Skip to main content
Erschienen in: Clinical Pharmacokinetics 7/2013

01.07.2013 | Review Article

Clinical Pharmacokinetics of Antibacterials in Cerebrospinal Fluid

verfasst von: Antonello Di Paolo, Giovanni Gori, Carlo Tascini, Romano Danesi, Mario Del Tacca

Erschienen in: Clinical Pharmacokinetics | Ausgabe 7/2013

Einloggen, um Zugang zu erhalten

Abstract

In the past 20 years, an increased discrepancy between new available antibacterials and the emergence of multidrug-resistant strains has been observed. This condition concerns physicians involved in the treatment of central nervous system (CNS) infections, for which clinical and microbiological success depends on the rapid achievement of bactericidal concentrations. In order to accomplish this aim, the choice of drugs is based on their disposition toward the cerebrospinal fluid (CSF), which is influenced by the physicochemical characteristics of antibacterials. A reduced distribution into CSF has been documented for beta-lactams, especially cephalosporins and carbapenems, on the basis of their hydrophilic nature. However, they represent a cornerstone of the majority of combined therapeutic schemes for their ability to achieve bactericidal concentrations, especially in the presence of inflamed meninges. The good tolerability of beta-lactams makes possible high daily dose intensities, which may be associated with increased probability of cure. Furthermore, the adoption of continuous infusion seems to be a fruitful option. Fluoroquinolones, namely moxifloxacin, and antituberculosis drugs, together with the agents such as linezolid, reach the highest CSF/plasma concentration ratio, which is greater than 0.8, and for most of these drugs it is near 1. For all drugs that are currently used for the treatment of CNS infections, the evaluation of pharmacokinetic/pharmacodynamic parameters, on the basis of dosing regimens and their time-dependent or concentration-dependent pattern of bacterial killing, remains an important aspect of clinical investigation and medical practice.
Literatur
1.
Zurück zum Zitat Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet. 2002;41(2):81–92.PubMed Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet. 2002;41(2):81–92.PubMed
2.
Zurück zum Zitat Nag S, Begley DJ. Blood–brain barrier, exchange of metabolites and gases. In: Kalimo H (ed) Cerebrovascular diseases. P.a. genetics. Basel; ISN Neuropath. Press: 2005. p. 22–29. Nag S, Begley DJ. Blood–brain barrier, exchange of metabolites and gases. In: Kalimo H (ed) Cerebrovascular diseases. P.a. genetics. Basel; ISN Neuropath. Press: 2005. p. 22–29.
3.
Zurück zum Zitat Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.PubMed Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.PubMed
4.
Zurück zum Zitat Brown PD, Davies SL, Speake T, et al. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):957–70.PubMed Brown PD, Davies SL, Speake T, et al. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):957–70.PubMed
5.
Zurück zum Zitat Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMed Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMed
6.
Zurück zum Zitat Dolman D, Drndarski S, Abbott NJ, et al. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem. 2005;93(4):825–33.PubMed Dolman D, Drndarski S, Abbott NJ, et al. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem. 2005;93(4):825–33.PubMed
7.
Zurück zum Zitat Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.PubMed Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.PubMed
8.
Zurück zum Zitat Redzic Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011;8(1):3.PubMed Redzic Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011;8(1):3.PubMed
9.
Zurück zum Zitat Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMed Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMed
10.
Zurück zum Zitat de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood–brain barrier. Clin Pharmacokinet. 2007;46(7):553–76.PubMed de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood–brain barrier. Clin Pharmacokinet. 2007;46(7):553–76.PubMed
11.
Zurück zum Zitat Ehrlich P. Über das Sauerstoffbedu¨rfnis des Organismus. Eine farbenanalytische Studie,1885, Berlin. Ehrlich P. Über das Sauerstoffbedu¨rfnis des Organismus. Eine farbenanalytische Studie,1885, Berlin.
12.
Zurück zum Zitat Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.PubMed Nau R, Sorgel F, Eiffert H. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.PubMed
13.
Zurück zum Zitat Goldmann EE, Vitalfärbung am Zentralnervensystem, ed. A.P.i. Akad1913: Wiss. Phys. Math. Kl. Goldmann EE, Vitalfärbung am Zentralnervensystem, ed. A.P.i. Akad1913: Wiss. Phys. Math. Kl.
14.
Zurück zum Zitat McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59(3):369–83.PubMed McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59(3):369–83.PubMed
15.
Zurück zum Zitat Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, et al. Blood–brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett. 1995;82–83:645–53.PubMed Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, et al. Blood–brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett. 1995;82–83:645–53.PubMed
16.
Zurück zum Zitat Loscher W, Potschka H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.PubMed Loscher W, Potschka H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.PubMed
17.
Zurück zum Zitat Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60(2):196–209.PubMed Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60(2):196–209.PubMed
18.
Zurück zum Zitat Quagliarello VJ, Wispelwey B, Long WJ Jr, et al. Recombinant human interleukin-1 induces meningitis and blood–brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J Clin Invest. 1991;87(4):1360–6.PubMed Quagliarello VJ, Wispelwey B, Long WJ Jr, et al. Recombinant human interleukin-1 induces meningitis and blood–brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J Clin Invest. 1991;87(4):1360–6.PubMed
19.
Zurück zum Zitat Scheld WM, Dacey RG, Winn HR, et al. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest. 1980;66(2):243–53.PubMed Scheld WM, Dacey RG, Winn HR, et al. Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest. 1980;66(2):243–53.PubMed
20.
Zurück zum Zitat Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol Pharmacol. 2007;71(3):667–75.PubMed Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol Pharmacol. 2007;71(3):667–75.PubMed
21.
Zurück zum Zitat Roberts DJ, Goralski KB. A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol. 2008;4(10):1245–64.PubMed Roberts DJ, Goralski KB. A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol. 2008;4(10):1245–64.PubMed
22.
Zurück zum Zitat Dumas N, Seguela JP, Giroud JP. Acute nonspecific inflammatory reaction and modification of resistance to Toxoplasma gondii. Bull Soc Pathol Exot Filiales. 1984;77(2):190–5.PubMed Dumas N, Seguela JP, Giroud JP. Acute nonspecific inflammatory reaction and modification of resistance to Toxoplasma gondii. Bull Soc Pathol Exot Filiales. 1984;77(2):190–5.PubMed
23.
Zurück zum Zitat Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 37(3):840–51 (quiz 859). Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 37(3):840–51 (quiz 859).
24.
Zurück zum Zitat Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12.PubMed Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12.PubMed
25.
Zurück zum Zitat Hayashi Y, Lipman J, Udy AA, et al. Beta-lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents. 2013;41(2):162–6.PubMed Hayashi Y, Lipman J, Udy AA, et al. Beta-lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents. 2013;41(2):162–6.PubMed
26.
Zurück zum Zitat van de Beek D, de Gans J, Spanjaard L, et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849–59.PubMed van de Beek D, de Gans J, Spanjaard L, et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849–59.PubMed
27.
Zurück zum Zitat Brouwer MC, van de Beek D. Bacterial meningitis. Ned Tijdschr Tandheelkd. 2012;119(5):238–42.PubMed Brouwer MC, van de Beek D. Bacterial meningitis. Ned Tijdschr Tandheelkd. 2012;119(5):238–42.PubMed
28.
Zurück zum Zitat Eckburg PB, Montoya JG, Vosti KL. Brain abscess due to Listeria monocytogenes: five cases and a review of the literature. Medicine (Baltimore). 2001;80(4):223–35. Eckburg PB, Montoya JG, Vosti KL. Brain abscess due to Listeria monocytogenes: five cases and a review of the literature. Medicine (Baltimore). 2001;80(4):223–35.
