Skip to main content
Erschienen in: The Cerebellum 2/2017

01.04.2017 | Original Paper

Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions

verfasst von: Fabrizio De Vico Fallani, Silvia Clausi, Maria Leggio, Mario Chavez, Miguel Valencia, Anton Giulio Maglione, Fabio Babiloni, Febo Cincotti, Donatella Mattia, Marco Molinari

Erschienen in: The Cerebellum | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Although cerebellar-cortical interactions have been studied extensively in animal models and humans using modern neuroimaging techniques, the effects of cerebellar stroke and focal lesions on cerebral cortical processing remain unknown. In the present study, we analyzed the large-scale functional connectivity at the cortical level by combining high-density electroencephalography (EEG) and source imaging techniques to evaluate and quantify the compensatory reorganization of brain networks after cerebellar damage. The experimental protocol comprised a repetitive finger extension task by 10 patients with unilateral focal cerebellar lesions and 10 matched healthy controls. A graph theoretical approach was used to investigate the functional reorganization of cortical networks. Our patients, compared with controls, exhibited significant differences at global and local topological level of their brain networks. An abnormal rise in small-world network efficiency was observed in the gamma band (30–40 Hz) during execution of the task, paralleled by increased long-range connectivity between cortical hemispheres. Our findings show that a pervasive reorganization of the brain network is associated with cerebellar focal damage and support the idea that the cerebellum boosts or refines cortical functions. Clinically, these results suggest that cortical changes after cerebellar damage are achieved through an increase in the interactions between remote cortical areas and that rehabilitation should aim to reshape functional activation patterns. Future studies should determine whether these hypotheses are limited to motor tasks or if they also apply to cerebro-cerebellar dysfunction in general.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol. 2014;27:637–43.PubMedCrossRef Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol. 2014;27:637–43.PubMedCrossRef
2.
Zurück zum Zitat Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133:1224–38.PubMedCrossRef Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133:1224–38.PubMedCrossRef
3.
Zurück zum Zitat Wu J, Quinlan EB, Dodakian L, McKenzie A, Kathuria N, Zhou RJ, et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(8):2359–69.PubMedPubMedCentralCrossRef Wu J, Quinlan EB, Dodakian L, McKenzie A, Kathuria N, Zhou RJ, et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(8):2359–69.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMedCrossRef Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMedCrossRef
5.
Zurück zum Zitat Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95.PubMedCrossRef Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95.PubMedCrossRef
6.
Zurück zum Zitat De Vico Fallani F, Pichiorri F, Morone G, Molinari M, Babiloni F, Cincotti F, et al. Multiscale topological properties of functional brain networks during motor imagery after stroke. Neuroimage. 2013;83:438–49.PubMedCrossRef De Vico Fallani F, Pichiorri F, Morone G, Molinari M, Babiloni F, Cincotti F, et al. Multiscale topological properties of functional brain networks during motor imagery after stroke. Neuroimage. 2013;83:438–49.PubMedCrossRef
7.
Zurück zum Zitat Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134:1264–76.PubMedPubMedCentralCrossRef Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134:1264–76.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32:530–4.PubMedCrossRef Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32:530–4.PubMedCrossRef
9.
Zurück zum Zitat Marsden J, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25:195–216.PubMedCrossRef Marsden J, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25:195–216.PubMedCrossRef
10.
Zurück zum Zitat Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef
11.
Zurück zum Zitat Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–8.PubMedCrossRef Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–8.PubMedCrossRef
12.
Zurück zum Zitat Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRef Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRef
13.
Zurück zum Zitat Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.PubMedCrossRef Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.PubMedCrossRef
14.
Zurück zum Zitat Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.PubMedCrossRef Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.PubMedCrossRef
15.
Zurück zum Zitat Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2011;11:336–51.CrossRef Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2011;11:336–51.CrossRef
16.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRef
17.
Zurück zum Zitat Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.PubMedCrossRef Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.PubMedCrossRef
18.
19.
Zurück zum Zitat Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.PubMedCrossRef Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.PubMedCrossRef
20.
