Skip to main content
Erschienen in: Translational Stroke Research 6/2013

01.12.2013 | Original Article

MicroRNAs Regulate the Chaperone Network in Cerebral Ischemia

verfasst von: Yi-Bing Ouyang, Rona G. Giffard

Erschienen in: Translational Stroke Research | Ausgabe 6/2013

Einloggen, um Zugang zu erhalten

Abstract

The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently, additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia. MicroRNAs (miRNAs) are important posttranscriptional regulators that interact with multiple target messenger RNAs (mRNA) coordinately regulating target genes, including chaperones. The members of the HSP70 family are now appreciated to work together as networks to facilitate organelle communication and regulate inflammatory signaling and cell survival after cerebral ischemia. This review will focus on the new concept of the role of the chaperone network in the organelle network and its novel regulation by miRNA.
Literatur
1.
Zurück zum Zitat Ouyang Y-B et al. microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets. 2013;14(1):90–101.PubMed Ouyang Y-B et al. microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets. 2013;14(1):90–101.PubMed
2.
Zurück zum Zitat Ouyang Y-B et al. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci. 2007;27(16):4253–60.PubMed Ouyang Y-B et al. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci. 2007;27(16):4253–60.PubMed
3.
Zurück zum Zitat Xu L et al. Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia. 2010;58(9):1042–9.PubMed Xu L et al. Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia. 2010;58(9):1042–9.PubMed
4.
Zurück zum Zitat Okuyama S et al. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol. 2013;699(1–3):118–23.PubMed Okuyama S et al. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol. 2013;699(1–3):118–23.PubMed
5.
Zurück zum Zitat Xiong X et al. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke. 2011;42(7):2026–32.PubMed Xiong X et al. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke. 2011;42(7):2026–32.PubMed
7.
Zurück zum Zitat Ouyang Y-B et al. Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion. 2011;11(2):279–86.PubMed Ouyang Y-B et al. Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion. 2011;11(2):279–86.PubMed
8.
Zurück zum Zitat Ouyang Y-B, Giffard R. ER–mitochondria crosstalk during cerebral ischemia: molecular chaperones and ER–mitochondrial calcium transfer. Int J Cell Biol. 2012;2012:493934.PubMed Ouyang Y-B, Giffard R. ER–mitochondria crosstalk during cerebral ischemia: molecular chaperones and ER–mitochondrial calcium transfer. Int J Cell Biol. 2012;2012:493934.PubMed
9.
Zurück zum Zitat Mayer MP, Bukau B. Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol Chem. 1998;379(3):261–8.PubMed Mayer MP, Bukau B. Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol Chem. 1998;379(3):261–8.PubMed
10.
Zurück zum Zitat Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80(2):183–201.PubMed Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80(2):183–201.PubMed
11.
Zurück zum Zitat Hoehn B et al. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab. 2001;21(11):1303–9.PubMed Hoehn B et al. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab. 2001;21(11):1303–9.PubMed
12.
Zurück zum Zitat Lee WC et al. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J Appl Physiol. 2006;100(6):2073–82.PubMed Lee WC et al. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J Appl Physiol. 2006;100(6):2073–82.PubMed
13.
Zurück zum Zitat Plumier JC et al. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones. 1997;2(3):162–7.PubMed Plumier JC et al. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones. 1997;2(3):162–7.PubMed
14.
Zurück zum Zitat Rajdev S et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol. 2000;47(6):782–91.PubMed Rajdev S et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol. 2000;47(6):782–91.PubMed
15.
Zurück zum Zitat van der Weerd L et al. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia—an MRI study. Exp Neurol. 2005;195(1):257–66.PubMed van der Weerd L et al. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia—an MRI study. Exp Neurol. 2005;195(1):257–66.PubMed
16.
Zurück zum Zitat Xu L et al. Overexpression of mitochondrial Hsp70/Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab. 2009;29(2):365–74.PubMed Xu L et al. Overexpression of mitochondrial Hsp70/Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab. 2009;29(2):365–74.PubMed
17.
Zurück zum Zitat Yenari MA et al. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol. 1998;44(4):584–91.PubMed Yenari MA et al. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol. 1998;44(4):584–91.PubMed
18.
