Skip to main content
Erschienen in: Journal of Nuclear Cardiology 2/2015

01.04.2015 | Original Article

Evaluation of image reconstruction algorithms encompassing Time-Of-Flight and Point Spread Function modelling for quantitative cardiac PET: Phantom studies

verfasst von: L. Presotto, L. Gianolli, M. C. Gilardi, V. Bettinardi

Erschienen in: Journal of Nuclear Cardiology | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Background

To perform kinetic modelling quantification, PET dynamic data must be acquired in short frames, where different critical conditions are met. The accuracy of reconstructed images influences quantification. The added value of Time-Of-Flight (TOF) and Point Spread Function (PSF) in cardiac image reconstruction was assessed.

Methods

A static phantom was used to simulate two extreme conditions: (i) the bolus passage and (ii) the steady uptake. Various count statistics and independent noise realisations were considered. A moving phantom filled with two different radionuclides was used to simulate: (i) a great range of contrasts and (ii) the cardio/respiratory motion. Analytical and iterative reconstruction (IR) algorithms also encompassing TOF and PSF modelling were evaluated.

Results

Both analytic and IR algorithms provided good results in all the evaluated conditions. The amount of bias introduced by IR was found to be limited. TOF allowed faster convergence and lower noise levels. PSF achieved near full myocardial activity recovery in static conditions. Motion degraded performances, but the addition of both TOF and PSF maintained the best overall behaviour.