Zurück zum Zitat Clausi S, Bozzali M, Leggio MG, Di Paola M, Hagberg GE, Caltagirone C, et al. Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience. 2009;162:827–35.PubMedCrossRef Clausi S, Bozzali M, Leggio MG, Di Paola M, Hagberg GE, Caltagirone C, et al. Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience. 2009;162:827–35.PubMedCrossRef
21.
Zurück zum Zitat Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neurorad. 2008;35:42–50.CrossRef Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neurorad. 2008;35:42–50.CrossRef
22.
Zurück zum Zitat Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS. Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage. 2013;83:837–48.PubMedCrossRef Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS. Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage. 2013;83:837–48.PubMedCrossRef
23.
Zurück zum Zitat O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedCrossRef O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedCrossRef
24.
Zurück zum Zitat Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013a;109:46–57. Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013a;109:46–57.
25.
Zurück zum Zitat Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6:31.PubMedPubMedCentralCrossRef Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6:31.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRef Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ben Taib NO, Manto M, Pandolfo M, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.PubMedCrossRef Ben Taib NO, Manto M, Pandolfo M, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.PubMedCrossRef
28.
Zurück zum Zitat Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C. The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum. 2007;6(1):95–101.PubMedCrossRef Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C. The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum. 2007;6(1):95–101.PubMedCrossRef
29.
Zurück zum Zitat Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–69.PubMedPubMedCentralCrossRef Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–69.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, et al. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97:259–63.PubMed Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, et al. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97:259–63.PubMed
31.
Zurück zum Zitat Di Lazzaro V, Molinari M, Restuccia D, Leggio MG, Nardone R, Fogli D, et al. Cerebro-cerebellar interactions in man: neurophysiological studies in patients with focal cerebellar lesions. Electroencephalogr Clin Neurophysiol. 1994a;93:27–34. Di Lazzaro V, Molinari M, Restuccia D, Leggio MG, Nardone R, Fogli D, et al. Cerebro-cerebellar interactions in man: neurophysiological studies in patients with focal cerebellar lesions. Electroencephalogr Clin Neurophysiol. 1994a;93:27–34.
32.
Zurück zum Zitat Di Lazzaro V, Restuccia D, Molinari M, Leggio MG, Nardone R, Fogli D, et al. Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1994b;57:108–10. Di Lazzaro V, Restuccia D, Molinari M, Leggio MG, Nardone R, Fogli D, et al. Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1994b;57:108–10.
33.
Zurück zum Zitat Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRef Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRef
34.
Zurück zum Zitat Restuccia D, Valeriani M, Barba C, Capecci M, Filippini V, et al. Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain. 2001;124:757–68.PubMedCrossRef Restuccia D, Valeriani M, Barba C, Capecci M, Filippini V, et al. Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain. 2001;124:757–68.PubMedCrossRef
35.
Zurück zum Zitat Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef
36.
Zurück zum Zitat Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.PubMedCrossRef Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.PubMedCrossRef
37.
Zurück zum Zitat Orsini A, Laicardi C. Wais-R. Contributo alla taratura italiana. Firenze: Organizzazioni Speciali; 2001. Orsini A, Laicardi C. Wais-R. Contributo alla taratura italiana. Firenze: Organizzazioni Speciali; 2001.
38.
Zurück zum Zitat Wechsler D. Wais-R Wechsler Adult Intelligence Scale Revised. Firenze: Organizzazioni Speciali; 1997. Wechsler D. Wais-R Wechsler Adult Intelligence Scale Revised. Firenze: Organizzazioni Speciali; 1997.
39.
Zurück zum Zitat Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, et al. Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage. 2006;30:12–25.PubMedCrossRef Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, et al. Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage. 2006;30:12–25.PubMedCrossRef
40.