Zurück zum Zitat Zheng Z et al. Anti-inflammatory effects of the 70kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab. 2008;28(1):53–63.PubMed Zheng Z et al. Anti-inflammatory effects of the 70kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab. 2008;28(1):53–63.PubMed
19.
Zurück zum Zitat Ouyang Y-B et al. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones. 2006;11(2):180–6.PubMed Ouyang Y-B et al. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones. 2006;11(2):180–6.PubMed
20.
Zurück zum Zitat Sun Y et al. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab. 2005;26(7):937–50.PubMed Sun Y et al. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab. 2005;26(7):937–50.PubMed
21.
Zurück zum Zitat Xu L et al. Heat shock protein 72 (Hsp72) improves long term recovery after focal cerebral ischemia in mice. Neurosci Lett. 2011;488(3):279–82.PubMed Xu L et al. Heat shock protein 72 (Hsp72) improves long term recovery after focal cerebral ischemia in mice. Neurosci Lett. 2011;488(3):279–82.PubMed
22.
Zurück zum Zitat Barreto GE et al. Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol. 2012;238(2):284–96.PubMed Barreto GE et al. Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol. 2012;238(2):284–96.PubMed
23.
Zurück zum Zitat Giffard RG et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol. 2004;207(18):3213–20.PubMed Giffard RG et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol. 2004;207(18):3213–20.PubMed
24.
Zurück zum Zitat Giffard RG, Yenari MA. Many mechanisms for Hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol. 2004;16(1):53–61.PubMed Giffard RG, Yenari MA. Many mechanisms for Hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol. 2004;16(1):53–61.PubMed
25.
Zurück zum Zitat Kelly S et al. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol. 2002;52(2):160–7.PubMed Kelly S et al. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol. 2002;52(2):160–7.PubMed
26.
Zurück zum Zitat Yenari MA et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci. 2005;1053(1):74–83.PubMed Yenari MA et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci. 2005;1053(1):74–83.PubMed
27.
Zurück zum Zitat Sheppard P et al. Quantitative characterization and analysis of the dynamic NF-kB response in microglia. BMC Bioinforma. 2011;12:276. Sheppard P et al. Quantitative characterization and analysis of the dynamic NF-kB response in microglia. BMC Bioinforma. 2011;12:276.
28.
Zurück zum Zitat Wadhwa R, Taira K, Kaul SC. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones. 2002;7(3):309–16.PubMed Wadhwa R, Taira K, Kaul SC. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones. 2002;7(3):309–16.PubMed
29.
Zurück zum Zitat Massa SM et al. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res. 1995;40(6):807–19.PubMed Massa SM et al. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res. 1995;40(6):807–19.PubMed
30.
Zurück zum Zitat Voloboueva LA et al. Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab. 2008;28(5):1009–16.PubMed Voloboueva LA et al. Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab. 2008;28(5):1009–16.PubMed
31.
Zurück zum Zitat White R, Ouyang Y-B, Giffard R. Hsp75/mortalin and protection from ischemic brain injury. In: Kaul SC, Wadhwa R, editors. Mortalin biology: life, stress and death. Amsterdam: Springer; 2012. p. 179–90. White R, Ouyang Y-B, Giffard R. Hsp75/mortalin and protection from ischemic brain injury. In: Kaul SC, Wadhwa R, editors. Mortalin biology: life, stress and death. Amsterdam: Springer; 2012. p. 179–90.
32.
Zurück zum Zitat Zhang L-H et al. Association of elevated GRP78 expression with increased astrocytoma malignancy via Akt and ERK pathways. Brain Research. 2011;1371:23–31.PubMed Zhang L-H et al. Association of elevated GRP78 expression with increased astrocytoma malignancy via Akt and ERK pathways. Brain Research. 2011;1371:23–31.PubMed
33.
Zurück zum Zitat Pfaffenbach KT, Lee AS. The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol. 2011;23(2):150–6.PubMed Pfaffenbach KT, Lee AS. The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol. 2011;23(2):150–6.PubMed
34.
Zurück zum Zitat Wang M et al. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11(9):2307–16.PubMed Wang M et al. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11(9):2307–16.PubMed
35.
Zurück zum Zitat Gonzalez Gronow M et al. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal. 2009;11(9):2299–306.PubMed Gonzalez Gronow M et al. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal. 2009;11(9):2299–306.PubMed
36.
