Skip to main content
Erschienen in: Neurotherapeutics 2/2014

01.04.2014 | Review

The Potential of Antiseizure Drugs and Agents that Act on Novel Molecular Targets as Antiepileptogenic Treatments

verfasst von: Rafal M. Kaminski, Michael A. Rogawski, Henrik Klitgaard

Erschienen in: Neurotherapeutics | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 2011;52:657–678.PubMed Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 2011;52:657–678.PubMed
2.
Zurück zum Zitat Wilcox KS, Dixon-Salazar T, Sills GJ, et al. Issues related to development of new antiseizure treatments. Epilepsia 2013;54(Suppl. 4):24–34.PubMed Wilcox KS, Dixon-Salazar T, Sills GJ, et al. Issues related to development of new antiseizure treatments. Epilepsia 2013;54(Suppl. 4):24–34.PubMed
3.
Zurück zum Zitat Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007;6:793–804.PubMed Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007;6:793–804.PubMed
4.
Zurück zum Zitat Löscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013;12:757–776.PubMed Löscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013;12:757–776.PubMed
5.
6.
7.
Zurück zum Zitat Nadler JV. Plasticity of glutamate synaptic mechanisms. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD, 2012, available at: http://www.ncbi.nlm.nih.gov/books/NBK98204. Accessed March 16, 2014. Nadler JV. Plasticity of glutamate synaptic mechanisms. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD, 2012, available at: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK98204. Accessed March 16, 2014.
8.
Zurück zum Zitat Porter RJ, Dhir A, Macdonald RL, et al. Mechanisms of action of antiseizure drugs. Handb Clin Neurol 2012;108:663–681.PubMed Porter RJ, Dhir A, Macdonald RL, et al. Mechanisms of action of antiseizure drugs. Handb Clin Neurol 2012;108:663–681.PubMed
9.
Zurück zum Zitat Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 2009;4:23–32.PubMed Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 2009;4:23–32.PubMed
10.
11.
Zurück zum Zitat Klitgaard H, Matagne A, Schachter S, et al. Animal and translational models of the epilepsies. In: Animal and translational models of behavioral disorders. McArthur RA, Borsini F (eds) XXX. Elsevier, New York, 2008, pp. 311–335. Klitgaard H, Matagne A, Schachter S, et al. Animal and translational models of the epilepsies. In: Animal and translational models of behavioral disorders. McArthur RA, Borsini F (eds) XXX. Elsevier, New York, 2008, pp. 311–335.
12.
Zurück zum Zitat White HS, Löscher W. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 2014. doi: 10.1007/s13311-013-0250-1 White HS, Löscher W. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 2014. doi: 10.​1007/​s13311-013-0250-1
13.
Zurück zum Zitat Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991;29:356–363.PubMed Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991;29:356–363.PubMed
14.
Zurück zum Zitat Löscher W, Hönack D, Rundfeldt C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 1998;284:474–479.PubMed Löscher W, Hönack D, Rundfeldt C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 1998;284:474–479.PubMed
15.
Zurück zum Zitat Stratton SC, Large CH, Cox B, et al. Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model. Epilepsy Res 2003;53:95–106.PubMed Stratton SC, Large CH, Cox B, et al. Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model. Epilepsy Res 2003;53:95–106.PubMed
16.
Zurück zum Zitat Blumenfeld H, Klein JP, Schridde U, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 2008;49:400–409.PubMedCentralPubMed Blumenfeld H, Klein JP, Schridde U, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 2008;49:400–409.PubMedCentralPubMed
17.
Zurück zum Zitat Russo E, Citraro R, Scicchitano F, et al. Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia 2010;51:1560–1569.PubMed Russo E, Citraro R, Scicchitano F, et al. Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia 2010;51:1560–1569.PubMed
18.
Zurück zum Zitat Temkin NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 2009;50(Suppl. 2):10–13.PubMed Temkin NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 2009;50(Suppl. 2):10–13.PubMed
19.
Zurück zum Zitat Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: Experimental approaches and translational research. Pharmacol Rev 2010;62:668–700.PubMedCentralPubMed Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: Experimental approaches and translational research. Pharmacol Rev 2010;62:668–700.PubMedCentralPubMed
20.
Zurück zum Zitat Milligan TA, Hurwitz S, Bromfield EB. Efficacy and tolerability of levetiracetam versus phenytoin after supratentorial neurosurgery. Neurology 2008;71:665–669.PubMed Milligan TA, Hurwitz S, Bromfield EB. Efficacy and tolerability of levetiracetam versus phenytoin after supratentorial neurosurgery. Neurology 2008;71:665–669.PubMed
21.
Zurück zum Zitat Klein P, Herr D, Pearl PL, et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam forprevention of posttraumatic epilepsy. Arch Neurol 2012;69:1290–1295.PubMed Klein P, Herr D, Pearl PL, et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam forprevention of posttraumatic epilepsy. Arch Neurol 2012;69:1290–1295.PubMed
22.
Zurück zum Zitat Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001;276:36734–36741.PubMed Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001;276:36734–36741.PubMed
23.
Zurück zum Zitat Jessberger S, Nakashima K, Clemenson GD Jr, et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 2007;27:5967–5975.PubMed Jessberger S, Nakashima K, Clemenson GD Jr, et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 2007;27:5967–5975.PubMed
24.
Zurück zum Zitat Holmes KH, Bilkey DK, Laverty R, et al. The N-methyl-D-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures. Brain Res 1990;506:227–235.PubMed Holmes KH, Bilkey DK, Laverty R, et al. The N-methyl-D-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures. Brain Res 1990;506:227–235.PubMed
25.
Zurück zum Zitat Dürmüller N, Craggs M, Meldrum BS. The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994;17:167–174.PubMed Dürmüller N, Craggs M, Meldrum BS. The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994;17:167–174.PubMed
26.
Zurück zum Zitat Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998;51:41–48.PubMed Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998;51:41–48.PubMed
27.
Zurück zum Zitat Brandt C, Gastens AM, Sun M, et al. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology 2006;51:789–804.PubMed Brandt C, Gastens AM, Sun M, et al. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology 2006;51:789–804.PubMed
28.