Zurück zum Zitat Raez MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online. 2006;8:11–35.PubMedPubMedCentralCrossRef Raez MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online. 2006;8:11–35.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Luft AR, Waller S, Forrester L, Smith GV, Whitall J, Macko RF, et al. Lesion location alters brain activation in chronically impaired stroke survivors. Neuroimage. 2004;21:924–35.PubMedCrossRef Luft AR, Waller S, Forrester L, Smith GV, Whitall J, Macko RF, et al. Lesion location alters brain activation in chronically impaired stroke survivors. Neuroimage. 2004;21:924–35.PubMedCrossRef
42.
Zurück zum Zitat Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. The influence of time after stroke on brain activations during a motor task. Ann Neurol. 2004;55:829–34.PubMedPubMedCentralCrossRef Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. The influence of time after stroke on brain activations during a motor task. Ann Neurol. 2004;55:829–34.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292–307.PubMedCrossRef Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292–307.PubMedCrossRef
44.
Zurück zum Zitat Babiloni F, Babiloni C, Carducci F, Fattorini L, Anello C, Onorati P, et al. High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalogr Clin Neurophysiol. 1997;102:69–80.PubMedCrossRef Babiloni F, Babiloni C, Carducci F, Fattorini L, Anello C, Onorati P, et al. High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalogr Clin Neurophysiol. 1997;102:69–80.PubMedCrossRef
45.
Zurück zum Zitat Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B. High-resolution EEG—124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol. 1994;90:337–58.PubMedCrossRef Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B. High-resolution EEG—124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol. 1994;90:337–58.PubMedCrossRef
46.
Zurück zum Zitat He B, Wang YH, Wu DS. Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng. 1999;46:1264–8.PubMedCrossRef He B, Wang YH, Wu DS. Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng. 1999;46:1264–8.PubMedCrossRef
47.
Zurück zum Zitat Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp. 2009;30:1857–65.PubMedCrossRef Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp. 2009;30:1857–65.PubMedCrossRef
48.
Zurück zum Zitat Tognoli E, Kelso JAS. Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog Neurobiol. 2009;87:31–40.PubMedCrossRef Tognoli E, Kelso JAS. Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog Neurobiol. 2009;87:31–40.PubMedCrossRef
49.
Zurück zum Zitat De Vico Fallani F, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B-Biological Sciences. 2014;369:1653.CrossRef De Vico Fallani F, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B-Biological Sciences. 2014;369:1653.CrossRef
50.
Zurück zum Zitat De Vico Fallani F, Baluch F, Astolfi L, Subramanian D, Zouridakis G, Babiloni F. Structural organization of functional networks from EEG signals during motor learning tasks. Int J Bifurcation Chaos. 2010;20:905–12.CrossRef De Vico Fallani F, Baluch F, Astolfi L, Subramanian D, Zouridakis G, Babiloni F. Structural organization of functional networks from EEG signals during motor learning tasks. Int J Bifurcation Chaos. 2010;20:905–12.CrossRef
51.
Zurück zum Zitat van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS One. 2010;5(10):e13701.PubMedPubMedCentralCrossRef van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS One. 2010;5(10):e13701.PubMedPubMedCentralCrossRef
52.
54.
Zurück zum Zitat Erdos P, Rényi A. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences. 1960. p. 17–61. Erdos P, Rényi A. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences. 1960. p. 17–61.
55.
Zurück zum Zitat Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Rev Lett 2001;87:198701. Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Rev Lett 2001;87:198701.
56.
Zurück zum Zitat Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, et al. Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol. 2012;8:e1002522.PubMedPubMedCentralCrossRef Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, et al. Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol. 2012;8:e1002522.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Bullmore ET, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.PubMed Bullmore ET, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.PubMed
58.
59.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Royal Stat Soc Series B-Method. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Royal Stat Soc Series B-Method. 1995;57:289–300.
60.
Zurück zum Zitat Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging. 1999;18:32–42.PubMedCrossRef Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging. 1999;18:32–42.PubMedCrossRef
61.
Zurück zum Zitat Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. Neuroimage. 2003;20:2343–56.PubMedCrossRef Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. Neuroimage. 2003;20:2343–56.PubMedCrossRef
62.