Conclusions

IR accounting for TOF and PSF can be recommended for the quantification of dynamic cardiac PET studies as they improve the results compared to analytic and standard IR.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. JACC 2009;54:150-6.PubMedCrossRef Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. JACC 2009;54:150-6.PubMedCrossRef
2.
Zurück zum Zitat Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: Added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.PubMedCrossRef Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: Added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.PubMedCrossRef
3.
Zurück zum Zitat DeGrado TR, Bergmann SR, Ng CK, Raffel DM. Tracer kinetic modeling in nuclear cardiology. J Nucl Med 2000;7:686-700. DeGrado TR, Bergmann SR, Ng CK, Raffel DM. Tracer kinetic modeling in nuclear cardiology. J Nucl Med 2000;7:686-700.
4.
Zurück zum Zitat Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: Discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med 2011;41:305-13.PubMedCrossRef Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: Discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med 2011;41:305-13.PubMedCrossRef
5.
Zurück zum Zitat Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964-8.CrossRef Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964-8.CrossRef
6.
Zurück zum Zitat Søndergaard HM, Madsen MM, Boisen K, Bøttcher M, Schmitz O, Nielsen TT, et al. Evaluation of iterative reconstruction (OSEM) versus filtered back-projection for the assessment of myocardial glucose uptake and myocardial perfusion using dynamic PET. Eur J Nucl Med 2007;34:320-9.CrossRef Søndergaard HM, Madsen MM, Boisen K, Bøttcher M, Schmitz O, Nielsen TT, et al. Evaluation of iterative reconstruction (OSEM) versus filtered back-projection for the assessment of myocardial glucose uptake and myocardial perfusion using dynamic PET. Eur J Nucl Med 2007;34:320-9.CrossRef
7.
Zurück zum Zitat Visvikis D, Griffiths D, Costa DC, Bomanji J, Ell PJ. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner. Eur J Nucl Med 2005;32:1050-6.CrossRef Visvikis D, Griffiths D, Costa DC, Bomanji J, Ell PJ. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner. Eur J Nucl Med 2005;32:1050-6.CrossRef
8.
Zurück zum Zitat Riddell C, Carson RE, Carrasquillo JA, Libutti SK, Danforth DN, Whatley M. Noise reduction in oncology FDG PET images by iterative reconstruction: A quantitative assessment. J Nucl Med 2001;42:1316-23.PubMed Riddell C, Carson RE, Carrasquillo JA, Libutti SK, Danforth DN, Whatley M. Noise reduction in oncology FDG PET images by iterative reconstruction: A quantitative assessment. J Nucl Med 2001;42:1316-23.PubMed
9.
Zurück zum Zitat Wang CX, Snyder WE, Bilbro G, Santago P. Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Comput Biol Med 1998;28:13-24.PubMedCrossRef Wang CX, Snyder WE, Bilbro G, Santago P. Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Comput Biol Med 1998;28:13-24.PubMedCrossRef
10.
Zurück zum Zitat Reilhac A, Tomeï S, Buvat I, Michel C, Keheren F, Costes F. Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage 2008;39:359-68.PubMedCrossRef Reilhac A, Tomeï S, Buvat I, Michel C, Keheren F, Costes F. Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage 2008;39:359-68.PubMedCrossRef
11.
Zurück zum Zitat Walker MD, Asselin MC, Julyan PJ, Feldmann M, Talbot PS, Jones T, et al. Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model. Phys Med Biol 2011;56:931.PubMedCrossRef Walker MD, Asselin MC, Julyan PJ, Feldmann M, Talbot PS, Jones T, et al. Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model. Phys Med Biol 2011;56:931.PubMedCrossRef
12.
Zurück zum Zitat Conti M. Focus on time-of-flight PET: The benefits of improved time resolution. Eur J Nucl Med 2011;38:1147-57.CrossRef Conti M. Focus on time-of-flight PET: The benefits of improved time resolution. Eur J Nucl Med 2011;38:1147-57.CrossRef
13.
Zurück zum Zitat Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: Experimental and clinical results. J Nucl Med 2008;49:462-70.PubMedCentralPubMedCrossRef Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: Experimental and clinical results. J Nucl Med 2008;49:462-70.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56:155.PubMedCrossRef Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56:155.PubMedCrossRef
15.
Zurück zum Zitat Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC. PET quantification: Strategies for partial volume correction. Clin Transl Imaging 2014;2:199-218.CrossRef Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC. PET quantification: Strategies for partial volume correction. Clin Transl Imaging 2014;2:199-218.CrossRef
16.
Zurück zum Zitat Le-Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes S, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-26.PubMedCrossRef Le-Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes S, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-26.PubMedCrossRef
17.
Zurück zum Zitat Armstrong IS, Tonge CM, Arumugam P. Impact of Point Spread Function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol 2014;21:1-8.CrossRef Armstrong IS, Tonge CM, Arumugam P. Impact of Point Spread Function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol 2014;21:1-8.CrossRef
18.
Zurück zum Zitat Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT discovery-690. Med Phys 2011;38:5394-411.PubMedCrossRef Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT discovery-690. Med Phys 2011;38:5394-411.PubMedCrossRef
19.
Zurück zum Zitat M Iatrou, SG Ross, RM Manjeshwar, CW Stearns, A fully 3D iterative image reconstruction algorithm incorporating data corrections. In: IEEE Nuclear Science Symposium Conference Record, vol. 4, p. 2493-2497. M Iatrou, SG Ross, RM Manjeshwar, CW Stearns, A fully 3D iterative image reconstruction algorithm incorporating data corrections. In: IEEE Nuclear Science Symposium Conference Record, vol. 4, p. 2493-2497.
20.
Zurück zum Zitat Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, Kinahan PE. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging. 2010;29:938-49.PubMedCentralPubMedCrossRef Alessio AM, Stearns CW, Tong S, Ross SG, Kohlmyer S, Ganin A, Kinahan PE. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging. 2010;29:938-49.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Presotto L, Bettinardi V, Petta P, Gilardi MC. A compact dynamic phantom to assess the effect of motion in cardiac PET and SPECT studies. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE, p. 2638, 2642; 2012. Presotto L, Bettinardi V, Petta P, Gilardi MC. A compact dynamic phantom to assess the effect of motion in cardiac PET and SPECT studies. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE, p. 2638, 2642; 2012.
22.
Zurück zum Zitat Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for Attenuation Correction in Cardiac PET/CT. J Nucl Med 2007;48:794-801.PubMedCentralPubMedCrossRef Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for Attenuation Correction in Cardiac PET/CT. J Nucl Med 2007;48:794-801.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Cheng NM, Yu CT, Ho KC, Wu YC, Liu YC, Wang CW, et al. Respiration-averaged CT for attenuation correction in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2009;36:607-15.PubMedCrossRef Cheng NM, Yu CT, Ho KC, Wu YC, Liu YC, Wang CW, et al. Respiration-averaged CT for attenuation correction in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2009;36:607-15.PubMedCrossRef
24.
Zurück zum Zitat Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749.PubMedCrossRef Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749.PubMedCrossRef
25.
Zurück zum Zitat Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507.PubMedCrossRef Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507.PubMedCrossRef
26.
Zurück zum Zitat Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539-42.PubMedCrossRef
27.
Zurück zum Zitat Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.PubMedCrossRef Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.PubMedCrossRef
28.
Zurück zum Zitat Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485-507.PubMedCrossRef Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485-507.PubMedCrossRef
29.
Zurück zum Zitat Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243-50.PubMed Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243-50.PubMed
30.
Zurück zum Zitat Polycarpou I, Thielemans K, Manjeshwar R, Aguiar P, Marsden PK, Tsoumpas C. Comparative evaluation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med 2011;25:643-9.PubMedCrossRef Polycarpou I, Thielemans K, Manjeshwar R, Aguiar P, Marsden PK, Tsoumpas C. Comparative evaluation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med 2011;25:643-9.PubMedCrossRef
Metadaten
Titel
Evaluation of image reconstruction algorithms encompassing Time-Of-Flight and Point Spread Function modelling for quantitative cardiac PET: Phantom studies
verfasst von
L. Presotto
L. Gianolli
M. C. Gilardi
V. Bettinardi
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Nuclear Cardiology / Ausgabe 2/2015
Print ISSN: 1071-3581
Elektronische ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-014-0023-1

Weitere Artikel der Ausgabe 2/2015

Journal of Nuclear Cardiology 2/2015 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.