–72.PubMed Kirschen M, Chen S, Schraedley-Desmond P, Desmond J. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;24:462–72.PubMed
113.
Zurück zum Zitat Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22:2663–76.PubMed Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22:2663–76.PubMed
114.
Zurück zum Zitat Majerus S, Bastin C, Poncelet M, Van der Linden M, Salmon E, Collette F, et al. Short-term memory and the left intraparietal sulcus: focus of attention? Further evidence from a face short-term memory paradigm. Neuroimage. 2007;35:353–67.PubMed Majerus S, Bastin C, Poncelet M, Van der Linden M, Salmon E, Collette F, et al. Short-term memory and the left intraparietal sulcus: focus of attention? Further evidence from a face short-term memory paradigm. Neuroimage. 2007;35:353–67.PubMed
115.
Zurück zum Zitat Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex. 2001;11:1047–55.PubMed Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex. 2001;11:1047–55.PubMed
116.
117.
Zurück zum Zitat Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6:193–201.PubMed Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6:193–201.PubMed
118.
Zurück zum Zitat Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20:271–9.PubMed Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20:271–9.PubMed
119.
Zurück zum Zitat Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46:880–95.PubMed Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46:880–95.PubMed
120.
Zurück zum Zitat Kirschen MP, Chen SH, Desmond JE. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. 2010;23:51–63.PubMed Kirschen MP, Chen SH, Desmond JE. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. 2010;23:51–63.PubMed
121.
Zurück zum Zitat Henson RN, Burgess N, Frith CD. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia. 2000;38:426–40.PubMed Henson RN, Burgess N, Frith CD. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia. 2000;38:426–40.PubMed
122.
Zurück zum Zitat Chein JM, Schneider W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res. 2005;25:607–23.PubMed Chein JM, Schneider W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res. 2005;25:607–23.PubMed
123.
Zurück zum Zitat Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage. 2000;12:713–25.PubMed Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage. 2000;12:713–25.PubMed
124.
Zurück zum Zitat Daniels C, Witt K, Wolff S, Jansen O, Deuschl G. Rate dependency of the human cortical network subserving executive functions during generation of random number series—a functional magnetic resonance imaging study. Neurosci Lett. 2003;345:25–8.PubMed Daniels C, Witt K, Wolff S, Jansen O, Deuschl G. Rate dependency of the human cortical network subserving executive functions during generation of random number series—a functional magnetic resonance imaging study. Neurosci Lett. 2003;345:25–8.PubMed
125.
Zurück zum Zitat Schall U, Johnston P, Lagopoulos J, Juptner M, Jentzen W, Thienel R, et al. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. Neuroimage. 2003;20:1154–61.PubMed Schall U, Johnston P, Lagopoulos J, Juptner M, Jentzen W, Thienel R, et al. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. Neuroimage. 2003;20:1154–61.PubMed
126.
Zurück zum Zitat Blackwood N, Ffytche D, Simmons A, Bentall R, Murray R, Howard R. The cerebellum and decision making under uncertainty. Brain Res Cogn Brain Res. 2004;20:46–53.PubMed Blackwood N, Ffytche D, Simmons A, Bentall R, Murray R, Howard R. The cerebellum and decision making under uncertainty. Brain Res Cogn Brain Res. 2004;20:46–53.PubMed
127.
Zurück zum Zitat Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, et al. Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res. 2004;21:193–205.PubMed Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, et al. Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res. 2004;21:193–205.PubMed
128.
Zurück zum Zitat Lie CH, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006;30:1038–49.PubMed Lie CH, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006;30:1038–49.PubMed
129.
Zurück zum Zitat Mulder MJ, Baeyens D, Davidson MC, Casey BJ, van den Ban E, van Engeland H, et al. Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. J Am Acad Child Adolesc Psychiatry. 2008;47:68–75.PubMed Mulder MJ, Baeyens D, Davidson MC, Casey BJ, van den Ban E, van Engeland H, et al. Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. J Am Acad Child Adolesc Psychiatry. 2008;47:68–75.PubMed
130.
Zurück zum Zitat Bonnet MC, Dilharreguy B, Allard M, Deloire MS, Petry KG, Brochet B. Differential cerebellar and cortical involvement according to various attentional load: role of educational level. Hum Brain Mapp. 2009;30:1133–43.PubMed Bonnet MC, Dilharreguy B, Allard M, Deloire MS, Petry KG, Brochet B. Differential cerebellar and cortical involvement according to various attentional load: role of educational level. Hum Brain Mapp. 2009;30:1133–43.PubMed
131.