Zurück zum Zitat Salvador R, Suckling J, Schwarzbauer C, Bullmore E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci. 2005;360:937–46.PubMedPubMedCentralCrossRef Salvador R, Suckling J, Schwarzbauer C, Bullmore E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci. 2005;360:937–46.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999;24:49–65.PubMedCrossRef Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999;24:49–65.PubMedCrossRef
64.
Zurück zum Zitat Chu CJ, Tanaka N, Diaz J, Edlow BL, Wu O, Hämäläinen M, et al. EEG functional connectivity is partially predicted by underlying white matter connectivity. NeuroImage. 2015;108:23–33.PubMedCrossRef Chu CJ, Tanaka N, Diaz J, Edlow BL, Wu O, Hämäläinen M, et al. EEG functional connectivity is partially predicted by underlying white matter connectivity. NeuroImage. 2015;108:23–33.PubMedCrossRef
66.
Zurück zum Zitat Gray CM, Engel AK, Konig P, Singer W. Synchronization of oscillatory neuronal responses in cat striate cortex-temporal properties. Visual Neurosci. 1992;8:337–47.CrossRef Gray CM, Engel AK, Konig P, Singer W. Synchronization of oscillatory neuronal responses in cat striate cortex-temporal properties. Visual Neurosci. 1992;8:337–47.CrossRef
67.
Zurück zum Zitat Martin Vinck M, Womelsdorf T, Fries P. Gamma-band synchronization and information transmission. In: Quiroga R-QPS, editor. Principles of neural coding. Boca Raton: CRC Press; 2013. 449–69 Martin Vinck M, Womelsdorf T, Fries P. Gamma-band synchronization and information transmission. In: Quiroga R-QPS, editor. Principles of neural coding. Boca Raton: CRC Press; 2013. 449–69
68.
Zurück zum Zitat Abeles M. Corticonics: neural circuits of the cerebral cortex. New York: Cambridge UP; 1991.CrossRef Abeles M. Corticonics: neural circuits of the cerebral cortex. New York: Cambridge UP; 1991.CrossRef
69.
Zurück zum Zitat Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.PubMedCrossRef Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.PubMedCrossRef
70.
Zurück zum Zitat Fell J, Fernandez G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Rev. 2003;42:265–72.PubMedCrossRef Fell J, Fernandez G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Rev. 2003;42:265–72.PubMedCrossRef
71.
Zurück zum Zitat Nikolic D, Fries P, Singer W. Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn Sci. 2013;17:54–5.PubMedCrossRef Nikolic D, Fries P, Singer W. Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn Sci. 2013;17:54–5.PubMedCrossRef
72.
Zurück zum Zitat Whittington MA, Cunningham MO, Lebeau FEN, Racca C, Traub RD. Multiple origins of the cortical gamma rhythm. Dev Neurobiol. 2011;71:92–106.PubMedCrossRef Whittington MA, Cunningham MO, Lebeau FEN, Racca C, Traub RD. Multiple origins of the cortical gamma rhythm. Dev Neurobiol. 2011;71:92–106.PubMedCrossRef
73.
Zurück zum Zitat Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 1996;16:2788–808.PubMed Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 1996;16:2788–808.PubMed
74.
Zurück zum Zitat Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Léna C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.PubMedCrossRef Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Léna C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.PubMedCrossRef
75.
Zurück zum Zitat Bentivoglio M, Minciacchi D, Molinari M, Granato A, Spreafico R, Macchi G. The intrinsic and extrinsic organization of the thalamic intralaminar nuclei. In: Bentivoglio M, Spreafico R, editors. Cellular thalamic mechanisms. Amsterdam: Elsevier; 1988. p. 221–37. Bentivoglio M, Minciacchi D, Molinari M, Granato A, Spreafico R, Macchi G. The intrinsic and extrinsic organization of the thalamic intralaminar nuclei. In: Bentivoglio M, Spreafico R, editors. Cellular thalamic mechanisms. Amsterdam: Elsevier; 1988. p. 221–37.
76.
