Skip to main content
Erschienen in: Neurotherapeutics 4/2013

01.10.2013 | Review

Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury

verfasst von: Selva Baltan, Richard S. Morrison, Sean P. Murphy

Erschienen in: Neurotherapeutics | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Understanding how epigenetics influences the process and progress of a stroke could yield new targets and therapeutics for use in the clinic. Experimental evidence suggests that inhibitors of zinc-dependent histone deacetylases can protect neurons, axons, and associated glia from the devastating effects of oxygen and glucose deprivation. While the specific enzymes involved have yet to be clearly identified, there are hints from somewhat selective chemical inhibitors and also from the use of specific small hairpin RNAs to transiently knockdown protein expression. Neuroprotective mechanisms implicated thus far include the upregulation of extracellular glutamate clearance, inhibition of p53-mediated cell death, and maintenance of mitochondrial integrity. The histone deacetylases have distinct cellular and subcellular localizations, and discrete substrates. As a number of chemical inhibitors are already in clinical use for the treatment of cancer, repurposing for the stroke clinic should be expedited.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update. Circulation 2013;127:e6–e245.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update. Circulation 2013;127:e6–e245.PubMedCrossRef
2.
Zurück zum Zitat Sun J, Sun J, Ming G-l, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Europ J Neurosci 2011;33:1087–1093.CrossRef Sun J, Sun J, Ming G-l, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Europ J Neurosci 2011;33:1087–1093.CrossRef
3.
Zurück zum Zitat Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke. III Neural stem cell biology and regenerative medicine. Arch Neurol 2011;68:294–302.PubMedCrossRef Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke. III Neural stem cell biology and regenerative medicine. Arch Neurol 2011;68:294–302.PubMedCrossRef
4.
Zurück zum Zitat Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011;17:330–339.PubMedCrossRef Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011;17:330–339.PubMedCrossRef
5.
Zurück zum Zitat Pearce WJ. Epigenetics: an expanding new piece of the stroke puzzle. Transl Stroke Res 2011;2:243–247.PubMedCrossRef Pearce WJ. Epigenetics: an expanding new piece of the stroke puzzle. Transl Stroke Res 2011;2:243–247.PubMedCrossRef
6.
Zurück zum Zitat Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338:20–35.PubMedCrossRef Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338:20–35.PubMedCrossRef
7.
Zurück zum Zitat Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke 2012;43:2800–2802.PubMedCrossRef Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke 2012;43:2800–2802.PubMedCrossRef
8.
Zurück zum Zitat Kaur P, Liu F, Rong et al. Non-coding RNAs as potential neuroprotectants against ischemic brain injury. Brain Sci 2013;3:360–395.CrossRef Kaur P, Liu F, Rong et al. Non-coding RNAs as potential neuroprotectants against ischemic brain injury. Brain Sci 2013;3:360–395.CrossRef
9.
Zurück zum Zitat Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke II. RNA regulatory circuitry. Arch Neurol 2010;67:1435–1441.PubMedCrossRef Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke II. RNA regulatory circuitry. Arch Neurol 2010;67:1435–1441.PubMedCrossRef
10.
Zurück zum Zitat Liu D-Z, Tian Y, Ander BP et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures J Cereb Blood Flow Metab 2010;30:92–101.PubMedCrossRef Liu D-Z, Tian Y, Ander BP et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures J Cereb Blood Flow Metab 2010;30:92–101.PubMedCrossRef
11.
Zurück zum Zitat Ouyang YB, Stary CM, Yang GY, Giffard R. MicroRNAs: Innovative targets for cerebral ischemia and stroke. Curr Drug Targets 2013;14:90–101.PubMedCrossRef Ouyang YB, Stary CM, Yang GY, Giffard R. MicroRNAs: Innovative targets for cerebral ischemia and stroke. Curr Drug Targets 2013;14:90–101.PubMedCrossRef
12.
Zurück zum Zitat Wang Y, Wang Y, Yang G-Y. MicroRNAs in cerebral ischemia. Stroke Res Treat 2013 ID 276540. Wang Y, Wang Y, Yang G-Y. MicroRNAs in cerebral ischemia. Stroke Res Treat 2013 ID 276540.
13.