Zurück zum Zitat Klitgaard HV, Matagne AC, Vanneste-Goemaere J, et al. Effects of prolonged administration of levetiracetam on pilocarpine-induced epileptogenesis in rat. Epilepsia 2001;42(Suppl. 7):114. Klitgaard HV, Matagne AC, Vanneste-Goemaere J, et al. Effects of prolonged administration of levetiracetam on pilocarpine-induced epileptogenesis in rat. Epilepsia 2001;42(Suppl. 7):114.
29.
Zurück zum Zitat Schmidt D. Is antiepileptogenesis a realistic goal in clinical trials? Concerns and new horizons. Epileptic Disord 2012;14:105–113.PubMed Schmidt D. Is antiepileptogenesis a realistic goal in clinical trials? Concerns and new horizons. Epileptic Disord 2012;14:105–113.PubMed
30.
Zurück zum Zitat Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Med 2004;10, 685–692.PubMed Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Med 2004;10, 685–692.PubMed
31.
Zurück zum Zitat van Luijtelaar G, Mishra AM, Edelbroek P, et al. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis 2013;60:126–138.PubMed van Luijtelaar G, Mishra AM, Edelbroek P, et al. Anti-epileptogenesis: Electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis 2013;60:126–138.PubMed
32.
Zurück zum Zitat Dezsi G, Ozturk E, Stanic D, et al. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 2013;54:635–643.PubMedCentralPubMed Dezsi G, Ozturk E, Stanic D, et al. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 2013;54:635–643.PubMedCentralPubMed
33.
Zurück zum Zitat Russo E, Citraro R, Scicchitano F, et al. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 2011;52:1341–1350.PubMed Russo E, Citraro R, Scicchitano F, et al. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 2011;52:1341–1350.PubMed
34.
Zurück zum Zitat Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neuroscience 2008;28:13341–13353. Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neuroscience 2008;28:13341–13353.
35.
Zurück zum Zitat Amano K, Hamada K, Yagi K, et al. Antiepileptic effects of topiramate on amygdaloid kindling in rats. Epilepsy Res 1998;31:123–128.PubMed Amano K, Hamada K, Yagi K, et al. Antiepileptic effects of topiramate on amygdaloid kindling in rats. Epilepsy Res 1998;31:123–128.PubMed
36.
Zurück zum Zitat Mazarati A, Shin D, Auvin S, et al. Age-dependent effects of topiramate on the acquisition and the retention of rapid kindling. Epilepsia 2007;48:765–773.PubMedCentralPubMed Mazarati A, Shin D, Auvin S, et al. Age-dependent effects of topiramate on the acquisition and the retention of rapid kindling. Epilepsia 2007;48:765–773.PubMedCentralPubMed
37.
Zurück zum Zitat Sankar R, Auvin S, Kwon YS, et al. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia 2010;51(Suppl. 3):39–42.PubMedCentralPubMed Sankar R, Auvin S, Kwon YS, et al. Evaluation of development-specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia 2010;51(Suppl. 3):39–42.PubMedCentralPubMed
38.
Zurück zum Zitat DeLorenzo RJ, Morris A, Blair RE, et al. Topiramate is both neuroprotective and antiepileptogenic in the pilocarpine model of status epilepticus. Epilepsia 2002;43(Suppl. 7):15. DeLorenzo RJ, Morris A, Blair RE, et al. Topiramate is both neuroprotective and antiepileptogenic in the pilocarpine model of status epilepticus. Epilepsia 2002;43(Suppl. 7):15.
39.
Zurück zum Zitat Kudin AP, Debska-Vielhaber G, Vielhaber S, et al. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 2004;45:1478–1487.PubMed Kudin AP, Debska-Vielhaber G, Vielhaber S, et al. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 2004;45:1478–1487.PubMed
40.
Zurück zum Zitat Suchomelova L, Baldwin RA, Kubova H, et al. Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res 2006;59:237–243.PubMed Suchomelova L, Baldwin RA, Kubova H, et al. Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res 2006;59:237–243.PubMed
41.
Zurück zum Zitat Rigoulot MA, Koning E, Ferrandon A, et al. Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther 2004;308:787–795.PubMed Rigoulot MA, Koning E, Ferrandon A, et al. Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther 2004;308:787–795.PubMed
42.
Zurück zum Zitat François J, Koning E, Ferrandon A, et al. The combination of topiramate and diazepam is partially neuroprotective in the hippocampus but not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2006;72:147–163.PubMed François J, Koning E, Ferrandon A, et al. The combination of topiramate and diazepam is partially neuroprotective in the hippocampus but not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2006;72:147–163.PubMed
43.
Zurück zum Zitat Shatskikh T, Zhao Q, Zhou JL, et al. Effect of topiramate on cognitive function and single units from hippocampal place cells following status epilepticus. Epilepsy Behav 2009;14:40–47.PubMed Shatskikh T, Zhao Q, Zhou JL, et al. Effect of topiramate on cognitive function and single units from hippocampal place cells following status epilepticus. Epilepsy Behav 2009;14:40–47.PubMed
44.
Zurück zum Zitat Cha BH, Silveira DC, Liu X, et al. Effect of topiramate following recurrent and prolonged seizures during early development. Epilepsy Res 2002;51:217–232.PubMed Cha BH, Silveira DC, Liu X, et al. Effect of topiramate following recurrent and prolonged seizures during early development. Epilepsy Res 2002;51:217–232.PubMed
45.
Zurück zum Zitat Frisch C, Kudin AP, Elger CE, et al. Amelioration of water maze performance deficits by topiramate applied during pilocarpine-induced status epilepticus is negatively dose-dependent. Epilepsy Res 2007;73:173–180.PubMed Frisch C, Kudin AP, Elger CE, et al. Amelioration of water maze performance deficits by topiramate applied during pilocarpine-induced status epilepticus is negatively dose-dependent. Epilepsy Res 2007;73:173–180.PubMed
46.
Zurück zum Zitat Niebauer M, Gruenthal M. Topiramate reduces neuronal injury after experimental status epilepticus. Brain Res 1999;837:263–269.PubMed Niebauer M, Gruenthal M. Topiramate reduces neuronal injury after experimental status epilepticus. Brain Res 1999;837:263–269.PubMed
47.