29.
Zurück zum Zitat Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents. 2010;36(Suppl 2):S50–4.PubMed Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents. 2010;36(Suppl 2):S50–4.PubMed
30.
Zurück zum Zitat Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10(1):43–50.PubMed Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10(1):43–50.PubMed
31.
Zurück zum Zitat Chaudhuri A, Martinez-Martin P, Kennedy PG, et al. EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults. Eur J Neurol. 2008;15(7):649–59.PubMed Chaudhuri A, Martinez-Martin P, Kennedy PG, et al. EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults. Eur J Neurol. 2008;15(7):649–59.PubMed
32.
Zurück zum Zitat de Gans J, van de Beek D. European Dexamethasone in Adulthood Bacterial Meningitis Study Investigators. Dexamethasone in adults with bacterial meningitis. NEJM. 2002;347(20):8. de Gans J, van de Beek D. European Dexamethasone in Adulthood Bacterial Meningitis Study Investigators. Dexamethasone in adults with bacterial meningitis. NEJM. 2002;347(20):8.
33.
Zurück zum Zitat Brouwer MC, McIntyre P, de Gans J, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2010;9:CD004405. Brouwer MC, McIntyre P, de Gans J, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2010;9:CD004405.
34.
Zurück zum Zitat Ricard JD, Wolff M, Lacherade JC, et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenter observational study. Clin Infect Dis. 2007;44(2):250–5.PubMed Ricard JD, Wolff M, Lacherade JC, et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenter observational study. Clin Infect Dis. 2007;44(2):250–5.PubMed
35.
Zurück zum Zitat Gaillard JL, Abadie V, Cheron G, et al. Concentrations of ceftriaxone in cerebrospinal fluid of children with meningitis receiving dexamethasone therapy. Antimicrob Agents Chemother. 1994;38(5):1209–10.PubMed Gaillard JL, Abadie V, Cheron G, et al. Concentrations of ceftriaxone in cerebrospinal fluid of children with meningitis receiving dexamethasone therapy. Antimicrob Agents Chemother. 1994;38(5):1209–10.PubMed
36.
Zurück zum Zitat Buke AC, Karasulu E, Karakartal G. Does dexamethasone affect ceftriaxone (corrected) penetration into cerebrospinal fluid in adult bacterial meningitis. Int J Antimicrob Agents. 2003;21(5):5. Buke AC, Karasulu E, Karakartal G. Does dexamethasone affect ceftriaxone (corrected) penetration into cerebrospinal fluid in adult bacterial meningitis. Int J Antimicrob Agents. 2003;21(5):5.
37.
Zurück zum Zitat Fernandez A, Cabellos C, Tubau F, et al. Experimental study of teicoplanin, alone and in combination, in the therapy of cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemother. 2005;55(1):78–83.PubMed Fernandez A, Cabellos C, Tubau F, et al. Experimental study of teicoplanin, alone and in combination, in the therapy of cephalosporin-resistant pneumococcal meningitis. J Antimicrob Chemother. 2005;55(1):78–83.PubMed
38.
Zurück zum Zitat Li J, Wang LN. Zheng HY. J Eur Acad Dermatol Venereol: Jarisch-Herxheimer reaction among syphilis patients in China; 2012. Li J, Wang LN. Zheng HY. J Eur Acad Dermatol Venereol: Jarisch-Herxheimer reaction among syphilis patients in China; 2012.
39.
Zurück zum Zitat Yang CJ, Lin YH, Lee HC, Ko WC, Liao CH, Wu CH, Hsieh CY, Wu PY, Liu WC, Chang YC, Hung CC. Jarisch-Herxheimer reaction after penicillin therapy among patients with syphilis in the era of the HIV infection epidemic: incidence and risk factors. Clin Infect Dis. 2010;51(8):9. Yang CJ, Lin YH, Lee HC, Ko WC, Liao CH, Wu CH, Hsieh CY, Wu PY, Liu WC, Chang YC, Hung CC. Jarisch-Herxheimer reaction after penicillin therapy among patients with syphilis in the era of the HIV infection epidemic: incidence and risk factors. Clin Infect Dis. 2010;51(8):9.
40.
Zurück zum Zitat Fekade D, Knox K, Hussein K, et al. Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med. 1996;335(5):311–5.PubMed Fekade D, Knox K, Hussein K, et al. Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med. 1996;335(5):311–5.PubMed
41.
Zurück zum Zitat Gudjonsson HSkog E. The effect of prednisolone on the Jarisch-Herxheimer reaction. Acta Derm Venereol. 1968;48(1):15–8. Gudjonsson HSkog E. The effect of prednisolone on the Jarisch-Herxheimer reaction. Acta Derm Venereol. 1968;48(1):15–8.
42.
Zurück zum Zitat Butler T, Jones PK, Wallace CK. Borrelia recurrent is infection: single-dose antibiotic regimens and management of the Jarisch-Herxheimer reaction. J Infect Dis. 1978;137(5):5. Butler T, Jones PK, Wallace CK. Borrelia recurrent is infection: single-dose antibiotic regimens and management of the Jarisch-Herxheimer reaction. J Infect Dis. 1978;137(5):5.
43.
Zurück zum Zitat Arlotti M, Grossi P, Pea F, et al. Consensus document on controversial issues for the treatment of infections of the central nervous system: bacterial brain abscesses. Int J Infect Dis. 2010;14(Suppl 4):S79–92.PubMed Arlotti M, Grossi P, Pea F, et al. Consensus document on controversial issues for the treatment of infections of the central nervous system: bacterial brain abscesses. Int J Infect Dis. 2010;14(Suppl 4):S79–92.PubMed
44.
Zurück zum Zitat Sjolin J, Eriksson N, Arneborn P, et al. Penetration of cefotaxime and desacetylcefotaxime into brain abscesses in humans. Antimicrob Agents Chemother. 1991;35(12):2606–10.PubMed Sjolin J, Eriksson N, Arneborn P, et al. Penetration of cefotaxime and desacetylcefotaxime into brain abscesses in humans. Antimicrob Agents Chemother. 1991;35(12):2606–10.PubMed
45.
Zurück zum Zitat Green HT, O’Donoghue MA, Shaw MD, Dowling C. Penetration of ceftazidime into intracranial abscess. J Antimicrob Chemother. 1989;24(3):6. Green HT, O’Donoghue MA, Shaw MD, Dowling C. Penetration of ceftazidime into intracranial abscess. J Antimicrob Chemother. 1989;24(3):6.
46.
Zurück zum Zitat Asensi V, Carton JA, Maradona JA, et al. Therapy of brain abscess with imipenem—a safe therapeutic choice? J Antimicrob Chemother. 1996;37(1):200–3.PubMed Asensi V, Carton JA, Maradona JA, et al. Therapy of brain abscess with imipenem—a safe therapeutic choice? J Antimicrob Chemother. 1996;37(1):200–3.PubMed
47.
Zurück zum Zitat Malacarne P, Viaggi B, Di Paolo A, et al. Linezolid cerebrospinal fluid concentration in central nervous system infection. J Chemother. 2007;19(1):90–3.PubMed Malacarne P, Viaggi B, Di Paolo A, et al. Linezolid cerebrospinal fluid concentration in central nervous system infection. J Chemother. 2007;19(1):90–3.PubMed
48.
Zurück zum Zitat Battal B, Kocaoglu M, Bulakbasi N, et al. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):8. Battal B, Kocaoglu M, Bulakbasi N, et al. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):8.