Zurück zum Zitat Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genom 2011;43:521–528.CrossRef Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genom 2011;43:521–528.CrossRef
14.
Zurück zum Zitat Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke. Part 1: DNA methylation and chromatin modifications. Arch Neurol 2010;67:1316–1322.PubMedCrossRef Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke. Part 1: DNA methylation and chromatin modifications. Arch Neurol 2010;67:1316–1322.PubMedCrossRef
15.
Zurück zum Zitat Baltan S, Bachleda A, Morrison RS, Murphy SP. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Trans Stroke Res 2011;2:411–423.CrossRef Baltan S, Bachleda A, Morrison RS, Murphy SP. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Trans Stroke Res 2011;2:411–423.CrossRef
16.
Zurück zum Zitat Baltan S, Besancon EF, Mbow B, Ye, ZC, Hamner M, Ransom BR. White matter vulnerability to ischemic injury increases with age due to enhanced excitotoxicity. J Neurosci 2008;28:1479–1489.PubMedCrossRef Baltan S, Besancon EF, Mbow B, Ye, ZC, Hamner M, Ransom BR. White matter vulnerability to ischemic injury increases with age due to enhanced excitotoxicity. J Neurosci 2008;28:1479–1489.PubMedCrossRef
17.
Zurück zum Zitat Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J Neurochem 2010;115:806–813.PubMedCrossRef Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J Neurochem 2010;115:806–813.PubMedCrossRef
18.
Zurück zum Zitat Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang D-M. Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011:31;52–57.PubMedCrossRef Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang D-M. Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011:31;52–57.PubMedCrossRef
19.
Zurück zum Zitat Wang B, Zhu X, Kim YT, et al. HDAC inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Rad Biol Med 2012;52:928–936.PubMedCrossRef Wang B, Zhu X, Kim YT, et al. HDAC inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Rad Biol Med 2012;52:928–936.PubMedCrossRef
20.
Zurück zum Zitat He M, Zhang B, Wei X, Wang Z, Fan B, Du P, et al. HDAC4/5-HMGB1 signaling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013;17:531–542:PubMedCrossRef He M, Zhang B, Wei X, Wang Z, Fan B, Du P, et al. HDAC4/5-HMGB1 signaling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013;17:531–542:PubMedCrossRef
21.
Zurück zum Zitat Del Zoppo GJ. Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 1995;237:79–88.PubMedCrossRef Del Zoppo GJ. Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 1995;237:79–88.PubMedCrossRef
22.
Zurück zum Zitat Del Zoppo GJ. Clinical trials in acute stroke: why have they not been successful? Neurology 1998;51:S59–S61.PubMedCrossRef Del Zoppo GJ. Clinical trials in acute stroke: why have they not been successful? Neurology 1998;51:S59–S61.PubMedCrossRef
23.
Zurück zum Zitat Dirnagl U, Iadecola C, Moskowitz MA Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391–397.PubMedCrossRef Dirnagl U, Iadecola C, Moskowitz MA Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391–397.PubMedCrossRef
24.
Zurück zum Zitat O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006;59:467–477.PubMedCrossRef O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006;59:467–477.PubMedCrossRef
25.
Zurück zum Zitat Cavallotti C, Pacella E, Pescosolido N, Tranquilli-Leali FM, Feher J. Age-related changes in the human optic nerve. Can J Ophthalmol 2002;37:389–394.PubMed Cavallotti C, Pacella E, Pescosolido N, Tranquilli-Leali FM, Feher J. Age-related changes in the human optic nerve. Can J Ophthalmol 2002;37:389–394.PubMed
26.
Zurück zum Zitat Cavallotti C, Cavallotti D, Pescosolido N, Pacella E. Age-related changes in rat optic nerve:morphological studies. Anat Histol Embryol 2003;32:12–16.PubMedCrossRef Cavallotti C, Cavallotti D, Pescosolido N, Pacella E. Age-related changes in rat optic nerve:morphological studies. Anat Histol Embryol 2003;32:12–16.PubMedCrossRef
27.
Zurück zum Zitat Baltan S, Murphy SP, Danilov AC, Bachleda A, Morrison R. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci 2011;31:3990–3999.PubMedCrossRef Baltan S, Murphy SP, Danilov AC, Bachleda A, Morrison R. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci 2011;31:3990–3999.PubMedCrossRef
28.