Zurück zum Zitat Hoover RC, Motta M, Davis J, et al. Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats. J Neurotrauma 2004;21:501–512.PubMed Hoover RC, Motta M, Davis J, et al. Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats. J Neurotrauma 2004;21:501–512.PubMed
48.
Zurück zum Zitat Kouzounias K, Kimiskidis VK, Siozos T, et al. Topiramate promotes neurological recovery in a new model of traumatic brain injury in rats. Neuroscience 2011;183:171–177.PubMed Kouzounias K, Kimiskidis VK, Siozos T, et al. Topiramate promotes neurological recovery in a new model of traumatic brain injury in rats. Neuroscience 2011;183:171–177.PubMed
49.
Zurück zum Zitat Alves OL, Doyle AJ, Clausen T, et al. Evaluation of topiramate neuroprotective effect in severe TBI using microdialysis. Ann NY Acad Sci 2003;993:25–34.PubMed Alves OL, Doyle AJ, Clausen T, et al. Evaluation of topiramate neuroprotective effect in severe TBI using microdialysis. Ann NY Acad Sci 2003;993:25–34.PubMed
50.
Zurück zum Zitat Dichter MA. Posttraumatic epilepsy: the challenge of translating discoveries in the laboratory to pathways to a cure. Epilepsia 2009;50(Suppl. 2):41–45.PubMed Dichter MA. Posttraumatic epilepsy: the challenge of translating discoveries in the laboratory to pathways to a cure. Epilepsia 2009;50(Suppl. 2):41–45.PubMed
51.
Zurück zum Zitat Klitgaard H, Verdru P. Levetiracetam – the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discov 2008;2:1537–1545. Klitgaard H, Verdru P. Levetiracetam – the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discov 2008;2:1537–1545.
52.
Zurück zum Zitat Kaminski RM, Gillard M, Klitgaard H. Targeting SV2A for discovery of antiepileptic drugs. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD: National Center, 2012, available at http://www.ncbi.nlm.nih.gov/books/NBK98183. Accessed March 16, 2014. Kaminski RM, Gillard M, Klitgaard H. Targeting SV2A for discovery of antiepileptic drugs. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD: National Center, 2012, available at http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK98183. Accessed March 16, 2014.
53.
Zurück zum Zitat Kaminski RM, Gillard M, Leclercq K, et al. Proepileptic phenotype of SV2A-deficient mice is associated with reduced anticonvulsant efficacy of levetiracetam. Epilepsia 2009;50:1729–1740.PubMed Kaminski RM, Gillard M, Leclercq K, et al. Proepileptic phenotype of SV2A-deficient mice is associated with reduced anticonvulsant efficacy of levetiracetam. Epilepsia 2009;50:1729–1740.PubMed
54.
Zurück zum Zitat Gu J, Lynch BA, Anderson D, et al. The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci 2004;19:334–345.PubMed Gu J, Lynch BA, Anderson D, et al. The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci 2004;19:334–345.PubMed
55.
Zurück zum Zitat Husum H, Bolwig TG, Sánchez C, et al. Levetiracetam prevents changes in levels of brain-derived neurotrophic factor and neuropeptide Y mRNA and of Y1- and Y5-like receptors in the hippocampus of rats undergoing amygdala kindling: implications for antiepileptogenic and mood-stabilizing properties. Epilepsy Behav 2004;5:204–215.PubMed Husum H, Bolwig TG, Sánchez C, et al. Levetiracetam prevents changes in levels of brain-derived neurotrophic factor and neuropeptide Y mRNA and of Y1- and Y5-like receptors in the hippocampus of rats undergoing amygdala kindling: implications for antiepileptogenic and mood-stabilizing properties. Epilepsy Behav 2004;5:204–215.PubMed
56.
Zurück zum Zitat Vinogradova LV, van Rijn CM. Anticonvulsive and antiepileptogenic effects of levetiracetam in the audiogenic kindling model. Epilepsia 2008;49:1160–1168.PubMed Vinogradova LV, van Rijn CM. Anticonvulsive and antiepileptogenic effects of levetiracetam in the audiogenic kindling model. Epilepsia 2008;49:1160–1168.PubMed
57.
Zurück zum Zitat Matagne A, Margineanu DG, Kenda B, et al. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol 2008;154:1662–1671.PubMedCentralPubMed Matagne A, Margineanu DG, Kenda B, et al. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol 2008;154:1662–1671.PubMedCentralPubMed
58.
Zurück zum Zitat Yan HD, Ji-qun C, Ishihara K, et al. Separation of antiepileptogenic and antiseizure effects of levetiracetam in the spontaneously epileptic rat (SER). Epilepsia 2005;46:1170–1177.PubMed Yan HD, Ji-qun C, Ishihara K, et al. Separation of antiepileptogenic and antiseizure effects of levetiracetam in the spontaneously epileptic rat (SER). Epilepsia 2005;46:1170–1177.PubMed
59.
Zurück zum Zitat Brandt C, Glien M, Gastens AM, et al. Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology 2007;53:207–221.PubMed Brandt C, Glien M, Gastens AM, et al. Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology 2007;53:207–221.PubMed
60.
Zurück zum Zitat Mazarati AM, Baldwin RA, Klitgaard H, et al. Treatment with levetiracetam during the latent period after experimental status epilepticus reduces chronic spontaneous recurrent seizures. Epilepsia 2003;44(Suppl. 9):223. Mazarati AM, Baldwin RA, Klitgaard H, et al. Treatment with levetiracetam during the latent period after experimental status epilepticus reduces chronic spontaneous recurrent seizures. Epilepsia 2003;44(Suppl. 9):223.
61.
Zurück zum Zitat Sugaya Y, Maru E, Kudo K, et al. Levetiracetam suppresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res 2010;1352:187–199.PubMed Sugaya Y, Maru E, Kudo K, et al. Levetiracetam suppresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res 2010;1352:187–199.PubMed
62.