Zurück zum Zitat Tomasi D, Chang L, Caparelli E, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res. 2007;1132:158–65.PubMed Tomasi D, Chang L, Caparelli E, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res. 2007;1132:158–65.PubMed
132.
Zurück zum Zitat Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6:184–92.PubMed Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6:184–92.PubMed
133.
Zurück zum Zitat George MS, Ketter TA, Gill DS, Haxby JV, Ungerleider LG, Herscovitch P, et al. Brain regions involved in recognizing facial emotion or identity: an oxygen-15 PET study. J Neuropsychiatry Clin Neurosci. 1993;5:384–94.PubMed George MS, Ketter TA, Gill DS, Haxby JV, Ungerleider LG, Herscovitch P, et al. Brain regions involved in recognizing facial emotion or identity: an oxygen-15 PET study. J Neuropsychiatry Clin Neurosci. 1993;5:384–94.PubMed
134.
Zurück zum Zitat Imaizumi S, Mori K, Kiritani S, Kawashima R, Sugiura M, Fukuda H, et al. Vocal identification of speaker and emotion activates different brain regions. Neuroreport. 1997;8:2809–12.PubMed Imaizumi S, Mori K, Kiritani S, Kawashima R, Sugiura M, Fukuda H, et al. Vocal identification of speaker and emotion activates different brain regions. Neuroreport. 1997;8:2809–12.PubMed
135.
Zurück zum Zitat Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35:1437–44.PubMed Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35:1437–44.PubMed
136.
Zurück zum Zitat Paradiso S, Andreasen NC, Oleary DS, Arndt S, Robinson RG. Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsy Neuropsy Behav Neurol. 1997;10:1–8. Paradiso S, Andreasen NC, Oleary DS, Arndt S, Robinson RG. Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsy Neuropsy Behav Neurol. 1997;10:1–8.
137.
Zurück zum Zitat Paradiso S, Johnson DL, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry. 1999;156:1618–29.PubMed Paradiso S, Johnson DL, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry. 1999;156:1618–29.PubMed
138.
Zurück zum Zitat Gundel H, O'Connor MF, Littrell L, Fort C, Lane RD. Functional neuroanatomy of grief: an FMRI study. Am J Psychiatry. 2003;160:1946–53.PubMed Gundel H, O'Connor MF, Littrell L, Fort C, Lane RD. Functional neuroanatomy of grief: an FMRI study. Am J Psychiatry. 2003;160:1946–53.PubMed
139.
Zurück zum Zitat Paradiso S, Robinson RG, Boles Ponto LL, Watkins GL, Hichwa RD. Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci. 2003;15:35–44.PubMed Paradiso S, Robinson RG, Boles Ponto LL, Watkins GL, Hichwa RD. Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci. 2003;15:35–44.PubMed
140.
Zurück zum Zitat Lee G, Meador K, Loring D, Allison J, Brown W, Paul L, et al. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol. 2004;17:9–17.PubMed Lee G, Meador K, Loring D, Allison J, Brown W, Paul L, et al. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol. 2004;17:9–17.PubMed
141.
Zurück zum Zitat Takahashi H, Koeda M, Oda K, Matsuda T, Matsushima E, Matsuura M, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage. 2004;22:1247–54.PubMed Takahashi H, Koeda M, Oda K, Matsuda T, Matsushima E, Matsuura M, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage. 2004;22:1247–54.PubMed
142.
Zurück zum Zitat Bermpohl F, Pascual-Leone A, Amedi A, Merabet LB, Fregni F, Gaab N, et al. Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. Neuroimage. 2006;30:588–600.PubMed Bermpohl F, Pascual-Leone A, Amedi A, Merabet LB, Fregni F, Gaab N, et al. Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. Neuroimage. 2006;30:588–600.PubMed
143.
Zurück zum Zitat Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Sex differences in brain activation patterns during processing of positively and negatively valenced emotional words. Psychol Med. 2007;37:109–19.PubMed Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Sex differences in brain activation patterns during processing of positively and negatively valenced emotional words. Psychol Med. 2007;37:109–19.PubMed
144.