Zurück zum Zitat Baltan S. Histone deacetylase inhibitors preserve function in aging axons. J Neurochem 2012;123(Suppl. 2):108–115.PubMedCrossRef Baltan S. Histone deacetylase inhibitors preserve function in aging axons. J Neurochem 2012;123(Suppl. 2):108–115.PubMedCrossRef
29.
Zurück zum Zitat Baltan S. Ischemic injury to white matter: An age-dependent process. Neuroscientist 2009;15:126–133.PubMedCrossRef Baltan S. Ischemic injury to white matter: An age-dependent process. Neuroscientist 2009;15:126–133.PubMedCrossRef
30.
Zurück zum Zitat Tekkok SB, Ye ZC, Ransom BR. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J Cereb Blood Flow Metab 2007;27:1540–1552.PubMedCrossRef Tekkok SB, Ye ZC, Ransom BR. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J Cereb Blood Flow Metab 2007;27:1540–1552.PubMedCrossRef
31.
Zurück zum Zitat Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16:675–686.PubMedCrossRef Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16:675–686.PubMedCrossRef
32.
Zurück zum Zitat Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995;374:450–453.PubMedCrossRef Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995;374:450–453.PubMedCrossRef
33.
Zurück zum Zitat Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001;24:677–736.PubMedCrossRef Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001;24:677–736.PubMedCrossRef
34.
Zurück zum Zitat Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psych 2009;14:51–59.CrossRef Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psych 2009;14:51–59.CrossRef
35.
Zurück zum Zitat Liu XS, Chopp M, Kassis H, et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 2012;220:313–321.PubMedCrossRef Liu XS, Chopp M, Kassis H, et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 2012;220:313–321.PubMedCrossRef
36.
Zurück zum Zitat Wang Z, Tsai LK, Munasinghe J, et al. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012;43:2430–2436.PubMedCrossRef Wang Z, Tsai LK, Munasinghe J, et al. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012;43:2430–2436.PubMedCrossRef
37.
Zurück zum Zitat Fass DM, Reis SA, et al. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 2013;64:81–96.PubMedCrossRef Fass DM, Reis SA, et al. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 2013;64:81–96.PubMedCrossRef
38.
Zurück zum Zitat Chen SH, Wu HM, Ossola B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2012;165:494–505.PubMedCrossRef Chen SH, Wu HM, Ossola B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2012;165:494–505.PubMedCrossRef
39.
Zurück zum Zitat Martín-Montalvo A, Villalba JM, Navas P, de Cabo R. NRF2, cancer and calorie restriction. Oncogene 2011;30:505–520.PubMedCrossRef Martín-Montalvo A, Villalba JM, Navas P, de Cabo R. NRF2, cancer and calorie restriction. Oncogene 2011;30:505–520.PubMedCrossRef
40.
Zurück zum Zitat Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010;112:1316–1326.PubMedCrossRef Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010;112:1316–1326.PubMedCrossRef
41.
Zurück zum Zitat Morrison R, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res 2003;28:15–27.PubMedCrossRef Morrison R, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res 2003;28:15–27.PubMedCrossRef
42.
Zurück zum Zitat Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci 2007;27:12198–12210.PubMedCrossRef Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci 2007;27:12198–12210.PubMedCrossRef
43.
Zurück zum Zitat Langley B, D’Annibale MA, Suh K, et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J Neurosci 2008;28:163–176.PubMedCrossRef Langley B, D’Annibale MA, Suh K, et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J Neurosci 2008;28:163–176.PubMedCrossRef
44.
Zurück zum Zitat Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010;5:e10848.PubMedCrossRef Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010;5:e10848.PubMedCrossRef
45.
Zurück zum Zitat Dompierre JP, Godin JD, Charrin BC, Cordelières FP, et al.Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007;27:3571–3583.PubMedCrossRef Dompierre JP, Godin JD, Charrin BC, Cordelières FP, et al.Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007;27:3571–3583.PubMedCrossRef
46.
Zurück zum Zitat Kim JY, Shen S, Dietz K, He Y, Reynolds R, Casaccia P. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.PubMedCrossRef Kim JY, Shen S, Dietz K, He Y, Reynolds R, Casaccia P. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.PubMedCrossRef
47.