Zurück zum Zitat Margineanu DG, Matagne A, Kaminski RM, et al. Effects of chronic treatment with levetiracetam on hippocampal field responses after pilocarpine-induced status epilepticus in rats. Brain Res Bull 2008;77:282–285.PubMed Margineanu DG, Matagne A, Kaminski RM, et al. Effects of chronic treatment with levetiracetam on hippocampal field responses after pilocarpine-induced status epilepticus in rats. Brain Res Bull 2008;77:282–285.PubMed
63.
Zurück zum Zitat Zhou JL, Zhao Q, Holmes GL. Effect of levetiracetam on visual-spatial memory following status epilepticus. Epilepsy Res 2007;73:65–74.PubMed Zhou JL, Zhao Q, Holmes GL. Effect of levetiracetam on visual-spatial memory following status epilepticus. Epilepsy Res 2007;73:65–74.PubMed
64.
Zurück zum Zitat Pearl PL, McCarter R, McGavin CL, et al. Results of phase II levetiracetam trial following acute head injury in children at risk for posttraumatic epilepsy. Epilepsia 2013;54:135–137. Pearl PL, McCarter R, McGavin CL, et al. Results of phase II levetiracetam trial following acute head injury in children at risk for posttraumatic epilepsy. Epilepsia 2013;54:135–137.
65.
Zurück zum Zitat Szaflarski JP, Snagha KS, Lindsell CJ, et al. Prospective, randomized, single-binded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care 2010;12: 165–172.PubMed Szaflarski JP, Snagha KS, Lindsell CJ, et al. Prospective, randomized, single-binded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care 2010;12: 165–172.PubMed
66.
Zurück zum Zitat Jehi LE, Irwin Al, Kayyali H, et al. Levetiracetam may favorably affect seizure outcome after temporal lobectomy. Epilepsia 2012;53:979–986.PubMed Jehi LE, Irwin Al, Kayyali H, et al. Levetiracetam may favorably affect seizure outcome after temporal lobectomy. Epilepsia 2012;53:979–986.PubMed
67.
Zurück zum Zitat Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 2012;53:1868–1876.PubMed Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 2012;53:1868–1876.PubMed
68.
Zurück zum Zitat Vezzani A, Balosso S, Ravizza T. Inflammation and epilepsy. Handb Clin Neurol 2012;107:163–175.PubMed Vezzani A, Balosso S, Ravizza T. Inflammation and epilepsy. Handb Clin Neurol 2012;107:163–175.PubMed
69.
Zurück zum Zitat Devinsky O, Vezzani A, Najjar S, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013;36:174–184.PubMed Devinsky O, Vezzani A, Najjar S, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013;36:174–184.PubMed
70.
Zurück zum Zitat Stack JH, Beaumont K, Larsen PD, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol 2005;175:2630–2634.PubMed Stack JH, Beaumont K, Larsen PD, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol 2005;175:2630–2634.PubMed
71.
Zurück zum Zitat Ravizza T, Lucas SM, Balosso S, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 2006;47:1160–1168.PubMed Ravizza T, Lucas SM, Balosso S, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 2006;47:1160–1168.PubMed
72.
Zurück zum Zitat Maroso M, Balosso S, Ravizza T, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 2011;8:304–315.PubMedCentralPubMed Maroso M, Balosso S, Ravizza T, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 2011;8:304–315.PubMedCentralPubMed
73.
Zurück zum Zitat Noe FM, Polascheck N, Frigerio F, et al. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 2013;59:183–193.PubMed Noe FM, Polascheck N, Frigerio F, et al. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 2013;59:183–193.PubMed
74.
Zurück zum Zitat Ravizza T, Noé F, Zardoni D, et al. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis 2008;31:327–333.PubMed Ravizza T, Noé F, Zardoni D, et al. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis 2008;31:327–333.PubMed
75.
Zurück zum Zitat Viviani B, Bartesaghi S, Gardoni F, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003;23:8692–8700.PubMed Viviani B, Bartesaghi S, Gardoni F, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003;23:8692–8700.PubMed
76.
Zurück zum Zitat Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 2013;103:2–30.PubMed Bialer M, Johannessen SI, Levy RH, et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 2013;103:2–30.PubMed
77.
Zurück zum Zitat Fabene PF, Laudanna C, Constantin G. Leukocyte trafficking mechanisms in epilepsy. Mol Immunol 2013;55:100–104.PubMed Fabene PF, Laudanna C, Constantin G. Leukocyte trafficking mechanisms in epilepsy. Mol Immunol 2013;55:100–104.PubMed
78.
Zurück zum Zitat Fabene PF, Navarro Mora G, Martinello M, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008;14:1377–1383.PubMedCentralPubMed Fabene PF, Navarro Mora G, Martinello M, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008;14:1377–1383.PubMedCentralPubMed
79.
Zurück zum Zitat Zattoni M, Mura ML, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 2011;31:4037–4050.PubMed Zattoni M, Mura ML, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 2011;31:4037–4050.PubMed
80.
Zurück zum Zitat Ravizza T, Gagliardi B, Noé F, et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008;29:142–160.PubMed Ravizza T, Gagliardi B, Noé F, et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008;29:142–160.PubMed
81.
Zurück zum Zitat Iyer A, Zurolo E, Spliet WG, et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 2010;51:1763–1773.PubMed Iyer A, Zurolo E, Spliet WG, et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 2010;51:1763–1773.PubMed
82.
Zurück zum Zitat Kappos L, Bates D, Edan G, et al. Natalizumab treatment for multiple sclerosis: updated recommendations for patient selection and monitoring. Lancet Neurol 2011;10:745–758.PubMed Kappos L, Bates D, Edan G, et al. Natalizumab treatment for multiple sclerosis: updated recommendations for patient selection and monitoring. Lancet Neurol 2011;10:745–758.PubMed
83.
Zurück zum Zitat Ramirez P, Rettig MP, Uy GL, et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009;114:1340–1343.PubMedCentralPubMed Ramirez P, Rettig MP, Uy GL, et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009;114:1340–1343.PubMedCentralPubMed
84.
Zurück zum Zitat Rojas A, Jiang J, Ganesh T, et al. Cyclooxygenase-2 in epilepsy. Epilepsia 2014;55:17–25.PubMed Rojas A, Jiang J, Ganesh T, et al. Cyclooxygenase-2 in epilepsy. Epilepsia 2014;55:17–25.PubMed
85.