Zurück zum Zitat Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6:177–83.PubMedCrossRef Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6:177–83.PubMedCrossRef
77.
Zurück zum Zitat Ivry RB, Spencer RMC. Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain. 2004;127:E13.PubMedCrossRef Ivry RB, Spencer RMC. Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain. 2004;127:E13.PubMedCrossRef
78.
Zurück zum Zitat Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef
79.
Zurück zum Zitat Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef
80.
Zurück zum Zitat Herz DM, Christensen MS, Reck C, Florin E, Barbe MT, Stahlhut C, et al. Task-specific modulation of effective connectivity during two simple unimanual motor tasks: a 122-channel EEG study. Neuroimage. 2012;59:3187–93.PubMedCrossRef Herz DM, Christensen MS, Reck C, Florin E, Barbe MT, Stahlhut C, et al. Task-specific modulation of effective connectivity during two simple unimanual motor tasks: a 122-channel EEG study. Neuroimage. 2012;59:3187–93.PubMedCrossRef
81.
Zurück zum Zitat Craddock M, Martinovic J, Müller MM. Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming. Psychophysiology. 2016;53(4):553–65.PubMedCrossRef Craddock M, Martinovic J, Müller MM. Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming. Psychophysiology. 2016;53(4):553–65.PubMedCrossRef
82.
Zurück zum Zitat Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138.PubMedPubMedCentralCrossRef Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex?: a longitudinal fMRI stroke study. Brain. 2005;128:1122–38.PubMedCrossRef Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex?: a longitudinal fMRI stroke study. Brain. 2005;128:1122–38.PubMedCrossRef
84.
Zurück zum Zitat Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRef Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRef
85.
Zurück zum Zitat Westlake KP, Hinkley LB, Bucci M, Guggisberg AG, Byl N, Findlay AM, et al. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012;237:160–9.PubMedPubMedCentralCrossRef Westlake KP, Hinkley LB, Bucci M, Guggisberg AG, Byl N, Findlay AM, et al. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012;237:160–9.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002;113:1523–31.PubMedCrossRef Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002;113:1523–31.PubMedCrossRef
87.
Zurück zum Zitat Fang W, Chen H, Wang H, Zhang H, Puneet M, Liu M, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate nucleus−motor cortex−cerebellum circuit. Hum Brain Mapp 2015 (in press). Fang W, Chen H, Wang H, Zhang H, Puneet M, Liu M, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate nucleus−motor cortex−cerebellum circuit. Hum Brain Mapp 2015 (in press).
88.
Zurück zum Zitat Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics. Physics Reports-Review Section of Physics Letters. 2006;424:175–308. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics. Physics Reports-Review Section of Physics Letters. 2006;424:175–308.
89.
Zurück zum Zitat Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex. 2014;24:1422–35.PubMedCrossRef Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex. 2014;24:1422–35.PubMedCrossRef
90.
Zurück zum Zitat Peters J, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Medicine. 2013;11:54.PubMedPubMedCentralCrossRef Peters J, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Medicine. 2013;11:54.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.PubMedPubMedCentralCrossRef Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRef Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRef
95.
Zurück zum Zitat Schmahmann JD, Ko R, MacMore J. The human basis pontis: motor syndromes and topographic organization. Brain. 2004;127:1269–91.PubMedCrossRef Schmahmann JD, Ko R, MacMore J. The human basis pontis: motor syndromes and topographic organization. Brain. 2004;127:1269–91.PubMedCrossRef
96.
Zurück zum Zitat Beaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012:1–11.CrossRef Beaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012:1–11.CrossRef
97.
Zurück zum Zitat Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol. 1997;77:1313–24.PubMed Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol. 1997;77:1313–24.PubMed
98.
Zurück zum Zitat Brauns I, Teixeira S, Velasques B, Bittencourt J, Machado S, Cagy M, et al. Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med. 2014;7:51.PubMedPubMedCentralCrossRef Brauns I, Teixeira S, Velasques B, Bittencourt J, Machado S, Cagy M, et al. Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med. 2014;7:51.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.PubMedCrossRef Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.PubMedCrossRef
100.
