Skip to main content
Erschienen in: The Cerebellum 1/2017

01.02.2017 | Original Paper

Computational Architecture of the Granular Layer of Cerebellum-Like Structures

verfasst von: Peter Bratby, James Sneyd, John Montgomery

Erschienen in: The Cerebellum | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dean P, Porrill J, Ekerot CF, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 2010;11(1):30–43.CrossRefPubMed Dean P, Porrill J, Ekerot CF, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 2010;11(1):30–43.CrossRefPubMed
2.
3.
Zurück zum Zitat Sejnowski TJ. Storing covariance with nonlinearly interacting neurons. J Math Biol 1977;4(4):303–21.CrossRefPubMed Sejnowski TJ. Storing covariance with nonlinearly interacting neurons. J Math Biol 1977;4(4):303–21.CrossRefPubMed
4.
Zurück zum Zitat Bell CC, Han V, Sawtell NB. Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 2008;31:1–24.CrossRefPubMed Bell CC, Han V, Sawtell NB. Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 2008;31:1–24.CrossRefPubMed
5.
Zurück zum Zitat Montgomery J, Coombs S, Conley R, Bodznick D. Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Aud Neurosci 1995;1:207–31. Montgomery J, Coombs S, Conley R, Bodznick D. Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Aud Neurosci 1995;1:207–31.
6.
Zurück zum Zitat Bastian J. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 1995;176(1):63–78.CrossRefPubMed Bastian J. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 1995;176(1):63–78.CrossRefPubMed
7.
Zurück zum Zitat Bell CC. An efference copy which is modified by reafferent input. Science 1981;214(4519):450–3.CrossRefPubMed Bell CC. An efference copy which is modified by reafferent input. Science 1981;214(4519):450–3.CrossRefPubMed
8.
Zurück zum Zitat Montgomery J, Bodznick D. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 1994;174(2):145–8.CrossRefPubMed Montgomery J, Bodznick D. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 1994;174(2):145–8.CrossRefPubMed
9.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci 1998;2(9):338–47.CrossRefPubMed Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci 1998;2(9):338–47.CrossRefPubMed
10.
Zurück zum Zitat Bell C, Russell C. Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res 1978; 145(1):85–96.CrossRefPubMed Bell C, Russell C. Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res 1978; 145(1):85–96.CrossRefPubMed
11.
Zurück zum Zitat Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott L, Sawtell NB. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat Neurosci 2014. Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott L, Sawtell NB. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat Neurosci 2014.
12.
Zurück zum Zitat Bell CC, Grant K, Serrier J. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. i. field potentials, cellular activity in associated structures. J Neurophys 1992;68(3):843–58. Bell CC, Grant K, Serrier J. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. i. field potentials, cellular activity in associated structures. J Neurophys 1992;68(3):843–58.
13.
Zurück zum Zitat Bell C, Bodznick D, Montgomery J, Bastian J. The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 1997;50(Suppl. 1):17–31.PubMed Bell C, Bodznick D, Montgomery J, Bastian J. The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 1997;50(Suppl. 1):17–31.PubMed
14.
Zurück zum Zitat Bodznick D, Boord R. Electroreception in chondrichthyes: central anatomy and physiology. Electroreception 1986;8:225–56. Bodznick D, Boord R. Electroreception in chondrichthyes: central anatomy and physiology. Electroreception 1986;8:225–56.
15.
Zurück zum Zitat Bratby P, Montgomery J, Sneyd J. A biophysical model of adaptive noise filtering in the shark brain. Bull Math Biol 2014;76(2):455–75.CrossRefPubMed Bratby P, Montgomery J, Sneyd J. A biophysical model of adaptive noise filtering in the shark brain. Bull Math Biol 2014;76(2):455–75.CrossRefPubMed
16.
17.
Zurück zum Zitat Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012;13(9):619–35.CrossRefPubMed Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012;13(9):619–35.CrossRefPubMed
18.
Zurück zum Zitat Itō M. The cerebellum and neural control. Raven Pr 1984. Itō M. The cerebellum and neural control. Raven Pr 1984.
19.
Zurück zum Zitat Moore J, Desmond J, Berthier N. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol Cybern 1989;62(1):17–28.CrossRefPubMed Moore J, Desmond J, Berthier N. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol Cybern 1989;62(1):17–28.CrossRefPubMed
20.