Zurück zum Zitat Wang DB, Garden GA, Kinoshita C, et al. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci 2013;33:1357–1365.PubMedCrossRef Wang DB, Garden GA, Kinoshita C, et al. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci 2013;33:1357–1365.PubMedCrossRef
48.
Zurück zum Zitat Uo T, Veenstra TD, Morrison RS. HDAC inhibitors prevent p53-dependent and -independent Bax-mediate neuronal apoptosis through two distinct mechanisms. J Neurosci 2009;29:2824–2832.PubMedCrossRef Uo T, Veenstra TD, Morrison RS. HDAC inhibitors prevent p53-dependent and -independent Bax-mediate neuronal apoptosis through two distinct mechanisms. J Neurosci 2009;29:2824–2832.PubMedCrossRef
49.
Zurück zum Zitat Marinova Z, Ren M, Wendland JR, Leng Y, et al. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009;111:976–987.PubMedCrossRef Marinova Z, Ren M, Wendland JR, Leng Y, et al. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009;111:976–987.PubMedCrossRef
50.
Zurück zum Zitat Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 2008;28:2576–2588.PubMedCrossRef Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 2008;28:2576–2588.PubMedCrossRef
51.
Zurück zum Zitat Bolger TA, Yao TP.Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 2005;25:9544–9553.PubMedCrossRef Bolger TA, Yao TP.Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 2005;25:9544–9553.PubMedCrossRef
52.
Zurück zum Zitat Yang Y, Qin X, Liu S, et al. Peroxisome proliferator-activated receptor γ is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem 2011;118:429–439.PubMedCrossRef Yang Y, Qin X, Liu S, et al. Peroxisome proliferator-activated receptor γ is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem 2011;118:429–439.PubMedCrossRef
53.
Zurück zum Zitat Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013;27:469–478.PubMedCrossRef Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013;27:469–478.PubMedCrossRef
54.
Zurück zum Zitat Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004;101:16659–16664.PubMedCrossRef Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004;101:16659–16664.PubMedCrossRef
55.
Zurück zum Zitat Balasubramaniyan V, Boddeke E, Bakels R Effects of HDAC inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 2006:143; 939–951.PubMedCrossRef Balasubramaniyan V, Boddeke E, Bakels R Effects of HDAC inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 2006:143; 939–951.PubMedCrossRef
56.
Zurück zum Zitat Dovey OM, Foster CT, Cowley SM. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2010;107:8242–8247.PubMedCrossRef Dovey OM, Foster CT, Cowley SM. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2010;107:8242–8247.PubMedCrossRef
57.
Zurück zum Zitat Lee S, Lee S-K. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.PubMedCrossRef Lee S, Lee S-K. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.PubMedCrossRef
58.
Zurück zum Zitat Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. HDACs 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.PubMedCrossRef Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. HDACs 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.PubMedCrossRef
59.
Zurück zum Zitat Humphrey GW, Wang Y-H, Hirai T, et al. Complementary roles for HDACs 1,2,and 3 in differentiation of pluripotent stem cells. Differentiation 2008;76:348–356.PubMedCrossRef Humphrey GW, Wang Y-H, Hirai T, et al. Complementary roles for HDACs 1,2,and 3 in differentiation of pluripotent stem cells. Differentiation 2008;76:348–356.PubMedCrossRef
60.
Zurück zum Zitat Kim H J, Rowe M, Ren M, Hong J-S, Chen P-S, Chuang D-M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.PubMedCrossRef Kim H J, Rowe M, Ren M, Hong J-S, Chen P-S, Chuang D-M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.PubMedCrossRef
61.
Zurück zum Zitat Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.PubMedCrossRef Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.PubMedCrossRef
62.
Zurück zum Zitat Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of HDAC2 induces chromatin remodeling in neurons. Nature 2008;455:411–415.PubMedCrossRef Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of HDAC2 induces chromatin remodeling in neurons. Nature 2008;455:411–415.PubMedCrossRef
Metadaten
Titel
Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury
verfasst von
Selva Baltan
Richard S. Morrison
Sean P. Murphy
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 4/2013
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-013-0201-x

Weitere Artikel der Ausgabe 4/2013

Neurotherapeutics 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.