49.
Zurück zum Zitat Sommer JB, Gaul C, Heckmann J, et al. Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. Eur Neurol. 2002;47(4):224–32.PubMed Sommer JB, Gaul C, Heckmann J, et al. Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. Eur Neurol. 2002;47(4):224–32.PubMed
50.
Zurück zum Zitat Nau R, Sorgel F, Prange HW. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin Pharmacokinet. 1998;35(3):223–46.PubMed Nau R, Sorgel F, Prange HW. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin Pharmacokinet. 1998;35(3):223–46.PubMed
51.
Zurück zum Zitat Bakken JS, Bruun JN, Gaustad P, et al. Penetration of amoxicillin and potassium clavulanate into the cerebrospinal fluid of patients with inflamed meninges. Antimicrob Agents Chemother. 1986;30(3):481–4.PubMed Bakken JS, Bruun JN, Gaustad P, et al. Penetration of amoxicillin and potassium clavulanate into the cerebrospinal fluid of patients with inflamed meninges. Antimicrob Agents Chemother. 1986;30(3):481–4.PubMed
52.
Zurück zum Zitat Viaggi B, Di Paolo A, Danesi R, et al. Linezolid in the central nervous system: comparison between cerebrospinal fluid and plasma pharmacokinetics. Scand J Infect Dis. 2011;43(9):721–7.PubMed Viaggi B, Di Paolo A, Danesi R, et al. Linezolid in the central nervous system: comparison between cerebrospinal fluid and plasma pharmacokinetics. Scand J Infect Dis. 2011;43(9):721–7.PubMed
53.
Zurück zum Zitat Nau R, Lassek C, Kinzig-Schippers M, et al. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother. 1998;42(8):2012–6.PubMed Nau R, Lassek C, Kinzig-Schippers M, et al. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother. 1998;42(8):2012–6.PubMed
54.
Zurück zum Zitat Tsumura R, Ikawa K, Morikawa N, et al. The pharmacokinetics and pharmacodynamics of meropenem in the cerebrospinal fluid of neurosurgical patients. J Chemother. 2008;20(5):615–21.PubMed Tsumura R, Ikawa K, Morikawa N, et al. The pharmacokinetics and pharmacodynamics of meropenem in the cerebrospinal fluid of neurosurgical patients. J Chemother. 2008;20(5):615–21.PubMed
55.
Zurück zum Zitat Imberti R, Cusato M, Accetta G, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother. 2012;56(8):4416–21.PubMed Imberti R, Cusato M, Accetta G, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother. 2012;56(8):4416–21.PubMed
56.
Zurück zum Zitat Cook AM, Mieure KD, Owen RD, et al. Intracerebroventricular administration of drugs. Pharmacotherapy. 2009;29(7):832–45.PubMed Cook AM, Mieure KD, Owen RD, et al. Intracerebroventricular administration of drugs. Pharmacotherapy. 2009;29(7):832–45.PubMed
57.
Zurück zum Zitat Adembri C, Fallani S, Cassetta MI, et al. Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents. 2008;31(2):122–9.PubMed Adembri C, Fallani S, Cassetta MI, et al. Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents. 2008;31(2):122–9.PubMed
58.
Zurück zum Zitat Thea D, Barza M. Use of antibacterial agents in infections of the central nervous system. Infect Dis Clin North Am. 1989;3(3):8. Thea D, Barza M. Use of antibacterial agents in infections of the central nervous system. Infect Dis Clin North Am. 1989;3(3):8.
59.
Zurück zum Zitat Sinner SW, Tunkel AR. Antimicrobial agents in the treatment of bacterial meningitis. Infect Dis Clin North Am. 2004;18(3):12. Sinner SW, Tunkel AR. Antimicrobial agents in the treatment of bacterial meningitis. Infect Dis Clin North Am. 2004;18(3):12.
60.
Zurück zum Zitat Levison ME. Pharmacodynamic of antimicrobial drugs. Infect Dis Clin North Am. 2004;18(3):15. Levison ME. Pharmacodynamic of antimicrobial drugs. Infect Dis Clin North Am. 2004;18(3):15.
61.
Zurück zum Zitat Volpe JJ. Specialized studies in the neurological evaluation. In: Neurology of the newborn. Philadelphia; W. B. Saunders Company: 2001. p. 134–177. Volpe JJ. Specialized studies in the neurological evaluation. In: Neurology of the newborn. Philadelphia; W. B. Saunders Company: 2001. p. 134–177.
62.
Zurück zum Zitat Blennow K, Fredman P, Wallin A, et al. Protein analysis in cerebrospinal fluid. II. Reference values derived from healthy individuals 18–88 years of age. Eur Neurol. 1993;33(2):129–33.PubMed Blennow K, Fredman P, Wallin A, et al. Protein analysis in cerebrospinal fluid. II. Reference values derived from healthy individuals 18–88 years of age. Eur Neurol. 1993;33(2):129–33.PubMed
63.
Zurück zum Zitat May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990;40(3 Pt 1):4. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990;40(3 Pt 1):4.
64.
Zurück zum Zitat Allegaert K, Scheers I, Adams E, et al. Cerebrospinal fluid compartmental pharmacokinetics of amikacin in neonates. Antimicrob Agents Chemother. 2008;52(6):1934–9.PubMed Allegaert K, Scheers I, Adams E, et al. Cerebrospinal fluid compartmental pharmacokinetics of amikacin in neonates. Antimicrob Agents Chemother. 2008;52(6):1934–9.PubMed
65.
Zurück zum Zitat Kohlhepp SJ, Gilbert DN, Leggett JE. Influence of assay methodology on the measurement of free serum ceftriaxone concentrations. Antimicrob Agents Chemother. 1998;42(9):2259–61.PubMed Kohlhepp SJ, Gilbert DN, Leggett JE. Influence of assay methodology on the measurement of free serum ceftriaxone concentrations. Antimicrob Agents Chemother. 1998;42(9):2259–61.PubMed
66.
Zurück zum Zitat Lodise TP, Nau R, Kinzig M, et al. Pharmacodynamics of ceftazidime and meropenem in cerebrospinal fluid: results of population pharmacokinetic modelling and Monte Carlo simulation. J Antimicrob Chemother. 2007;60(5):1038–44.PubMed Lodise TP, Nau R, Kinzig M, et al. Pharmacodynamics of ceftazidime and meropenem in cerebrospinal fluid: results of population pharmacokinetic modelling and Monte Carlo simulation. J Antimicrob Chemother. 2007;60(5):1038–44.PubMed
67.
Zurück zum Zitat Decazes JM, Ernst JD, Sande MA. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1983;24(4):463–7.PubMed Decazes JM, Ernst JD, Sande MA. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1983;24(4):463–7.PubMed
68.
Zurück zum Zitat Tauber MG, Kunz S, Zak O, et al. Influence of antibiotic dose, dosing interval, and duration of therapy on outcome in experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1989;33(4):418–23.PubMed Tauber MG, Kunz S, Zak O, et al. Influence of antibiotic dose, dosing interval, and duration of therapy on outcome in experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1989;33(4):418–23.PubMed
69.
Zurück zum Zitat Lutsar I, Ahmed A, Friedland IR, et al. Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1997;41(11):2414–7.PubMed Lutsar I, Ahmed A, Friedland IR, et al. Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1997;41(11):2414–7.PubMed
70.