Zurück zum Zitat Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT. Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage. 2015;104:69–78.PubMedCrossRef Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT. Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage. 2015;104:69–78.PubMedCrossRef
101.
Zurück zum Zitat Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosur 2015;124(5):1406–12. Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosur 2015;124(5):1406–12.
102.
Zurück zum Zitat Stevens MC, Kiehl KA, Pearlson G, Calhoun VD. Functional neural circuits for mental timekeeping. Hum Brain Mapp. 2007;28:394–408.PubMedCrossRef Stevens MC, Kiehl KA, Pearlson G, Calhoun VD. Functional neural circuits for mental timekeeping. Hum Brain Mapp. 2007;28:394–408.PubMedCrossRef
103.
Zurück zum Zitat Wu T, Kansaku K, Hallett M. How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol. 2004;91:1690–8.PubMedCrossRef Wu T, Kansaku K, Hallett M. How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol. 2004;91:1690–8.PubMedCrossRef
104.
Zurück zum Zitat Carey LM, Seitz RJ. Functional neuroimaging in stroke recovery and neurorehabilitation: conceptual issues and perspectives. Int J Stroke. 2007;2:245–64.PubMedCrossRef Carey LM, Seitz RJ. Functional neuroimaging in stroke recovery and neurorehabilitation: conceptual issues and perspectives. Int J Stroke. 2007;2:245–64.PubMedCrossRef
105.
Zurück zum Zitat Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRef Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRef
106.
Zurück zum Zitat Manto M, Nowak DA, Shutter DJLG. Coupling between cerebellar hemispheres and sensory processing. Cerebellum. 2006;5:187–88.PubMedCrossRef Manto M, Nowak DA, Shutter DJLG. Coupling between cerebellar hemispheres and sensory processing. Cerebellum. 2006;5:187–88.PubMedCrossRef
107.
Zurück zum Zitat Percheron G, François C, Talbi B, Yelnik J, Fénelon G. The primate motor thalamus. Brain Res Rev. 1996;22:93–181.PubMedCrossRef Percheron G, François C, Talbi B, Yelnik J, Fénelon G. The primate motor thalamus. Brain Res Rev. 1996;22:93–181.PubMedCrossRef
108.
Zurück zum Zitat Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci. 1994a;6:299–312. Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci. 1994a;6:299–312.
109.
Zurück zum Zitat Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Structural evidence in favour of a relay function for the anterior intralaminar nuclei. In: Minciacchi D, Molinari D, Macchi G, Jones EG, editors. Thalamic networks for relay and modulation. Pergamon Press 1994b. pp 197–208. Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Structural evidence in favour of a relay function for the anterior intralaminar nuclei. In: Minciacchi D, Molinari D, Macchi G, Jones EG, editors. Thalamic networks for relay and modulation. Pergamon Press 1994b. pp 197–208.
110.
Zurück zum Zitat Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.PubMedCrossRef Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.PubMedCrossRef
111.
Zurück zum Zitat Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34:12049–56.PubMedPubMedCentralCrossRef Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34:12049–56.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21:1134–46.PubMedCrossRef Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21:1134–46.PubMedCrossRef
113.
Zurück zum Zitat Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34:1430–8.PubMedPubMedCentralCrossRef Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34:1430–8.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Liu H, Kale Edmiston E, Fan G, Xu K, Zhao B, Shang X, et al. Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res. 2013;211:64–71.PubMedCrossRef Liu H, Kale Edmiston E, Fan G, Xu K, Zhao B, Shang X, et al. Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res. 2013;211:64–71.PubMedCrossRef
115.