Zurück zum Zitat Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 2006;23:237–246.PubMed Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 2006;23:237–246.PubMed
86.
Zurück zum Zitat Holtman L, van Vliet EA, van Schaik R, et al. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res 2009;84:56–66.PubMed Holtman L, van Vliet EA, van Schaik R, et al. Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res 2009;84:56–66.PubMed
87.
Zurück zum Zitat Holtman L, van Vliet EA, Edelbroek PM, et al. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res 2010;91:49–56.PubMed Holtman L, van Vliet EA, Edelbroek PM, et al. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res 2010;91:49–56.PubMed
88.
Zurück zum Zitat Polascheck N, Bankstahl M, Löscher W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010;224:219–233.PubMed Polascheck N, Bankstahl M, Löscher W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010;224:219–233.PubMed
89.
Zurück zum Zitat Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 2006;332:1302–1308.PubMedCentralPubMed Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 2006;332:1302–1308.PubMedCentralPubMed
90.
Zurück zum Zitat Antman EM, Bennett JS, Daugherty A, et al. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation 2007;115:1634–1642.PubMed Antman EM, Bennett JS, Daugherty A, et al. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation 2007;115:1634–1642.PubMed
91.
Zurück zum Zitat Jiang J, Ganesh T, Du Y, et al. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci USA 2012;109:3149–3154.PubMedCentralPubMed Jiang J, Ganesh T, Du Y, et al. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci USA 2012;109:3149–3154.PubMedCentralPubMed
92.
Zurück zum Zitat Jiang J, Quan Y, Ganesh T, et al. Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci USA 2013;110:3591–3596.PubMedCentralPubMed Jiang J, Quan Y, Ganesh T, et al. Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci USA 2013;110:3591–3596.PubMedCentralPubMed
93.
Zurück zum Zitat Kwon YS, Pineda E, Auvin S, et al. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 2013;10:30.PubMedCentralPubMed Kwon YS, Pineda E, Auvin S, et al. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 2013;10:30.PubMedCentralPubMed
94.
Zurück zum Zitat Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology 2011;76(8 Suppl. 3):S9-14.PubMed Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology 2011;76(8 Suppl. 3):S9-14.PubMed
95.
Zurück zum Zitat Gao F, Liu Y, Li X, et al. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 2012;103:187–196.PubMed Gao F, Liu Y, Li X, et al. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 2012;103:187–196.PubMed
96.
Zurück zum Zitat Cardenas-Rodriguez N, Huerta-Gertrudis B, Rivera-Espinosa L, et al. Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013;14:1455–1476.PubMedCentralPubMed Cardenas-Rodriguez N, Huerta-Gertrudis B, Rivera-Espinosa L, et al. Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013;14:1455–1476.PubMedCentralPubMed
97.
Zurück zum Zitat Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 2013;62:121–131.PubMed Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 2013;62:121–131.PubMed
98.
Zurück zum Zitat He S, Yan X. From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem 2013;20:1005–1017.PubMed He S, Yan X. From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem 2013;20:1005–1017.PubMed
99.
Zurück zum Zitat Scannevin RH, Chollate S, Jung MY, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 2012;341:274–284.PubMed Scannevin RH, Chollate S, Jung MY, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 2012;341:274–284.PubMed
100.
101.
Zurück zum Zitat Wu Z, Xu Q, Zhang L, et al. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 2009;34:1393–1400.PubMed Wu Z, Xu Q, Zhang L, et al. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 2009;34:1393–1400.PubMed
102.
Zurück zum Zitat Friedman LK, Goldstein B, Rafiuddin A, et al. Lack of resveratrol neuroprotection in developing rats treated with kainic acid. Neuroscience 2013;230:39–49.PubMed Friedman LK, Goldstein B, Rafiuddin A, et al. Lack of resveratrol neuroprotection in developing rats treated with kainic acid. Neuroscience 2013;230:39–49.PubMed
103.
Zurück zum Zitat Hybertson BM, Gao B, Bose SK, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011;32:234–246PubMed Hybertson BM, Gao B, Bose SK, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011;32:234–246PubMed
104.
Zurück zum Zitat Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013;100:30–47.PubMedCentralPubMed Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013;100:30–47.PubMedCentralPubMed
105.
Zurück zum Zitat Winden KD, Karsten SL, Bragin A, et al. A systems level, functional genomics analysis of chronic epilepsy. PLoS One 2011;6:e20763.PubMedCentralPubMed Winden KD, Karsten SL, Bragin A, et al. A systems level, functional genomics analysis of chronic epilepsy. PLoS One 2011;6:e20763.PubMedCentralPubMed
106.
Zurück zum Zitat Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem 2006; 98:1852–1865.PubMed Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem 2006; 98:1852–1865.PubMed
107.
Zurück zum Zitat Mazzuferi M, Kumar G, van Eyll J, et al. Nrf2 defense pathway: Experimental evidence for its protective role in epilepsy. Ann Neurol 2013;74:560–568.PubMed Mazzuferi M, Kumar G, van Eyll J, et al. Nrf2 defense pathway: Experimental evidence for its protective role in epilepsy. Ann Neurol 2013;74:560–568.PubMed
108.
Zurück zum Zitat Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 2013;34:340–346.PubMed Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 2013;34:340–346.PubMed
109.
Zurück zum Zitat Stangel M, Linker RA. Dimethyl fumarate (BG-12) for the treatment of multiple sclerosis. Expert Rev Clin Pharmacol 2013;6:355–362.PubMed Stangel M, Linker RA. Dimethyl fumarate (BG-12) for the treatment of multiple sclerosis. Expert Rev Clin Pharmacol 2013;6:355–362.PubMed
110.
Zurück zum Zitat Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005;17:596–603.PubMed Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005;17:596–603.PubMed
111.
Zurück zum Zitat Sandsmark DK, Pelletier C, Weber JD, et al. Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol 2007;22:895–903.PubMed Sandsmark DK, Pelletier C, Weber JD, et al. Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol 2007;22:895–903.PubMed
112.