Zurück zum Zitat Rodriguez-Cerrato V, McCoig CC, Michelow IC, et al. Pharmacodynamics and bactericidal activity of moxifloxacin in experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 2001;45(11):3092–7.PubMed Rodriguez-Cerrato V, McCoig CC, Michelow IC, et al. Pharmacodynamics and bactericidal activity of moxifloxacin in experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 2001;45(11):3092–7.PubMed
71.
Zurück zum Zitat Lutsar I, Friedland IR, Wubbel L, et al. Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1998;42(10):2650–5.PubMed Lutsar I, Friedland IR, Wubbel L, et al. Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1998;42(10):2650–5.PubMed
72.
Zurück zum Zitat Nadler HL, Pitkin DH, Sheikh W. The postantibiotic effect of meropenem and imipenem on selected bacteria. J Antimicrob Chemother. 1989;24(Suppl A):225–31. Nadler HL, Pitkin DH, Sheikh W. The postantibiotic effect of meropenem and imipenem on selected bacteria. J Antimicrob Chemother. 1989;24(Suppl A):225–31.
73.
Zurück zum Zitat Zhanel GG, Noreddin AM. Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol. 2001;1(5):5. Zhanel GG, Noreddin AM. Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol. 2001;1(5):5.
74.
Zurück zum Zitat Zhanel GG, Karlowsky JA, Davidson RJ, et al. Effect of pooled human cerebrospinal fluid on the postantibiotic effects of cefotaxime, ciprofloxacin, and gentamicin against Escherichia coli. Antimicrob Agents Chemother. 1992;36(5):1136–9.PubMed Zhanel GG, Karlowsky JA, Davidson RJ, et al. Effect of pooled human cerebrospinal fluid on the postantibiotic effects of cefotaxime, ciprofloxacin, and gentamicin against Escherichia coli. Antimicrob Agents Chemother. 1992;36(5):1136–9.PubMed
75.
Zurück zum Zitat Tessier PR, Nightingale CH, Nicolau DP. Postantibiotic effect of trovafloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis in cerebrospinal fluid and broth culture media. Diagn Microbiol Infect Dis. 2000;36(4):241–7.PubMed Tessier PR, Nightingale CH, Nicolau DP. Postantibiotic effect of trovafloxacin against Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis in cerebrospinal fluid and broth culture media. Diagn Microbiol Infect Dis. 2000;36(4):241–7.PubMed
76.
Zurück zum Zitat Sande MA, Korzeniowski OM, Allegro GM, Brennan RO, Zak O, Scheld WM. Intermittent or continuous therapy of experimental meningitis due to Streptococcus pneumoniae in rabbits: preliminary observations on the postantibiotic effect in vivo. Rev Infect Dis. 1981;3(1):12. Sande MA, Korzeniowski OM, Allegro GM, Brennan RO, Zak O, Scheld WM. Intermittent or continuous therapy of experimental meningitis due to Streptococcus pneumoniae in rabbits: preliminary observations on the postantibiotic effect in vivo. Rev Infect Dis. 1981;3(1):12.
77.
Zurück zum Zitat Tauber MG, Zak O, Scheld WM, et al. The postantibiotic effect in the treatment of experimental meningitis caused by Streptococcus pneumoniae in rabbits. J Infect Dis. 1984;149(4):575–83.PubMed Tauber MG, Zak O, Scheld WM, et al. The postantibiotic effect in the treatment of experimental meningitis caused by Streptococcus pneumoniae in rabbits. J Infect Dis. 1984;149(4):575–83.PubMed
78.
Zurück zum Zitat Meng X, Pei Y, Nightingale CH, et al. Determination of the in vivo post-antibiotic effects of ciprofloxacin and rifampicin. J Antimicrob Chemother. 1995;36(6):987–96.PubMed Meng X, Pei Y, Nightingale CH, et al. Determination of the in vivo post-antibiotic effects of ciprofloxacin and rifampicin. J Antimicrob Chemother. 1995;36(6):987–96.PubMed
79.
Zurück zum Zitat Wilson HD, Haltalin KC. Ampicillin in Haemophilus influenzae meningitis. Clinicopharmacologic evaluation of intramuscular vs intravenous administration. Am J Dis Child. 1975;129(2):208–15.PubMed Wilson HD, Haltalin KC. Ampicillin in Haemophilus influenzae meningitis. Clinicopharmacologic evaluation of intramuscular vs intravenous administration. Am J Dis Child. 1975;129(2):208–15.PubMed
80.
Zurück zum Zitat Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993;37(7):1518–24.PubMed Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother. 1993;37(7):1518–24.PubMed
81.
Zurück zum Zitat Sauermann R, Schwameis R, Fille M, et al. Cerebrospinal fluid impairs antimicrobial activity of fosfomycin in vitro. J Antimicrob Chemother. 2009;64(4):821–3.PubMed Sauermann R, Schwameis R, Fille M, et al. Cerebrospinal fluid impairs antimicrobial activity of fosfomycin in vitro. J Antimicrob Chemother. 2009;64(4):821–3.PubMed
82.
Zurück zum Zitat Zwijnenburg PJ, van der Poll T, Roord JJ, et al. Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun. 2006;74(3):1445–51.PubMed Zwijnenburg PJ, van der Poll T, Roord JJ, et al. Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun. 2006;74(3):1445–51.PubMed
83.
Zurück zum Zitat Tanaka M, Hoshino K, Hohmura M, et al. Effect of growth conditions on antimicrobial activity of DU-6859a and its bactericidal activity determined by the killing curve method. J Antimicrob Chemother. 1996;37(6):1091–102.PubMed Tanaka M, Hoshino K, Hohmura M, et al. Effect of growth conditions on antimicrobial activity of DU-6859a and its bactericidal activity determined by the killing curve method. J Antimicrob Chemother. 1996;37(6):1091–102.PubMed
84.
Zurück zum Zitat Schmidt T, Froula JTauber MG. Clarithromycin lacks bactericidal activity in cerebrospinal fluid in experimental pneumococcal meningitis. J Antimicrob Chemother. 1993;32(4):627–32.PubMed Schmidt T, Froula JTauber MG. Clarithromycin lacks bactericidal activity in cerebrospinal fluid in experimental pneumococcal meningitis. J Antimicrob Chemother. 1993;32(4):627–32.PubMed
85.
Zurück zum Zitat Kuroda M, Kusuhara H, Endou H, et al. Rapid elimination of cefaclor from the cerebrospinal fluid is mediated by a benzylpenicillin-sensitive mechanism distinct from organic anion transporter 3. J Pharmacol Exp Ther. 2005;314(2):855–61.PubMed Kuroda M, Kusuhara H, Endou H, et al. Rapid elimination of cefaclor from the cerebrospinal fluid is mediated by a benzylpenicillin-sensitive mechanism distinct from organic anion transporter 3. J Pharmacol Exp Ther. 2005;314(2):855–61.PubMed
86.
Zurück zum Zitat Tomaselli F, Maier A, Matzi V, et al. Penetration of meropenem into pneumonic human lung tissue as measured by in vivo microdialysis. Antimicrob Agents Chemother. 2004;48(6):2228–32.PubMed Tomaselli F, Maier A, Matzi V, et al. Penetration of meropenem into pneumonic human lung tissue as measured by in vivo microdialysis. Antimicrob Agents Chemother. 2004;48(6):2228–32.PubMed
87.
Zurück zum Zitat Nicasio AM, Ariano RE, Zelenitsky SA, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476–81.PubMed Nicasio AM, Ariano RE, Zelenitsky SA, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476–81.PubMed
88.