Zurück zum Zitat Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with antisocial personality disorder using resting-state fMRI. PLoS One. 2013;8:e60652.PubMedPubMedCentralCrossRef Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with antisocial personality disorder using resting-state fMRI. PLoS One. 2013;8:e60652.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Wang Y, Zhu J, Li Q, Li W, Wu N, Zheng Y, et al. Altered fronto-striatal and fronto-cerebellar circuits in heroin-dependent individuals: a resting-state fMRI study. PLoS One. 2013;8:e58098.PubMedPubMedCentralCrossRef Wang Y, Zhu J, Li Q, Li W, Wu N, Zheng Y, et al. Altered fronto-striatal and fronto-cerebellar circuits in heroin-dependent individuals: a resting-state fMRI study. PLoS One. 2013;8:e58098.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Solodkin A, Peri E, Chen EE, Ben Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.PubMedPubMedCentralCrossRef Solodkin A, Peri E, Chen EE, Ben Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Wu T, Wang C, Wang J, Hallett M, Zang Y, Chan P. Preclinical and clinical neural network changes in SCA2 parkinsonism. Parkinsonism Relat Disord. 2013;19:158–64.PubMedCrossRef Wu T, Wang C, Wang J, Hallett M, Zang Y, Chan P. Preclinical and clinical neural network changes in SCA2 parkinsonism. Parkinsonism Relat Disord. 2013;19:158–64.PubMedCrossRef
119.
Zurück zum Zitat Hernandez-Castillo CR, Alcauter S, Galvez V, Barrios FA, Yescas P, Ochoa A et al. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 2013 (in press). Hernandez-Castillo CR, Alcauter S, Galvez V, Barrios FA, Yescas P, Ochoa A et al. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 2013 (in press).
120.
Zurück zum Zitat Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, et al. Investigating function and connectivity of morphometric findings-exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage. 2012;62:1354–66.PubMedPubMedCentralCrossRef Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, et al. Investigating function and connectivity of morphometric findings-exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage. 2012;62:1354–66.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci. 2009;29:10309–20.PubMedPubMedCentralCrossRef Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci. 2009;29:10309–20.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95:1194–206.PubMedCrossRef Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95:1194–206.PubMedCrossRef
123.
Zurück zum Zitat Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.PubMedCrossRef Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.PubMedCrossRef
124.
Zurück zum Zitat Handel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.PubMedCrossRef Handel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.PubMedCrossRef
125.
Zurück zum Zitat Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(3):918–23.PubMedCrossRef Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(3):918–23.PubMedCrossRef
126.
Zurück zum Zitat Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation: a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRef Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation: a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRef
127.
Zurück zum Zitat Mosconi MW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. J Neurosci. 2015;35:2015–25.PubMedPubMedCentralCrossRef Mosconi MW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. J Neurosci. 2015;35:2015–25.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Gerard C, Rosenfeld M. Musical expertise and temporal regulation. Annee Psychologique. 1995;95:571–91.CrossRef Gerard C, Rosenfeld M. Musical expertise and temporal regulation. Annee Psychologique. 1995;95:571–91.CrossRef
129.
Zurück zum Zitat Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003;20:1171–80.PubMedCrossRef Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003;20:1171–80.PubMedCrossRef
130.
Zurück zum Zitat Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurotherapeutics. 2012;12:1275–7.CrossRef Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurotherapeutics. 2012;12:1275–7.CrossRef
131.
Zurück zum Zitat Reisman DS, Bastian AJ, Morton SM. Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Phys Ther. 2010;90:187–95.PubMedPubMedCentralCrossRef Reisman DS, Bastian AJ, Morton SM. Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Phys Ther. 2010;90:187–95.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Schmahmann JD, Dojon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego, CA: Academic Press; 2000. Schmahmann JD, Dojon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego, CA: Academic Press; 2000.
Metadaten
Titel
Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions
verfasst von
Fabrizio De Vico Fallani
Silvia Clausi
Maria Leggio
Mario Chavez
Miguel Valencia
Anton Giulio Maglione
Fabio Babiloni
Febo Cincotti
Donatella Mattia
Marco Molinari
Publikationsdatum
01.04.2017
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 2/2017
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-016-0811-z

Weitere Artikel der Ausgabe 2/2017

The Cerebellum 2/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.