Zurück zum Zitat Curatolo P, D'Argenzio L, Cerminara C, et al. Management of epilepsy in tuberous sclerosis complex. Expert Rev Neurother 2008;8:457–467.PubMed Curatolo P, D'Argenzio L, Cerminara C, et al. Management of epilepsy in tuberous sclerosis complex. Expert Rev Neurother 2008;8:457–467.PubMed
113.
Zurück zum Zitat Wong M. Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations. Exp Neurol 2013;244:22–26.PubMed Wong M. Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations. Exp Neurol 2013;244:22–26.PubMed
114.
Zurück zum Zitat Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009;29:6964–6972.PubMedCentralPubMed Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009;29:6964–6972.PubMedCentralPubMed
115.
Zurück zum Zitat Canpolat M, Per H, Gumus H, et al. Rapamycin has a beneficial effect on controlling epilepsy in children with tuberous sclerosis complex: results of 7 children from a cohort of 86. Childs Nerv Syst 2014;30:227–240.PubMed Canpolat M, Per H, Gumus H, et al. Rapamycin has a beneficial effect on controlling epilepsy in children with tuberous sclerosis complex: results of 7 children from a cohort of 86. Childs Nerv Syst 2014;30:227–240.PubMed
116.
Zurück zum Zitat McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci Lett 2011;497:231–239.PubMedCentralPubMed McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neurosci Lett 2011;497:231–239.PubMedCentralPubMed
117.
Zurück zum Zitat Huang X, Zhang H, Yang J, et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010;40:193–199.PubMedCentralPubMed Huang X, Zhang H, Yang J, et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010;40:193–199.PubMedCentralPubMed
118.
Zurück zum Zitat Guo D, Zeng L, Brody DL, et al. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One 2013;8:e64078.PubMedCentralPubMed Guo D, Zeng L, Brody DL, et al. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One 2013;8:e64078.PubMedCentralPubMed
119.
Zurück zum Zitat Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 2011;31:2337–2347.PubMedCentralPubMed Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 2011;31:2337–2347.PubMedCentralPubMed
120.
Zurück zum Zitat Kumar G, Mazzuferi M, Otoul C, et al. A randomized, blinded preclinical trial of rapamycin in pilocarpine mouse model of chronic epilepsy. Program No. 560.08. 2011 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2011. Kumar G, Mazzuferi M, Otoul C, et al. A randomized, blinded preclinical trial of rapamycin in pilocarpine mouse model of chronic epilepsy. Program No. 560.08. 2011 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2011.
121.
Zurück zum Zitat Sliwa A, Plucinska G, Bednarczyk J, et al. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett 2012;509:105–109.PubMed Sliwa A, Plucinska G, Bednarczyk J, et al. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett 2012;509:105–109.PubMed
122.
Zurück zum Zitat Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409–435.PubMed Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409–435.PubMed
123.
Zurück zum Zitat Okada K, Yamashita U, Tsuji S. Ameliorative effect of pioglitazone on seizure responses in genetically epilepsy-susceptible EL mice. Brain Res 2006;1102:175–178.PubMed Okada K, Yamashita U, Tsuji S. Ameliorative effect of pioglitazone on seizure responses in genetically epilepsy-susceptible EL mice. Brain Res 2006;1102:175–178.PubMed
124.
Zurück zum Zitat Porta N, Vallée L, Lecointe C, et al. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties. Epilepsia 2009;50:943–948.PubMed Porta N, Vallée L, Lecointe C, et al. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, exerts anticonvulsive properties. Epilepsia 2009;50:943–948.PubMed
125.
Zurück zum Zitat Sun H, Huang Y, Yu X, et al. Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int J Dev Neurosci 2008;26:505–515.PubMed Sun H, Huang Y, Yu X, et al. Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int J Dev Neurosci 2008;26:505–515.PubMed
126.
Zurück zum Zitat Hong S, Xin Y, HaiQin W, et al. The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 2012;33:559–566.PubMed Hong S, Xin Y, HaiQin W, et al. The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 2012;33:559–566.PubMed
127.
Zurück zum Zitat Chuang YC, Lin TK, Huang HY, et al. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 2012;9:184.PubMedCentralPubMed Chuang YC, Lin TK, Huang HY, et al. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 2012;9:184.PubMedCentralPubMed
128.
Zurück zum Zitat Hong S, Xin Y, HaiQin W, et al. The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013;63:405–412.PubMed Hong S, Xin Y, HaiQin W, et al. The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013;63:405–412.PubMed
129.
Zurück zum Zitat Bugge TH, Kombrinck KW, Flick MJ, et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996;87:709–719.PubMed Bugge TH, Kombrinck KW, Flick MJ, et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996;87:709–719.PubMed
130.
Zurück zum Zitat Qian Z, Gilbert ME, Colicos MA, et al. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993;361:453–457.PubMed Qian Z, Gilbert ME, Colicos MA, et al. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993;361:453–457.PubMed
131.
Zurück zum Zitat Tsirka SE, Gualandris A, Amaral DG, et al. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue-plasminogen activator. Nature 1995;377:340–344.PubMed Tsirka SE, Gualandris A, Amaral DG, et al. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue-plasminogen activator. Nature 1995;377:340–344.PubMed
132.
Zurück zum Zitat Tsirka SE, Bugge TH, Degen JL, et al. Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc Natl Acad Sci USA 1997;94:9779–9781.PubMedCentralPubMed Tsirka SE, Bugge TH, Degen JL, et al. Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc Natl Acad Sci USA 1997;94:9779–9781.PubMedCentralPubMed
133.
Zurück zum Zitat Wu YP, Siao CJ, Lu W, et al. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol 2000;148:1295–1304.PubMedCentralPubMed Wu YP, Siao CJ, Lu W, et al. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol 2000;148:1295–1304.PubMedCentralPubMed
134.
Zurück zum Zitat Takao M, Benson MD, Murrell JR, et al. Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J Neuropathol Exp Neurol 2000;59:1070–1086.PubMed Takao M, Benson MD, Murrell JR, et al. Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J Neuropathol Exp Neurol 2000;59:1070–1086.PubMed
135.
Zurück zum Zitat Yepes M, Sandkvist M, Coleman TA, et al. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest 2002;109:1571–1578.PubMedCentralPubMed Yepes M, Sandkvist M, Coleman TA, et al. Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. J Clin Invest 2002;109:1571–1578.PubMedCentralPubMed
136.