Zurück zum Zitat Ratilal BO, Costa J, Sampaio C, Pappamikail L. Antibiotic prophylaxis for preventing meningitis in patients with basilar skull fractures. Cochrane Database Syst Rev 2011;8:CD004884. Ratilal BO, Costa J, Sampaio C, Pappamikail L. Antibiotic prophylaxis for preventing meningitis in patients with basilar skull fractures. Cochrane Database Syst Rev 2011;8:CD004884.
89.
Zurück zum Zitat Burgess DS, Frei CR, Lewis Ii JS, et al. The contribution of pharmacokinetic-pharmacodynamic modelling with Monte Carlo simulation to the development of susceptibility breakpoints for Neisseria meningitidis. Clin Microbiol Infect. 2007;13(1):33–9.PubMed Burgess DS, Frei CR, Lewis Ii JS, et al. The contribution of pharmacokinetic-pharmacodynamic modelling with Monte Carlo simulation to the development of susceptibility breakpoints for Neisseria meningitidis. Clin Microbiol Infect. 2007;13(1):33–9.PubMed
91.
Zurück zum Zitat Cacho C, Brito B, Palacios J, et al. Speciation of nickel by HPLC–UV/MS in pea nodules. Talanta. 2010;83(1):78–83.PubMed Cacho C, Brito B, Palacios J, et al. Speciation of nickel by HPLC–UV/MS in pea nodules. Talanta. 2010;83(1):78–83.PubMed
92.
Zurück zum Zitat Lodise TP Jr, Rhoney DH, Tam VH, et al. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–30.PubMed Lodise TP Jr, Rhoney DH, Tam VH, et al. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–30.PubMed
93.
Zurück zum Zitat Lutsar I, Friedland IR. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet. 2000;39(5):335–43.PubMed Lutsar I, Friedland IR. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet. 2000;39(5):335–43.PubMed
94.
Zurück zum Zitat Rhoney DH, Tam VH, Parker D Jr, et al. Disposition of cefepime in the central nervous system of patients with external ventricular drains. Pharmacotherapy. 2003;23(3):310–4.PubMed Rhoney DH, Tam VH, Parker D Jr, et al. Disposition of cefepime in the central nervous system of patients with external ventricular drains. Pharmacotherapy. 2003;23(3):310–4.PubMed
95.
Zurück zum Zitat Lodise TP Jr, Nau R, Kinzig M, et al. Comparison of the probability of target attainment between ceftriaxone and cefepime in the cerebrospinal fluid and serum against Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 2007;58(4):445–52.PubMed Lodise TP Jr, Nau R, Kinzig M, et al. Comparison of the probability of target attainment between ceftriaxone and cefepime in the cerebrospinal fluid and serum against Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 2007;58(4):445–52.PubMed
96.
Zurück zum Zitat Jiménez Palacios FJ, Callejon Mochon M, Jiménez Sànchez JC. Validation of an HPLC method for determination of cefepime (a fourth-generation cephalosporin). Determination in human serum, cerebrospinal fluid, and urine. Pharmacokinetic profiles. Chromatographica. 2005;62(7/8):7. Jiménez Palacios FJ, Callejon Mochon M, Jiménez Sànchez JC. Validation of an HPLC method for determination of cefepime (a fourth-generation cephalosporin). Determination in human serum, cerebrospinal fluid, and urine. Pharmacokinetic profiles. Chromatographica. 2005;62(7/8):7.
97.
Zurück zum Zitat Latif R, Dajani AS. Ceftriaxone diffusion into cerebrospinal fluid of children with meningitis. Antimicrob Agents Chemother. 1983;23(1):46–8.PubMed Latif R, Dajani AS. Ceftriaxone diffusion into cerebrospinal fluid of children with meningitis. Antimicrob Agents Chemother. 1983;23(1):46–8.PubMed
98.
Zurück zum Zitat Norrby SR. Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chemother. 2000;45(1):5–7.PubMed Norrby SR. Neurotoxicity of carbapenem antibiotics: consequences for their use in bacterial meningitis. J Antimicrob Chemother. 2000;45(1):5–7.PubMed
99.
Zurück zum Zitat Zhanel GG, Simor AE, Vercaigne L, et al. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9(4):215–28.PubMed Zhanel GG, Simor AE, Vercaigne L, et al. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9(4):215–28.PubMed
100.
Zurück zum Zitat Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–52.PubMed Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–52.PubMed
101.
Zurück zum Zitat Li C, Kuti JL, Nightingale CH, et al. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol. 2006;46(10):1171–8.PubMed Li C, Kuti JL, Nightingale CH, et al. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol. 2006;46(10):1171–8.PubMed
102.
Zurück zum Zitat Gaillard JL, Silly C, Le Masne A, et al. Cerebrospinal fluid penetration of amikacin in children with community-acquired bacterial meningitis. Antimicrob Agents Chemother. 1995;39(1):253–5.PubMed Gaillard JL, Silly C, Le Masne A, et al. Cerebrospinal fluid penetration of amikacin in children with community-acquired bacterial meningitis. Antimicrob Agents Chemother. 1995;39(1):253–5.PubMed
103.
Zurück zum Zitat Eisenhut M, Meehan TBatchelor L. Cerebrospinal fluid glucose levels and sensorineural hearing loss in bacterial meningitis. Infection. 2003;31(4):247–50.PubMed Eisenhut M, Meehan TBatchelor L. Cerebrospinal fluid glucose levels and sensorineural hearing loss in bacterial meningitis. Infection. 2003;31(4):247–50.PubMed
104.
Zurück zum Zitat Alffenaar JW, van Altena R, Bokkerink HJ, et al. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin Infect Dis. 2009;49(7):1080–2.PubMed Alffenaar JW, van Altena R, Bokkerink HJ, et al. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin Infect Dis. 2009;49(7):1080–2.PubMed
105.
Zurück zum Zitat Kanellakopoulou K, Pagoulatou A, Stroumpoulis K, et al. Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid of humans: implication for a bactericidal effect. J Antimicrob Chemother. 2008;61(6):1328–31.PubMed Kanellakopoulou K, Pagoulatou A, Stroumpoulis K, et al. Pharmacokinetics of moxifloxacin in non-inflamed cerebrospinal fluid of humans: implication for a bactericidal effect. J Antimicrob Chemother. 2008;61(6):1328–31.PubMed
106.
Zurück zum Zitat Nijland HM, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–7.PubMed Nijland HM, Ruslami R, Suroto AJ, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–7.PubMed
107.
Zurück zum Zitat Shandil RK, Jayaram R, Kaur P, et al. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother. 2007;51(2):576–82.PubMed Shandil RK, Jayaram R, Kaur P, et al. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother. 2007;51(2):576–82.PubMed
108.
Zurück zum Zitat Pranger AD, Alffenaar JW, Wessels AM, et al. Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography–tandem mass spectrometry method. J Anal Toxicol. 2010;34(3):135–41.PubMed Pranger AD, Alffenaar JW, Wessels AM, et al. Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography–tandem mass spectrometry method. J Anal Toxicol. 2010;34(3):135–41.PubMed
109.
Zurück zum Zitat Thwaites GE, Bhavnani SM, Chau TT, et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55(7):3244–53.PubMed Thwaites GE, Bhavnani SM, Chau TT, et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55(7):3244–53.PubMed
110.
Zurück zum Zitat Pea F, Pavan F, Nascimben E, et al. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother. 2003;47(10):3104–8.PubMed Pea F, Pavan F, Nascimben E, et al. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother. 2003;47(10):3104–8.PubMed
111.
Zurück zum Zitat Dudhani RV, Turnidge JD, Nation RL, et al. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65(9):1984–90.PubMed Dudhani RV, Turnidge JD, Nation RL, et al. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65(9):1984–90.PubMed
112.