Zurück zum Zitat Wang M et al. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ. 2010;17(3):488–98.PubMed Wang M et al. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ. 2010;17(3):488–98.PubMed
37.
Zurück zum Zitat Li J et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460–71.PubMed Li J et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460–71.PubMed
38.
Zurück zum Zitat Oida Y et al. Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res. 2008;1208:217–24.PubMed Oida Y et al. Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res. 2008;1208:217–24.PubMed
39.
Zurück zum Zitat Kudo T et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 2008;15(2):364–75.PubMed Kudo T et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 2008;15(2):364–75.PubMed
40.
Zurück zum Zitat Ouyang Y-B et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis. 2012;45(1):555–63.PubMed Ouyang Y-B et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis. 2012;45(1):555–63.PubMed
41.
Zurück zum Zitat Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101–13.PubMed Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101–13.PubMed
42.
Zurück zum Zitat Csermely P. Strong links are important, but weak links stabilize them. Trends Biochem Sci. 2004;29(7):331–4.PubMed Csermely P. Strong links are important, but weak links stabilize them. Trends Biochem Sci. 2004;29(7):331–4.PubMed
43.
Zurück zum Zitat Sőti C et al. Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol. 2005;17(2):210–5.PubMed Sőti C et al. Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol. 2005;17(2):210–5.PubMed
44.
Zurück zum Zitat Csermely P, Vigh L, editors. Molecular aspects of the stress response: chaperones, membranes and networks. Berlin: Springer; 2007. Csermely P, Vigh L, editors. Molecular aspects of the stress response: chaperones, membranes and networks. Berlin: Springer; 2007.
45.
Zurück zum Zitat Brostrom MA, Brostrom CO. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium. 2003;34(4–5):345–63.PubMed Brostrom MA, Brostrom CO. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium. 2003;34(4–5):345–63.PubMed
46.
Zurück zum Zitat Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426(6968):891–4.PubMed Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426(6968):891–4.PubMed
47.
Zurück zum Zitat Wang H-J et al. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol. 2000;150(6):1489–98.PubMed Wang H-J et al. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol. 2000;150(6):1489–98.PubMed
48.
Zurück zum Zitat Deniaud A et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 2007;27(3):285–99.PubMed Deniaud A et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 2007;27(3):285–99.PubMed
49.
Zurück zum Zitat Hetz C. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal. 2007;9(12):2345–55.PubMed Hetz C. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal. 2007;9(12):2345–55.PubMed
50.
Zurück zum Zitat Hom JR et al. Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J Cell Physiol. 2007;212(2):498–508.PubMed Hom JR et al. Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J Cell Physiol. 2007;212(2):498–508.PubMed
51.
Zurück zum Zitat Scorrano L et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.PubMed Scorrano L et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.PubMed
52.
Zurück zum Zitat Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 2000;23(7):298–304.PubMed Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 2000;23(7):298–304.PubMed
53.
Zurück zum Zitat Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6(5):513–9.PubMed Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6(5):513–9.PubMed
54.
Zurück zum Zitat Murphy KM, Streips UN, Lock RB. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene. 1999;18(44):5991–9.PubMed Murphy KM, Streips UN, Lock RB. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene. 1999;18(44):5991–9.PubMed
55.
Zurück zum Zitat Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192(2):131–7.PubMed Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192(2):131–7.PubMed
56.
Zurück zum Zitat Voloboueva LA, Giffard RG. Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res. 2011;89(12):1989–96.PubMed Voloboueva LA, Giffard RG. Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res. 2011;89(12):1989–96.PubMed
57.
Zurück zum Zitat Voloboueva LA et al. Mitochondrial protection attenuates inflammation-induced impairment of neurogenesis in vitro and in vivo. J Neurosci. 2010;30(37):12242–51.PubMed Voloboueva LA et al. Mitochondrial protection attenuates inflammation-induced impairment of neurogenesis in vitro and in vivo. J Neurosci. 2010;30(37):12242–51.PubMed
58.
Zurück zum Zitat Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427(6972):360–4.PubMed Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427(6972):360–4.PubMed
59.
Zurück zum Zitat Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80(1):315–60.PubMed Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80(1):315–60.PubMed
60.
Zurück zum Zitat Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79(4):1127–55.PubMed Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79(4):1127–55.PubMed
61.
Zurück zum Zitat Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.PubMed Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.PubMed
62.