Zurück zum Zitat Lukoṡeviċius M. A practical guide to applying echo state networks. Neural networks: tricks of the trade. Springer; 2012. p. 659–86. Lukoṡeviċius M. A practical guide to applying echo state networks. Neural networks: tricks of the trade. Springer; 2012. p. 659–86.
21.
Zurück zum Zitat Maex R, De Schutter E. Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res 2005;148:181–8.CrossRefPubMed Maex R, De Schutter E. Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res 2005;148:181–8.CrossRefPubMed
22.
Zurück zum Zitat Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 2000;20(14):5516–25.PubMed Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 2000;20(14):5516–25.PubMed
23.
Zurück zum Zitat Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw 2007;20(3):290–7.CrossRefPubMed Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw 2007;20(3):290–7.CrossRefPubMed
24.
Zurück zum Zitat Bullock D, Fiala JC, Grossberg S. A neural model of timed response learning in the cerebellum. Neural Netw 1994;7(6):1101–14.CrossRef Bullock D, Fiala JC, Grossberg S. A neural model of timed response learning in the cerebellum. Neural Netw 1994;7(6):1101–14.CrossRef
25.
Zurück zum Zitat Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 2011;66(1):220–45.CrossRefPubMed Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 2011;66(1):220–45.CrossRefPubMed
26.
Zurück zum Zitat Widrow B, Stearns SD, Vol. 491. Adaptive signal processing. Englewood Cliffs: Prentice-Hall, Inc; 1985, p. 1. Widrow B, Stearns SD, Vol. 491. Adaptive signal processing. Englewood Cliffs: Prentice-Hall, Inc; 1985, p. 1.
27.
Zurück zum Zitat Jaeger H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 2001;148:34. Jaeger H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 2001;148:34.
28.
Zurück zum Zitat Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;14(11):2531–60.CrossRefPubMed Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;14(11):2531–60.CrossRefPubMed
30.
Zurück zum Zitat Lepora NF, Porrill J, Yeo CH, Dean P. Sensory prediction or motor control? Application of marr–albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 2010:4. Lepora NF, Porrill J, Yeo CH, Dean P. Sensory prediction or motor control? Application of marr–albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 2010:4.
31.
32.
Zurück zum Zitat Rössert C, Dean P, Porrill J. At the edge of chaos: Howcerebellar granular layer network dynamics can provide the basis for temporal filters. PLoS Comput Biol 2015;11(10):e1004,515.CrossRef Rössert C, Dean P, Porrill J. At the edge of chaos: Howcerebellar granular layer network dynamics can provide the basis for temporal filters. PLoS Comput Biol 2015;11(10):e1004,515.CrossRef
33.
Zurück zum Zitat Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G. Memory trace and timing mechanism localized to cerebellar purkinje cells. Proc Natl Acad Sci 2014;111(41):14,930–4.CrossRef Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G. Memory trace and timing mechanism localized to cerebellar purkinje cells. Proc Natl Acad Sci 2014;111(41):14,930–4.CrossRef
34.
Zurück zum Zitat Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Neuroscience 2004:27. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Neuroscience 2004:27.
35.
Zurück zum Zitat Sawtell NB. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 2010;66(4):573–84.CrossRefPubMed Sawtell NB. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 2010;66(4):573–84.CrossRefPubMed
36.
Zurück zum Zitat Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. Synaptic diversity enables temporal codingof coincident multisensory inputs in single neurons. Nat Neurosci 2015;18(5):718–27.CrossRefPubMedPubMedCentral Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. Synaptic diversity enables temporal codingof coincident multisensory inputs in single neurons. Nat Neurosci 2015;18(5):718–27.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ermentrout GB, Terman DH, Vol. 35. Mathematical foundations of neuroscience: Springer Science & Business Media; 2010. Ermentrout GB, Terman DH, Vol. 35. Mathematical foundations of neuroscience: Springer Science & Business Media; 2010.
38.
Zurück zum Zitat Rasmussen CE. 2006. Gaussian processes for machine learning. Rasmussen CE. 2006. Gaussian processes for machine learning.
Metadaten
Titel
Computational Architecture of the Granular Layer of Cerebellum-Like Structures
verfasst von
Peter Bratby
James Sneyd
John Montgomery
Publikationsdatum
01.02.2017
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 1/2017
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-016-0759-z

Weitere Artikel der Ausgabe 1/2017

The Cerebellum 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.