Zurück zum Zitat Antachopoulos C, Karvanen M, Iosifidis E, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010;54(9):3985–7.PubMed Antachopoulos C, Karvanen M, Iosifidis E, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010;54(9):3985–7.PubMed
113.
Zurück zum Zitat Jimenez-Mejias ME, Pichardo-Guerrero C, Marquez-Rivas FJ, et al. Cerebrospinal fluid penetration and pharmacokinetic/pharmacodynamic parameters of intravenously administered colistin in a case of multidrug-resistant Acinetobacter baumannii meningitis. Eur J Clin Microbiol Infect Dis. 2002;21(3):212–4.PubMed Jimenez-Mejias ME, Pichardo-Guerrero C, Marquez-Rivas FJ, et al. Cerebrospinal fluid penetration and pharmacokinetic/pharmacodynamic parameters of intravenously administered colistin in a case of multidrug-resistant Acinetobacter baumannii meningitis. Eur J Clin Microbiol Infect Dis. 2002;21(3):212–4.PubMed
114.
Zurück zum Zitat Markantonis SL, Markou N, Fousteri M, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother. 2009;53(11):4907–10.PubMed Markantonis SL, Markou N, Fousteri M, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother. 2009;53(11):4907–10.PubMed
115.
Zurück zum Zitat Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.PubMed Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.PubMed
116.
Zurück zum Zitat Sbrana F, Malacarne P, Viaggi B, et al. Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin Infect Dis. 2013;56(5):697–700.PubMed Sbrana F, Malacarne P, Viaggi B, et al. Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin Infect Dis. 2013;56(5):697–700.PubMed
117.
Zurück zum Zitat Plachouras D, Karvanen M, Friberg LE, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother. 2009;53(8):3430–6.PubMed Plachouras D, Karvanen M, Friberg LE, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother. 2009;53(8):3430–6.PubMed
118.
Zurück zum Zitat Periti P, Mazzei T, Mini E, et al. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part II). Clin Pharmacokinet. 1989;16(5):261–82.PubMed Periti P, Mazzei T, Mini E, et al. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part II). Clin Pharmacokinet. 1989;16(5):261–82.PubMed
119.
Zurück zum Zitat Periti P, Mazzei T, Mini E, et al. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part I). Clin Pharmacokinet. 1989;16(4):193–214.PubMed Periti P, Mazzei T, Mini E, et al. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part I). Clin Pharmacokinet. 1989;16(4):193–214.PubMed
120.
Zurück zum Zitat Jaruratanasirikul S, Hortiwakul R, Tantisarasart T, et al. Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob Agents Chemother. 1996;40(3):825–6.PubMed Jaruratanasirikul S, Hortiwakul R, Tantisarasart T, et al. Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob Agents Chemother. 1996;40(3):825–6.PubMed
121.
Zurück zum Zitat Williams JD. Spectrum of activity of azithromycin. Eur J Clin Microbiol Infect Dis. 1991;10(10):813–20.PubMed Williams JD. Spectrum of activity of azithromycin. Eur J Clin Microbiol Infect Dis. 1991;10(10):813–20.PubMed
122.
Zurück zum Zitat Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992;44(5):750–99.PubMed Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992;44(5):750–99.PubMed
123.
Zurück zum Zitat Baschiera F, Fornai M, Lazzeri G, et al. Improved tonsillar disposition of azithromycin following a 3-day oral treatment with 20 mg/kg in paediatric patients. Pharmacol Res. 2002;46(1):95–100.PubMed Baschiera F, Fornai M, Lazzeri G, et al. Improved tonsillar disposition of azithromycin following a 3-day oral treatment with 20 mg/kg in paediatric patients. Pharmacol Res. 2002;46(1):95–100.PubMed
124.
Zurück zum Zitat Lucchi M, Damle B, Fang A, et al. Pharmacokinetics of azithromycin in serum, bronchial washings, alveolar macrophages and lung tissue following a single oral dose of extended or immediate release formulations of azithromycin. J Antimicrob Chemother. 2008;61(4):884–91.PubMed Lucchi M, Damle B, Fang A, et al. Pharmacokinetics of azithromycin in serum, bronchial washings, alveolar macrophages and lung tissue following a single oral dose of extended or immediate release formulations of azithromycin. J Antimicrob Chemother. 2008;61(4):884–91.PubMed
125.
Zurück zum Zitat Di Paolo A, Barbara C, Chella A, Angeletti CA, Del Tacca M. Pharmacokinetics of azithromycin in lung tissue, bronchial washing, and plasma in patients given multiple oral doses of 500 and 1000 mg daily. Pharmacol Res. 2002;46(6):6. Di Paolo A, Barbara C, Chella A, Angeletti CA, Del Tacca M. Pharmacokinetics of azithromycin in lung tissue, bronchial washing, and plasma in patients given multiple oral doses of 500 and 1000 mg daily. Pharmacol Res. 2002;46(6):6.
126.
Zurück zum Zitat Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother. 1996;40(7):1676–81.PubMed Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother. 1996;40(7):1676–81.PubMed
127.
Zurück zum Zitat Ingram CW, Tanner DC, Durack DT, et al. Disseminated infection with rapidly growing mycobacteria. Clin Infect Dis. 1993;16(4):463–71.PubMed Ingram CW, Tanner DC, Durack DT, et al. Disseminated infection with rapidly growing mycobacteria. Clin Infect Dis. 1993;16(4):463–71.PubMed
128.
Zurück zum Zitat Maniu CV, Hellinger WC, Chu SY, et al. Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid. Clin Infect Dis. 2001;33(5):745–8.PubMed Maniu CV, Hellinger WC, Chu SY, et al. Failure of treatment for chronic Mycobacterium abscessus meningitis despite adequate clarithromycin levels in cerebrospinal fluid. Clin Infect Dis. 2001;33(5):745–8.PubMed
129.
Zurück zum Zitat Fernandes PB, Bailer R, Swanson R, et al. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986;30(6):865–73.PubMed Fernandes PB, Bailer R, Swanson R, et al. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986;30(6):865–73.PubMed
130.
Zurück zum Zitat Imshenetskaia VF. Erythromycin penetration into the cerebrospinal fluid of patients. Antibiotiki. 1976;21(11):1002–4.PubMed Imshenetskaia VF. Erythromycin penetration into the cerebrospinal fluid of patients. Antibiotiki. 1976;21(11):1002–4.PubMed
131.
Zurück zum Zitat Petersen PJ, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline and comparative agents by time-kill kinetic studies in fresh Mueller-Hinton broth. Diagn Microbiol Infect Dis. 2007;59(3):347–9.PubMed Petersen PJ, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline and comparative agents by time-kill kinetic studies in fresh Mueller-Hinton broth. Diagn Microbiol Infect Dis. 2007;59(3):347–9.PubMed
132.
Zurück zum Zitat Noviello S, Ianniello F, Leone S, et al. In vitro activity of tigecycline: MICs, MBCs, time-kill curves and post-antibiotic effect. J Chemother. 2008;20(5):577–80.PubMed Noviello S, Ianniello F, Leone S, et al. In vitro activity of tigecycline: MICs, MBCs, time-kill curves and post-antibiotic effect. J Chemother. 2008;20(5):577–80.PubMed
133.
Zurück zum Zitat van Ogtrop ML, Andes D, Stamstad TJ, et al. In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2000;44(4):943–9.PubMed van Ogtrop ML, Andes D, Stamstad TJ, et al. In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2000;44(4):943–9.PubMed
134.