Zurück zum Zitat Camici O, Corazzi L. Phosphatidylserine translocation into brain mitochondria: involvement of a fusogenic protein associated with mitochondrial membranes. Mol Cell Biochem. 1997;175(1–2):71–80.PubMed Camici O, Corazzi L. Phosphatidylserine translocation into brain mitochondria: involvement of a fusogenic protein associated with mitochondrial membranes. Mol Cell Biochem. 1997;175(1–2):71–80.PubMed
63.
Zurück zum Zitat Colombini M. VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem. 2004;256–257(1–2):107–15.PubMed Colombini M. VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem. 2004;256–257(1–2):107–15.PubMed
64.
Zurück zum Zitat Patterson R, Boehning D, Snyder S. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annual Rev Biochem. 2004;73:437–65. Patterson R, Boehning D, Snyder S. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annual Rev Biochem. 2004;73:437–65.
65.
Zurück zum Zitat Rostovtseva T, Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 2005;37(3):129–42.PubMed Rostovtseva T, Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr. 2005;37(3):129–42.PubMed
66.
Zurück zum Zitat Vyssokikh M, Brdiczka D. VDAC and peripheral channelling complexes in health and disease. Mol Cell Biochem. 2004;256–257(1–2):117–26.PubMed Vyssokikh M, Brdiczka D. VDAC and peripheral channelling complexes in health and disease. Mol Cell Biochem. 2004;256–257(1–2):117–26.PubMed
67.
Zurück zum Zitat Rizzuto R et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993;262(5134):744–7.PubMed Rizzuto R et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993;262(5134):744–7.PubMed
68.
Zurück zum Zitat Rizzuto R et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280(5370):1763–6.PubMed Rizzuto R et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280(5370):1763–6.PubMed
69.
Zurück zum Zitat Szabadkai G et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–11.PubMed Szabadkai G et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–11.PubMed
70.
Zurück zum Zitat Liu Y et al. Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem. 2005;268(1–2):45–51.PubMed Liu Y et al. Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem. 2005;268(1–2):45–51.PubMed
71.
Zurück zum Zitat Hayashi T, Su T-P. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 2007;131(3):596–610.PubMed Hayashi T, Su T-P. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 2007;131(3):596–610.PubMed
72.
Zurück zum Zitat Sun F-C et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 2006;396(1):31–9.PubMed Sun F-C et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 2006;396(1):31–9.PubMed
73.
Zurück zum Zitat Szabadkai G, Rizzuto R. Chaperones as parts of organelle networks. In: Csermely P, Vigh L, editors. Molecular aspects of the stress response: chaperones, membranes and networks. Berlin: Springer; 2007. Szabadkai G, Rizzuto R. Chaperones as parts of organelle networks. In: Csermely P, Vigh L, editors. Molecular aspects of the stress response: chaperones, membranes and networks. Berlin: Springer; 2007.
74.
Zurück zum Zitat Foyouzi-Youssefi R et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci. 2000;97(11):5723–8.PubMed Foyouzi-Youssefi R et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci. 2000;97(11):5723–8.PubMed
75.
Zurück zum Zitat Ouyang Y-B et al. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12(2):213–9.PubMed Ouyang Y-B et al. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion. 2012;12(2):213–9.PubMed
76.
Zurück zum Zitat Kim N, Kim J, Yenari M. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20(3):177–85.PubMed Kim N, Kim J, Yenari M. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20(3):177–85.PubMed
77.
Zurück zum Zitat Chamorro A et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.PubMed Chamorro A et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.PubMed
78.
Zurück zum Zitat Ouyang YB. Inflammation and stroke. Neurosci Lett. 2013;548:1–3.PubMed Ouyang YB. Inflammation and stroke. Neurosci Lett. 2013;548:1–3.PubMed
79.
Zurück zum Zitat Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.PubMed Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.PubMed
80.
Zurück zum Zitat Kamel H, Iadecola C. Brain–immune interactions and ischemic stroke: clinical implications. Arch Neurol. 2012;69(5):576–81.PubMed Kamel H, Iadecola C. Brain–immune interactions and ischemic stroke: clinical implications. Arch Neurol. 2012;69(5):576–81.PubMed
81.
Zurück zum Zitat Tarkowski E et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMed Tarkowski E et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMed
82.