Zurück zum Zitat Schulte-Ruther M, Markowitsch HJ, Fink GR, Piefke M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy. J Cogn Neurosci. 2007;19:1354–72.PubMed Schulte-Ruther M, Markowitsch HJ, Fink GR, Piefke M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy. J Cogn Neurosci. 2007;19:1354–72.PubMed
145.
Zurück zum Zitat Hall J, Whalley HC, McKirdy JW, Sprengelmeyer R, Santos IM, Donaldson DI, et al. A common neural system mediating two different forms of social judgement. Psychol Med. 2010;40:1183–92.PubMed Hall J, Whalley HC, McKirdy JW, Sprengelmeyer R, Santos IM, Donaldson DI, et al. A common neural system mediating two different forms of social judgement. Psychol Med. 2010;40:1183–92.PubMed
146.
Zurück zum Zitat Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleeman A, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56:32–9.PubMed Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleeman A, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56:32–9.PubMed
147.
Zurück zum Zitat Singer T, Seymour B, O'Doherty J, Kaube H, Dolan R, Frith C. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.PubMed Singer T, Seymour B, O'Doherty J, Kaube H, Dolan R, Frith C. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.PubMed
148.
Zurück zum Zitat Lamm C, Batson CD, Decety J. The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci. 2007;19:42–58.PubMed Lamm C, Batson CD, Decety J. The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci. 2007;19:42–58.PubMed
149.
Zurück zum Zitat Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. Neuroimage. 2006;32:854–62.PubMed Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. Neuroimage. 2006;32:854–62.PubMed
150.
Zurück zum Zitat Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46:161–9.PubMed Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46:161–9.PubMed
151.
Zurück zum Zitat Boyd LA, Vidoni ED, Siengsukon CF, Wessel BD. Manipulating time-to-plan alters patterns of brain activation during the Fitts' task. Exp Brain Res. 2009;194:527–39.PubMed Boyd LA, Vidoni ED, Siengsukon CF, Wessel BD. Manipulating time-to-plan alters patterns of brain activation during the Fitts' task. Exp Brain Res. 2009;194:527–39.PubMed
152.
Zurück zum Zitat Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.PubMed Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.PubMed
153.
Zurück zum Zitat Lang P, Bradley M, Cuthbert B. International affective picture system (IAPS): affective ratings of pictures and instruction manual. Gainsville, FL: University of Florida; 2005. Lang P, Bradley M, Cuthbert B. International affective picture system (IAPS): affective ratings of pictures and instruction manual. Gainsville, FL: University of Florida; 2005.
154.
Zurück zum Zitat Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34:781–92.PubMed Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34:781–92.PubMed
155.
Zurück zum Zitat Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2:307–13.PubMed Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2:307–13.PubMed
156.
Zurück zum Zitat Dow R. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.PubMed Dow R. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.PubMed
157.
Zurück zum Zitat Ito M. New concepts in cerebellar function. Rev Neurol (Paris). 1993;149:596–9. Ito M. New concepts in cerebellar function. Rev Neurol (Paris). 1993;149:596–9.
158.
Zurück zum Zitat Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMed Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMed
159.
Zurück zum Zitat Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMed Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMed
160.
Zurück zum Zitat Schmahmann JD. Dysmetria of thought: correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci. 1996;19:472–3. Schmahmann JD. Dysmetria of thought: correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci. 1996;19:472–3.
161.
Zurück zum Zitat Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9:115–8.PubMed Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9:115–8.PubMed
162.
Zurück zum Zitat Ghajar J, Ivry RB. The predictive brain state: asynchrony in disorders of attention? Neuroscientist. 2009;15:232–42.PubMed Ghajar J, Ivry RB. The predictive brain state: asynchrony in disorders of attention? Neuroscientist. 2009;15:232–42.PubMed
163.
Zurück zum Zitat Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2010;46:845–57. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex. 2010;46:845–57.
164.
Zurück zum Zitat Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7:572–6.PubMed Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7:572–6.PubMed
165.
Zurück zum Zitat Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73:527–44.PubMed Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73:527–44.PubMed
166.
Zurück zum Zitat Doyon J, Song A, Karni A, Lalonde F, Adams M, Ungerleider L. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99:1017–22.PubMed Doyon J, Song A, Karni A, Lalonde F, Adams M, Ungerleider L. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99:1017–22.PubMed
167.
Zurück zum Zitat Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105:8108–13.PubMed Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105:8108–13.PubMed
168.
Zurück zum Zitat Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage. 2008;39:1383–95.PubMed Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage. 2008;39:1383–95.PubMed
169.