Zurück zum Zitat Chateauvieux S, Grigorakaki C, Morceau F, et al. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011;82:1291–1303.PubMed Chateauvieux S, Grigorakaki C, Morceau F, et al. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011;82:1291–1303.PubMed
137.
Zurück zum Zitat Mikati MA, El Hokayem JA, El Sabban ME. Effects of a single dose of erythropoietin on subsequent seizure susceptibility in rats exposed to acute hypoxia at P10. Epilepsia 2007;48:175–181.PubMed Mikati MA, El Hokayem JA, El Sabban ME. Effects of a single dose of erythropoietin on subsequent seizure susceptibility in rats exposed to acute hypoxia at P10. Epilepsia 2007;48:175–181.PubMed
138.
Zurück zum Zitat Bahçekapılı N, Akgün-Dar K, Albeniz I, et al. Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole induced generalized seizures. Int J Neurosci 2014 (in press). Bahçekapılı N, Akgün-Dar K, Albeniz I, et al. Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole induced generalized seizures. Int J Neurosci 2014 (in press).
139.
Zurück zum Zitat Nadam J, Navarro F, Sanchez P, et al. Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol Dis 2007;25:412–426.PubMed Nadam J, Navarro F, Sanchez P, et al. Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol Dis 2007;25:412–426.PubMed
140.
Zurück zum Zitat Chu K, Jung KH, Lee ST, et al. Erythropoietin reduces epileptogenic processes following status epilepticus. Epilepsia 2008;49:1723–1732.PubMed Chu K, Jung KH, Lee ST, et al. Erythropoietin reduces epileptogenic processes following status epilepticus. Epilepsia 2008;49:1723–1732.PubMed
141.
Zurück zum Zitat Sözmen SÇ, Kurul SH, Yiş U, et al. Neuroprotective effects of recombinant human erythropoietin in the developing brain of rat after lithium-pilocarpine induced status epilepticus. Brain Dev 2012;34:189–195.PubMed Sözmen SÇ, Kurul SH, Yiş U, et al. Neuroprotective effects of recombinant human erythropoietin in the developing brain of rat after lithium-pilocarpine induced status epilepticus. Brain Dev 2012;34:189–195.PubMed
142.
Zurück zum Zitat Eid T, Brines ML, Cerami A, et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol 2004;63:73–83.PubMed Eid T, Brines ML, Cerami A, et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol 2004;63:73–83.PubMed
143.
144.
Zurück zum Zitat Rigau V, Morin M, Rousset MC, et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 2007;130:1942–1956.PubMed Rigau V, Morin M, Rousset MC, et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 2007;130:1942–1956.PubMed
145.
Zurück zum Zitat Vezzani A. VEGF and seizures: cross-talk between endothelial and neuronal environments. Epilepsy Curr 2005;5:72–74.PubMedCentralPubMed Vezzani A. VEGF and seizures: cross-talk between endothelial and neuronal environments. Epilepsy Curr 2005;5:72–74.PubMedCentralPubMed
146.
Zurück zum Zitat McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005;25:8889–8897.PubMedCentralPubMed McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005;25:8889–8897.PubMedCentralPubMed
147.
Zurück zum Zitat Nicoletti JN, Shah SK, McCloskey DP, et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008;151:232–241.PubMedCentralPubMed Nicoletti JN, Shah SK, McCloskey DP, et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008;151:232–241.PubMedCentralPubMed
148.
Zurück zum Zitat Cammalleri M, Martini D, Ristori C, et al. Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2011;33:482–498.PubMed Cammalleri M, Martini D, Ristori C, et al. Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2011;33:482–498.PubMed
149.
Zurück zum Zitat Lampson LA. Monoclonal antibodies in neuro-oncology: Getting past the blood–brain barrier. MAbs 2011;3:153–160.PubMedCentralPubMed Lampson LA. Monoclonal antibodies in neuro-oncology: Getting past the blood–brain barrier. MAbs 2011;3:153–160.PubMedCentralPubMed
150.
Zurück zum Zitat Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004;548:57–68.PubMedCentralPubMed Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004;548:57–68.PubMedCentralPubMed
151.
Zurück zum Zitat Morin-Brureau M, Rigau V, Lerner-Natoli M. Why and how to target angiogenesis in focal epilepsies. Epilepsia 2012;53(Suppl. 6):64–68.PubMed Morin-Brureau M, Rigau V, Lerner-Natoli M. Why and how to target angiogenesis in focal epilepsies. Epilepsia 2012;53(Suppl. 6):64–68.PubMed
152.
Zurück zum Zitat Lee C, Agoston DV. Inhibition of VEGF receptor 2 increased cell death of dentate hilar neurons after traumatic brain injury. Exp Neurol 2009;220:400–403.PubMed Lee C, Agoston DV. Inhibition of VEGF receptor 2 increased cell death of dentate hilar neurons after traumatic brain injury. Exp Neurol 2009;220:400–403.PubMed
153.
Zurück zum Zitat Nikitidou L, Kanter-Schlifke I, Dhondt J, et al. VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 2012;7:e40535.PubMedCentralPubMed Nikitidou L, Kanter-Schlifke I, Dhondt J, et al. VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 2012;7:e40535.PubMedCentralPubMed
154.
Zurück zum Zitat Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001;5:378–387.PubMed Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001;5:378–387.PubMed
155.
Zurück zum Zitat Adamson P, Greenwood J. How do statins control neuroinflammation? Inflamm Res 2003;52:399–403.PubMed Adamson P, Greenwood J. How do statins control neuroinflammation? Inflamm Res 2003;52:399–403.PubMed
156.
Zurück zum Zitat Lee JK, Won JS, Singh AK, et al. Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 2008;440:260–264.PubMedCentralPubMed Lee JK, Won JS, Singh AK, et al. Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 2008;440:260–264.PubMedCentralPubMed
157.
Zurück zum Zitat Xie C, Sun J, Qiao W, et al. Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 2011;6:e24966.PubMedCentralPubMed Xie C, Sun J, Qiao W, et al. Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 2011;6:e24966.PubMedCentralPubMed
158.