Zurück zum Zitat Beamer NB et al. Interleukin-6 and interleukin-1 receptor antagonist in acute stroke. Ann Neurol. 1995;37(6):800–5.PubMed Beamer NB et al. Interleukin-6 and interleukin-1 receptor antagonist in acute stroke. Ann Neurol. 1995;37(6):800–5.PubMed
83.
Zurück zum Zitat Fassbender K et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci. 1994;122(2):135–9.PubMed Fassbender K et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci. 1994;122(2):135–9.PubMed
84.
Zurück zum Zitat Chamorro Á, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38(3):1097–103.PubMed Chamorro Á, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38(3):1097–103.PubMed
85.
Zurück zum Zitat Vila N et al. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31(10):2325–9.PubMed Vila N et al. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31(10):2325–9.PubMed
86.
Zurück zum Zitat Vila N et al. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke. 2003;34(3):671–5.PubMed Vila N et al. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke. 2003;34(3):671–5.PubMed
87.
Zurück zum Zitat Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68.PubMed Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68.PubMed
88.
Zurück zum Zitat Lafargue M et al. Stroke-induced activation of the α7 nicotinic receptor increases Pseudomonas aeruginosa lung injury. FASEB J. 2012;26(7):2919–29.PubMed Lafargue M et al. Stroke-induced activation of the α7 nicotinic receptor increases Pseudomonas aeruginosa lung injury. FASEB J. 2012;26(7):2919–29.PubMed
89.
Zurück zum Zitat del Zoppo GJ et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke. 2007;38(2):646–51.PubMed del Zoppo GJ et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke. 2007;38(2):646–51.PubMed
90.
Zurück zum Zitat Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.PubMed Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.PubMed
91.
Zurück zum Zitat Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.PubMed Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.PubMed
92.
Zurück zum Zitat Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathologica. 2010;119(1):7–35.PubMed Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathologica. 2010;119(1):7–35.PubMed
93.
Zurück zum Zitat Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1–2):53–68.PubMed Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1–2):53–68.PubMed
94.
Zurück zum Zitat Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884–92.PubMed Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884–92.PubMed
95.
Zurück zum Zitat Trendelenburg G. Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab. 2008;28(5):867–81.PubMed Trendelenburg G. Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab. 2008;28(5):867–81.PubMed
96.
Zurück zum Zitat Hyakkoku K et al. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience. 2010;171(1):258–67.PubMed Hyakkoku K et al. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience. 2010;171(1):258–67.PubMed
97.
Zurück zum Zitat Ziegler G et al. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun. 2007;359(3):574–9.PubMed Ziegler G et al. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun. 2007;359(3):574–9.PubMed
98.
Zurück zum Zitat Bulua AC et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–33.PubMed Bulua AC et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–33.PubMed
99.
Zurück zum Zitat Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208(3):417–20.PubMed Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208(3):417–20.PubMed
100.
Zurück zum Zitat Nakahira K et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.PubMed Nakahira K et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.PubMed
101.
Zurück zum Zitat Zhou R et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMed Zhou R et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMed
102.
Zurück zum Zitat Ortego M et al. HMG-CoA reductase inhibitors reduce I[kappa]B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol. 2005;45(5):468–75.PubMed Ortego M et al. HMG-CoA reductase inhibitors reduce I[kappa]B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol. 2005;45(5):468–75.PubMed
103.
Zurück zum Zitat Song YS, Lee Y-S, Chan PH. Oxidative stress transiently decreases the IKK complex (IKK[alpha], [beta], and [gamma]), an upstream component of NF-[kappa]B signaling, after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2005;25(10):1301–11.PubMed Song YS, Lee Y-S, Chan PH. Oxidative stress transiently decreases the IKK complex (IKK[alpha], [beta], and [gamma]), an upstream component of NF-[kappa]B signaling, after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2005;25(10):1301–11.PubMed
104.
Zurück zum Zitat Hoffmann A, Baltimore D. Circuitry of nuclear factor κB signaling. Immunol Rev. 2006;210(1):171–86.PubMed Hoffmann A, Baltimore D. Circuitry of nuclear factor κB signaling. Immunol Rev. 2006;210(1):171–86.PubMed
105.
Zurück zum Zitat Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. Ann N Y Acad Sci. 2010;1207(1):32–40.PubMed Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. Ann N Y Acad Sci. 2010;1207(1):32–40.PubMed
106.