Zurück zum Zitat Orban P, Peigneux P, Lungu O, Albouy G, Breton E, Laberenne F, et al. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning. Neuroimage. 2010;49:694–702.PubMed Orban P, Peigneux P, Lungu O, Albouy G, Breton E, Laberenne F, et al. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning. Neuroimage. 2010;49:694–702.PubMed
170.
Zurück zum Zitat Tomassini V, Jbabdi S, Kincses ZT, Bosnell R, Douaud G, Pozzilli C, et al. Structural and functional bases for individual differences in motor learning. Hum Brain Mapp. 2011;32:494–508.PubMed Tomassini V, Jbabdi S, Kincses ZT, Bosnell R, Douaud G, Pozzilli C, et al. Structural and functional bases for individual differences in motor learning. Hum Brain Mapp. 2011;32:494–508.PubMed
171.
Zurück zum Zitat Olsson CJ, Jonsson B, Nyberg L. Learning by doing and learning by thinking: an FMRI study of combining motor and mental training. Front Hum Neurosci. 2008;2:5.PubMed Olsson CJ, Jonsson B, Nyberg L. Learning by doing and learning by thinking: an FMRI study of combining motor and mental training. Front Hum Neurosci. 2008;2:5.PubMed
172.
Zurück zum Zitat Swett BA, Contreras-Vidal JL, Birn R, Braun A. Neural substrates of graphomotor sequence learning: a combined FMRI and kinematic study. J Neurophysiol. 2010;103:3366–77.PubMed Swett BA, Contreras-Vidal JL, Birn R, Braun A. Neural substrates of graphomotor sequence learning: a combined FMRI and kinematic study. J Neurophysiol. 2010;103:3366–77.PubMed
173.
Zurück zum Zitat Xu D, Liu T, Ashe J, Bushara K. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.PubMed Xu D, Liu T, Ashe J, Bushara K. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.PubMed
174.
Zurück zum Zitat Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.PubMed Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.PubMed
175.
Zurück zum Zitat Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20:204–14.PubMed Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20:204–14.PubMed
176.
Zurück zum Zitat Bubic A, von Cramon DY, Jacobsen T, Schroger E, Schubotz RI. Violation of expectation: neural correlates reflect bases of prediction. J Cogn Neurosci. 2009;21:155–68.PubMed Bubic A, von Cramon DY, Jacobsen T, Schroger E, Schubotz RI. Violation of expectation: neural correlates reflect bases of prediction. J Cogn Neurosci. 2009;21:155–68.PubMed
177.
Zurück zum Zitat Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100:1557–61.PubMed Liu T, Xu D, Ashe J, Bushara K. Specificity of inferior olive response to stimulus timing. J Neurophysiol. 2008;100:1557–61.PubMed
178.
Zurück zum Zitat Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during prism adaptation. J Neurosci. 2009;29:169–78.PubMed Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during prism adaptation. J Neurosci. 2009;29:169–78.PubMed
179.
Zurück zum Zitat Nadig KG, Jancke L, Luchinger R, Lutz K. Motor and non-motor error and the influence of error magnitude on brain activity. Exp Brain Res. 2010;202:45–54.PubMed Nadig KG, Jancke L, Luchinger R, Lutz K. Motor and non-motor error and the influence of error magnitude on brain activity. Exp Brain Res. 2010;202:45–54.PubMed
180.
Zurück zum Zitat Guenther FH. Cortical interactions underlying the production of speech sounds. J Commun Disord. 2006;39:350–65.PubMed Guenther FH. Cortical interactions underlying the production of speech sounds. J Commun Disord. 2006;39:350–65.PubMed
181.
Zurück zum Zitat Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 2008;107:102–13.PubMed Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H. The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang. 2008;107:102–13.PubMed
182.
Zurück zum Zitat Christoffels IK, Formisano E, Schiller NO. Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Hum Brain Mapp. 2007;28:868–79.PubMed Christoffels IK, Formisano E, Schiller NO. Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Hum Brain Mapp. 2007;28:868–79.PubMed
183.
Zurück zum Zitat Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.PubMed Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.PubMed
Metadaten
Titel
The Cerebellum and Cognition: Evidence from Functional Imaging Studies
verfasst von
Catherine J. Stoodley
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 2/2012
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0260-7

Weitere Artikel der Ausgabe 2/2012

The Cerebellum 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.