Zurück zum Zitat Lee CY, Jaw T, Tseng HC, et al. Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. PLoS One 2012;7:e38789.PubMedCentralPubMed Lee CY, Jaw T, Tseng HC, et al. Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. PLoS One 2012;7:e38789.PubMedCentralPubMed
159.
Zurück zum Zitat van Vliet EA, Holtman L, Aronica E, et al. Atorvastatin treatment during epileptogenesis in a rat model for temporal lobe epilepsy. Epilepsia 2011;52:1319–1330.PubMed van Vliet EA, Holtman L, Aronica E, et al. Atorvastatin treatment during epileptogenesis in a rat model for temporal lobe epilepsy. Epilepsia 2011;52:1319–1330.PubMed
160.
Zurück zum Zitat Osterweil EK, Chuang SC, Chubykin AA, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 2013;77:243–250.PubMedCentralPubMed Osterweil EK, Chuang SC, Chubykin AA, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 2013;77:243–250.PubMedCentralPubMed
161.
Zurück zum Zitat Etminan M, Samii A, Brophy JM. Statin use and risk of epilepsy: a nested case–control study. Neurology 2010;75:1496–1500.PubMed Etminan M, Samii A, Brophy JM. Statin use and risk of epilepsy: a nested case–control study. Neurology 2010;75:1496–1500.PubMed
162.
Zurück zum Zitat McNamara JO, Scharfman HE. Temporal lobe epilepsy and the BDNF receptor, TrkB. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD, 2012, available at: http://www.ncbi.nlm.nih.gov/books/NBK98186. Accessed March 16, 2014. McNamara JO, Scharfman HE. Temporal lobe epilepsy and the BDNF receptor, TrkB. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. National Center for Biotechnology Information, Bethesda, MD, 2012, available at: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK98186. Accessed March 16, 2014.
163.
Zurück zum Zitat Paradiso B, Zucchini S, Su T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 2011;52:572–578.PubMed Paradiso B, Zucchini S, Su T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 2011;52:572–578.PubMed
164.
Zurück zum Zitat Bovolenta R, Zucchini S, Paradiso B, et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation 2010;7:81.PubMedCentralPubMed Bovolenta R, Zucchini S, Paradiso B, et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation 2010;7:81.PubMedCentralPubMed
165.
Zurück zum Zitat Liu G, Gu B, He XP, et al. Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 2013;79:31–38.PubMed Liu G, Gu B, He XP, et al. Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 2013;79:31–38.PubMed
166.
Zurück zum Zitat Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002;94:213–233.PubMed Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002;94:213–233.PubMed
167.
Zurück zum Zitat Pitkänen A, Narkilahti S, Bezvenyuk Z, et al. Atipamezole, an α2-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res 2004;61:119–140. Pitkänen A, Narkilahti S, Bezvenyuk Z, et al. Atipamezole, an α2-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res 2004;61:119–140.
168.
Zurück zum Zitat Halonen T, Kotti T, Tuunanen J, et al. Alpha2-adrenoceptor agonist, dexmedetomidine, protects against kainic acid-induced convulsions and neuronal damage. Brain Res 1995;693:217–224.PubMed Halonen T, Kotti T, Tuunanen J, et al. Alpha2-adrenoceptor agonist, dexmedetomidine, protects against kainic acid-induced convulsions and neuronal damage. Brain Res 1995;693:217–224.PubMed
169.
Zurück zum Zitat Wallace MJ, Blair RE, Falenski KW, et al. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 2003;307:129–137.PubMed Wallace MJ, Blair RE, Falenski KW, et al. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 2003;307:129–137.PubMed
170.
Zurück zum Zitat Chen K, Neu A, Howard AL, et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 2007;27:46–58.PubMed Chen K, Neu A, Howard AL, et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 2007;27:46–58.PubMed
171.
Zurück zum Zitat Echegoyen J, Armstrong C, Morgan RJ, et al. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 2009;85:123–127.PubMedCentralPubMed Echegoyen J, Armstrong C, Morgan RJ, et al. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 2009;85:123–127.PubMedCentralPubMed
172.
Zurück zum Zitat Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M, et al. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 2013;54:9–12. Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M, et al. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 2013;54:9–12.
173.
Zurück zum Zitat Löscher W, Puskarjov M, Kaila K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 2013;69:62–74.PubMed Löscher W, Puskarjov M, Kaila K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 2013;69:62–74.PubMed
174.
Zurück zum Zitat Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol 2008;63:222–235.PubMed Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model. Ann Neurol 2008;63:222–235.PubMed
175.
Zurück zum Zitat Mazarati A, Shin D, Sankar R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia 2009;50:2117–2122.PubMedCentralPubMed Mazarati A, Shin D, Sankar R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia 2009;50:2117–2122.PubMedCentralPubMed
176.
Zurück zum Zitat Brandt C, Nodadze M, Heuchert N, et al. Disease-modifying effects of phenobarbital and NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neuroscience 2010;30:8602–8612. Brandt C, Nodadze M, Heuchert N, et al. Disease-modifying effects of phenobarbital and NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neuroscience 2010;30:8602–8612.
177.
Zurück zum Zitat Töpfer M, Töllner K, Brandt C, et al. Consequences of inhibition of bumetanide metabolism in rodents on brain penetration and effects of bumetanide in chronic models of epilepsy. Eur J Neurosci 2014;39:673–687.PubMed Töpfer M, Töllner K, Brandt C, et al. Consequences of inhibition of bumetanide metabolism in rodents on brain penetration and effects of bumetanide in chronic models of epilepsy. Eur J Neurosci 2014;39:673–687.PubMed
178.
Zurück zum Zitat Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia 2013;54(Suppl. 4):61–69.PubMed Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia 2013;54(Suppl. 4):61–69.PubMed
Metadaten
Titel
The Potential of Antiseizure Drugs and Agents that Act on Novel Molecular Targets as Antiepileptogenic Treatments
verfasst von
Rafal M. Kaminski
Michael A. Rogawski
Henrik Klitgaard
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 2/2014
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-014-0266-1

Weitere Artikel der Ausgabe 2/2014

Neurotherapeutics 2/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.