Zurück zum Zitat Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell. 2002;109(2):S81–96. Supplement 1.PubMed Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell. 2002;109(2):S81–96. Supplement 1.PubMed
107.
Zurück zum Zitat Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344–62.PubMed Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344–62.PubMed
108.
Zurück zum Zitat Jones Q et al. Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy Drug Targets. 2011;10(4):247–59.PubMed Jones Q et al. Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy Drug Targets. 2011;10(4):247–59.PubMed
109.
Zurück zum Zitat Asea A. Heat shock proteins and toll-like receptors. In: Bauer S, Hartmann G, editors. Toll-like receptors (TLRs) and innate immunity. Berlin Heidelberg: Springer; 2008. p. 111–27. Asea A. Heat shock proteins and toll-like receptors. In: Bauer S, Hartmann G, editors. Toll-like receptors (TLRs) and innate immunity. Berlin Heidelberg: Springer; 2008. p. 111–27.
110.
Zurück zum Zitat Feinstein DL et al. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFκB activation. J Biol Chem. 1996;271(30):17724–32.PubMed Feinstein DL et al. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFκB activation. J Biol Chem. 1996;271(30):17724–32.PubMed
111.
Zurück zum Zitat Ran R et al. Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev. 2004;18(12):1466–81.PubMed Ran R et al. Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev. 2004;18(12):1466–81.PubMed
112.
Zurück zum Zitat Voloboueva LA et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett. 2013;587(6):756–62.PubMed Voloboueva LA et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett. 2013;587(6):756–62.PubMed
113.
Zurück zum Zitat Nareika A et al. Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-κB transcriptional activities. Am J Physiol Endocrinol Metab. 2005;289(4):E534–42.PubMed Nareika A et al. Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-κB transcriptional activities. Am J Physiol Endocrinol Metab. 2005;289(4):E534–42.PubMed
114.
Zurück zum Zitat Morito, D. and K. Nagata. ER stress proteins in autoimmune and inflammatory diseases. Front Immunol., 2012;3:48. Morito, D. and K. Nagata. ER stress proteins in autoimmune and inflammatory diseases. Front Immunol., 2012;3:48.
115.
Zurück zum Zitat Bläß S et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 2001;44(4):761–71.PubMed Bläß S et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 2001;44(4):761–71.PubMed
116.
Zurück zum Zitat Bodman–Smith MD et al. BiP, a putative autoantigen in rheumatoid arthritis, stimulates IL–10–producing CD8–positive T cells from normal individuals. Rheumatology. 2003;42(5):637–44.PubMed Bodman–Smith MD et al. BiP, a putative autoantigen in rheumatoid arthritis, stimulates IL–10–producing CD8–positive T cells from normal individuals. Rheumatology. 2003;42(5):637–44.PubMed
117.
Zurück zum Zitat Brownlie RJ et al. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum. 2006;54(3):854–63.PubMed Brownlie RJ et al. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum. 2006;54(3):854–63.PubMed
118.
Zurück zum Zitat Corrigall VM et al. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 2004;50(4):1164–71.PubMed Corrigall VM et al. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 2004;50(4):1164–71.PubMed
119.
Zurück zum Zitat Corrigall VM et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol. 2001;166(3):1492–8.PubMed Corrigall VM et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol. 2001;166(3):1492–8.PubMed
120.
Zurück zum Zitat Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006;5(2):140–2.PubMed Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006;5(2):140–2.PubMed
121.
Zurück zum Zitat Kitamura M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal. 2009;11(9):2353–64.PubMed Kitamura M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal. 2009;11(9):2353–64.PubMed
122.
Zurück zum Zitat Okamura M et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. AmJ Physiol Renal Physiol. 2008;295(5):F1495–503. Okamura M et al. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. AmJ Physiol Renal Physiol. 2008;295(5):F1495–503.
123.
Zurück zum Zitat Kernagis DN, Laskowitz DT. Evolving role of biomarkers in acute cerebrovascular disease. Ann Neurol. 2012;71(3):289–303.PubMed Kernagis DN, Laskowitz DT. Evolving role of biomarkers in acute cerebrovascular disease. Ann Neurol. 2012;71(3):289–303.PubMed
124.
Zurück zum Zitat Chopp M, Li Y. Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl. 1996;66:21–6.PubMed Chopp M, Li Y. Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl. 1996;66:21–6.PubMed
125.