Zurück zum Zitat Meagher AK, Passarell JA, Cirincione BB, et al. Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother. 2007;51(6):1939–45.PubMed Meagher AK, Passarell JA, Cirincione BB, et al. Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother. 2007;51(6):1939–45.PubMed
135.
Zurück zum Zitat Passarell JA, Meagher AK, Liolios K, et al. Exposure-response analyses of tigecycline efficacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother. 2008;52(1):204–10.PubMed Passarell JA, Meagher AK, Liolios K, et al. Exposure-response analyses of tigecycline efficacy in patients with complicated intra-abdominal infections. Antimicrob Agents Chemother. 2008;52(1):204–10.PubMed
136.
Zurück zum Zitat Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.PubMed Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.PubMed
137.
Zurück zum Zitat Kang-Birken SL, Castel UPrichard JG. Oral doxycycline for treatment of neurosyphilis in two patients infected with human immunodeficiency virus. Pharmacotherapy. 2010;30(4):119e–22e.PubMed Kang-Birken SL, Castel UPrichard JG. Oral doxycycline for treatment of neurosyphilis in two patients infected with human immunodeficiency virus. Pharmacotherapy. 2010;30(4):119e–22e.PubMed
138.
Zurück zum Zitat Psomas KC, Brun M, Causse A, et al. Efficacy of ceftriaxone and doxycycline in the treatment of early syphilis. Med Mal Infect. 2012;42(1):15–9.PubMed Psomas KC, Brun M, Causse A, et al. Efficacy of ceftriaxone and doxycycline in the treatment of early syphilis. Med Mal Infect. 2012;42(1):15–9.PubMed
139.
Zurück zum Zitat Johnson SE, Klein GC, Schmid GP, et al. Susceptibility of the Lyme disease spirochete to seven antimicrobial agents. Yale J Biol Med. 1984;57(4):549–53.PubMed Johnson SE, Klein GC, Schmid GP, et al. Susceptibility of the Lyme disease spirochete to seven antimicrobial agents. Yale J Biol Med. 1984;57(4):549–53.PubMed
140.
Zurück zum Zitat Bernardino AL, Kaushal D, Philipp MT. The antibiotics doxycycline and minocycline inhibit the inflammatory responses to the Lyme disease spirochete Borrelia burgdorferi. J Infect Dis. 2009;199(9):1379–88.PubMed Bernardino AL, Kaushal D, Philipp MT. The antibiotics doxycycline and minocycline inhibit the inflammatory responses to the Lyme disease spirochete Borrelia burgdorferi. J Infect Dis. 2009;199(9):1379–88.PubMed
141.
Zurück zum Zitat Andersson H, Alestig K. The penetration of doxycycline into CSF. Scand J Infect Dis Suppl. 1976;9:17–9.PubMed Andersson H, Alestig K. The penetration of doxycycline into CSF. Scand J Infect Dis Suppl. 1976;9:17–9.PubMed
142.
Zurück zum Zitat Yim CW, Flynn NM, Fitzgerald FT. Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob Agents Chemother. 1985;28(2):347–8.PubMed Yim CW, Flynn NM, Fitzgerald FT. Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob Agents Chemother. 1985;28(2):347–8.PubMed
143.
Zurück zum Zitat Karlsson M, Hammers S, Nilsson-Ehle I, et al. Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother. 1996;40(5):1104–7.PubMed Karlsson M, Hammers S, Nilsson-Ehle I, et al. Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother. 1996;40(5):1104–7.PubMed
144.
Zurück zum Zitat Dotevall L, Hagberg L. Penetration of doxycycline into cerebrospinal fluid in patients treated for suspected Lyme neuroborreliosis. Antimicrob Agents Chemother. 1989;33(7):1078–80.PubMed Dotevall L, Hagberg L. Penetration of doxycycline into cerebrospinal fluid in patients treated for suspected Lyme neuroborreliosis. Antimicrob Agents Chemother. 1989;33(7):1078–80.PubMed
145.
Zurück zum Zitat Petersen PJ, Ruzin A, Tuckman M, et al. In vitro activity of tigecycline against patient isolates collected during phase 3 clinical trials for diabetic foot infections. Diagn Microbiol Infect Dis. 2010;66(4):407–18.PubMed Petersen PJ, Ruzin A, Tuckman M, et al. In vitro activity of tigecycline against patient isolates collected during phase 3 clinical trials for diabetic foot infections. Diagn Microbiol Infect Dis. 2010;66(4):407–18.PubMed
146.
Zurück zum Zitat Rodvold KA, Gotfried MH, Cwik M, et al. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother. 2006;58(6):1221–9.PubMed Rodvold KA, Gotfried MH, Cwik M, et al. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother. 2006;58(6):1221–9.PubMed
147.
Zurück zum Zitat Van Wart SA, Cirincione BB, Ludwig EA, et al. Population pharmacokinetics of tigecycline in healthy volunteers. J Clin Pharmacol. 2007;47(6):727–37.PubMed Van Wart SA, Cirincione BB, Ludwig EA, et al. Population pharmacokinetics of tigecycline in healthy volunteers. J Clin Pharmacol. 2007;47(6):727–37.PubMed
148.
Zurück zum Zitat Wadi JA, Al Rub MA. Multidrug resistant Acinetobacter nosocomial meningitis treated successfully with parenteral tigecycline. Ann Saudi Med. 2007;27(6):456–8.PubMed Wadi JA, Al Rub MA. Multidrug resistant Acinetobacter nosocomial meningitis treated successfully with parenteral tigecycline. Ann Saudi Med. 2007;27(6):456–8.PubMed
149.
Zurück zum Zitat Jaspan HB, Brothers AW, Campbell AJ, et al. Multidrug-resistant Enterococcus faecium meningitis in a toddler: characterization of the organism and successful treatment with intraventricular daptomycin and intravenous tigecycline. Pediatr Infect Dis J. 2010;29(4):379–81.PubMed Jaspan HB, Brothers AW, Campbell AJ, et al. Multidrug-resistant Enterococcus faecium meningitis in a toddler: characterization of the organism and successful treatment with intraventricular daptomycin and intravenous tigecycline. Pediatr Infect Dis J. 2010;29(4):379–81.PubMed
150.
Zurück zum Zitat Tutuncu EE, Kuscu F, Gurbuz Y, et al. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis. Int J Infect Dis. 2010;14(Suppl 3):e224–6.PubMed Tutuncu EE, Kuscu F, Gurbuz Y, et al. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis. Int J Infect Dis. 2010;14(Suppl 3):e224–6.PubMed
151.
Zurück zum Zitat Lengerke C, Haap M, Mayer F, et al. Low tigecycline concentrations in the cerebrospinal fluid of a neutropenic patient with inflamed meninges. Antimicrob Agents Chemother. 2011;55(1):449–50.PubMed Lengerke C, Haap M, Mayer F, et al. Low tigecycline concentrations in the cerebrospinal fluid of a neutropenic patient with inflamed meninges. Antimicrob Agents Chemother. 2011;55(1):449–50.PubMed
152.
Zurück zum Zitat Ray L, Levasseur K, Nicolau DP, et al. Cerebral spinal fluid penetration of tigecycline in a patient with Acinetobacter baumannii cerebritis. Ann Pharmacother. 2010;44(3):582–6.PubMed Ray L, Levasseur K, Nicolau DP, et al. Cerebral spinal fluid penetration of tigecycline in a patient with Acinetobacter baumannii cerebritis. Ann Pharmacother. 2010;44(3):582–6.PubMed
153.