Zurück zum Zitat Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 2000;301(1):173–87.PubMed Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 2000;301(1):173–87.PubMed
126.
Zurück zum Zitat DeGracia D et al. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem. 2008;106(6):2288–301.PubMed DeGracia D et al. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem. 2008;106(6):2288–301.PubMed
127.
Zurück zum Zitat DeGracia DJ, Hu BR. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab. 2007;27(5):875–93.PubMed DeGracia DJ, Hu BR. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab. 2007;27(5):875–93.PubMed
128.
Zurück zum Zitat Sharp FR et al. HSP70 heat shock gene regulation during ischemia. Stroke. 1993;24(12 Suppl):I72–5.PubMed Sharp FR et al. HSP70 heat shock gene regulation during ischemia. Stroke. 1993;24(12 Suppl):I72–5.PubMed
129.
Zurück zum Zitat Vass K, Welch WJ, Nowak TS. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 1988;77(2):128–35.PubMed Vass K, Welch WJ, Nowak TS. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 1988;77(2):128–35.PubMed
130.
Zurück zum Zitat Kinouchi H et al. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13(1):105–15.PubMed Kinouchi H et al. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13(1):105–15.PubMed
131.
Zurück zum Zitat Kinouchi H et al. Induction of heat shock hsp70 mRNA and HSP70 kDa protein in neurons in the ‘penumbra’ following focal cerebral ischemia in the rat. Brain Research. 1993;619(1–2):334–8.PubMed Kinouchi H et al. Induction of heat shock hsp70 mRNA and HSP70 kDa protein in neurons in the ‘penumbra’ following focal cerebral ischemia in the rat. Brain Research. 1993;619(1–2):334–8.PubMed
132.
Zurück zum Zitat Nowak TS. Localization of 70 kDa stress protein mRNA induction in gerbil brain after ischemia. J Cereb Blood Flow Metab. 1991;11(3):432–9.PubMed Nowak TS. Localization of 70 kDa stress protein mRNA induction in gerbil brain after ischemia. J Cereb Blood Flow Metab. 1991;11(3):432–9.PubMed
133.
Zurück zum Zitat Duan S-r et al. Ischemia induces endoplasmic reticulum stress and cell apoptosis in human brain. Neurosci Lett. 2010;475(3):132–5.PubMed Duan S-r et al. Ischemia induces endoplasmic reticulum stress and cell apoptosis in human brain. Neurosci Lett. 2010;475(3):132–5.PubMed
134.
Zurück zum Zitat Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39(3):959–66.PubMed Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39(3):959–66.PubMed
135.
Zurück zum Zitat Liu D-Z et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101.PubMed Liu D-Z et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101.PubMed
136.
Zurück zum Zitat Tan K et al. Expression profile of microRNAs in young stroke patients. PLoS ONE. 2009;4(11):e7689.PubMed Tan K et al. Expression profile of microRNAs in young stroke patients. PLoS ONE. 2009;4(11):e7689.PubMed
137.
Zurück zum Zitat Ren X-P et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119(17):2357–66.PubMed Ren X-P et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119(17):2357–66.PubMed
138.
Zurück zum Zitat Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res. 2009;104(5):572–5.PubMed Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res. 2009;104(5):572–5.PubMed
139.
Zurück zum Zitat Shan Z-X et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun. 2009;381(4):597–601.PubMed Shan Z-X et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun. 2009;381(4):597–601.PubMed
140.
Zurück zum Zitat Tang Y et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Hear J. 2009;50(3):377–87. Tang Y et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Hear J. 2009;50(3):377–87.
141.
Zurück zum Zitat Yang B et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.PubMed Yang B et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.PubMed
142.
Zurück zum Zitat Xu C et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(17):3045–52.PubMed Xu C et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(17):3045–52.PubMed
143.
Zurück zum Zitat Lee S-T et al. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41(8):1646–51.PubMed Lee S-T et al. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41(8):1646–51.PubMed
144.
Zurück zum Zitat Magenta A et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18(10):1628–39.PubMed Magenta A et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18(10):1628–39.PubMed
Metadaten
Titel
MicroRNAs Regulate the Chaperone Network in Cerebral Ischemia
verfasst von
Yi-Bing Ouyang
Rona G. Giffard
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2013
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-013-0280-3

Weitere Artikel der Ausgabe 6/2013

Translational Stroke Research 6/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.