Zurück zum Zitat Dandache P, Nicolau, DP, Sakoulas, G. Tigecycline for the treatment of multidrug-resistant Klebsiella pneumoniae meningitis. Infect Dis Clin Pract. 2009;17(Abstract):66. Dandache P, Nicolau, DP, Sakoulas, G. Tigecycline for the treatment of multidrug-resistant Klebsiella pneumoniae meningitis. Infect Dis Clin Pract. 2009;17(Abstract):66.
154.
Zurück zum Zitat van de Beek D, Brouwer M, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet. 2012;380(9854):10. van de Beek D, Brouwer M, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet. 2012;380(9854):10.
155.
Zurück zum Zitat Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30(1):146–51.PubMed Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30(1):146–51.PubMed
156.
Zurück zum Zitat Andes D, van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–9.PubMed Andes D, van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–9.PubMed
157.
Zurück zum Zitat Beer R, Engelhardt KW, Pfausler B, et al. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrob Agents Chemother. 2007;51(1):379–82.PubMed Beer R, Engelhardt KW, Pfausler B, et al. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrob Agents Chemother. 2007;51(1):379–82.PubMed
158.
Zurück zum Zitat Yogev R, Damle B, Levy G, et al. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J. 2010;29(9):827–30.PubMed Yogev R, Damle B, Levy G, et al. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J. 2010;29(9):827–30.PubMed
159.
Zurück zum Zitat Di Paolo A, Malacarne P, Guidotti E, et al. Pharmacological issues of linezolid: an updated critical review. Clin Pharmacokinet. 2010;49(7):439–47.PubMed Di Paolo A, Malacarne P, Guidotti E, et al. Pharmacological issues of linezolid: an updated critical review. Clin Pharmacokinet. 2010;49(7):439–47.PubMed
160.
Zurück zum Zitat Myrianthefs P, Markantonis SL, Vlachos K, et al. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother. 2006;50(12):3971–6.PubMed Myrianthefs P, Markantonis SL, Vlachos K, et al. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother. 2006;50(12):3971–6.PubMed
161.
Zurück zum Zitat Gandelman K, Zhu T, Fahmi OA, et al. Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol. 2011;51(2):229–36.PubMed Gandelman K, Zhu T, Fahmi OA, et al. Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol. 2011;51(2):229–36.PubMed
162.
Zurück zum Zitat Tsuji Y, Hiraki Y, Matsumoto K, et al. Pharmacokinetics and protein binding of linezolid in cerebrospinal fluid and serum in a case of post-neurosurgical bacterial meningitis. Scand J Infect Dis. 2011;43(11–12):982–5.PubMed Tsuji Y, Hiraki Y, Matsumoto K, et al. Pharmacokinetics and protein binding of linezolid in cerebrospinal fluid and serum in a case of post-neurosurgical bacterial meningitis. Scand J Infect Dis. 2011;43(11–12):982–5.PubMed
163.
Zurück zum Zitat Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48(1):63–8.PubMed Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48(1):63–8.PubMed
164.
Zurück zum Zitat Cottagnoud P, Pfister M, Acosta F, et al. Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2004;48(10):3928–33.PubMed Cottagnoud P, Pfister M, Acosta F, et al. Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2004;48(10):3928–33.PubMed
165.
Zurück zum Zitat Riser MS, Bland CM, Rudisill CN, et al. Cerebrospinal fluid penetration of high-dose daptomycin in suspected Staphylococcus aureus meningitis. Ann Pharmacother. 2010;44(11):1832–5.PubMed Riser MS, Bland CM, Rudisill CN, et al. Cerebrospinal fluid penetration of high-dose daptomycin in suspected Staphylococcus aureus meningitis. Ann Pharmacother. 2010;44(11):1832–5.PubMed
166.
Zurück zum Zitat Kullar R, Chin JN, Edwards DJ, et al. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob Agents Chemother. 2011;55(7):3505–9.PubMed Kullar R, Chin JN, Edwards DJ, et al. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob Agents Chemother. 2011;55(7):3505–9.PubMed
167.
Zurück zum Zitat Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev. 2010;23(3):467–92.PubMed Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev. 2010;23(3):467–92.PubMed
168.
Zurück zum Zitat Jourdan C, Convert J, Peloux A, et al. Adequate intrathecal diffusion of teicoplanin after failure of vancomycin, administered in continuous infusion in three cases of shunt associated meningitis. Pathol Biol (Paris). 1996;44(5):389–92. Jourdan C, Convert J, Peloux A, et al. Adequate intrathecal diffusion of teicoplanin after failure of vancomycin, administered in continuous infusion in three cases of shunt associated meningitis. Pathol Biol (Paris). 1996;44(5):389–92.
169.
Zurück zum Zitat Cataldo MA, Tacconelli E, Grilli E, et al. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(1):17–24.PubMed Cataldo MA, Tacconelli E, Grilli E, et al. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(1):17–24.PubMed
170.
Zurück zum Zitat Pea F, Brollo L, Viale P, et al. Teicoplanin therapeutic drug monitoring in critically ill patients: a retrospective study emphasizing the importance of a loading dose. J Antimicrob Chemother. 2003;51(4):971–5.PubMed Pea F, Brollo L, Viale P, et al. Teicoplanin therapeutic drug monitoring in critically ill patients: a retrospective study emphasizing the importance of a loading dose. J Antimicrob Chemother. 2003;51(4):971–5.PubMed
171.
Zurück zum Zitat Wang Q, Shi Z, Wang J, et al. Postoperatively administered vancomycin reaches therapeutic concentration in the cerebral spinal fluid of neurosurgical patients. Surg Neurol. 2008;69(2):126–9 (discussion 129). Wang Q, Shi Z, Wang J, et al. Postoperatively administered vancomycin reaches therapeutic concentration in the cerebral spinal fluid of neurosurgical patients. Surg Neurol. 2008;69(2):126–9 (discussion 129).
172.
Zurück zum Zitat Jorgenson L, Reiter PD, Freeman JE, et al. Vancomycin disposition and penetration into ventricular fluid of the central nervous system following intravenous therapy in patients with cerebrospinal devices. Pediatr Neurosurg. 2007;43(6):449–55.PubMed Jorgenson L, Reiter PD, Freeman JE, et al. Vancomycin disposition and penetration into ventricular fluid of the central nervous system following intravenous therapy in patients with cerebrospinal devices. Pediatr Neurosurg. 2007;43(6):449–55.PubMed
173.
Zurück zum Zitat Budha NR, Lee RB, Hurdle JG, et al. A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria. Tuberculosis (Edinb). 2009;89(5):378–85. Budha NR, Lee RB, Hurdle JG, et al. A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria. Tuberculosis (Edinb). 2009;89(5):378–85.
174.
Zurück zum Zitat Peloquin CA, Jaresko GS, Yong CL, et al. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.PubMed Peloquin CA, Jaresko GS, Yong CL, et al. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.PubMed
175.
Zurück zum Zitat Donald PR, Gent WL, Seifart HI, et al. Cerebrospinal fluid isoniazid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics. 1992;89(2):247–50.PubMed Donald PR, Gent WL, Seifart HI, et al. Cerebrospinal fluid isoniazid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics. 1992;89(2):247–50.PubMed
176.
Zurück zum Zitat Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.PubMed Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.PubMed
177.
Zurück zum Zitat Nau R, Prange HW, Menck S, et al. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother. 1992;29(6):719–24.PubMed Nau R, Prange HW, Menck S, et al. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother. 1992;29(6):719–24.PubMed
178.
Zurück zum Zitat Ellard GA, Humphries MJ, Gabriel M, et al. Penetration of pyrazinamide into the cerebrospinal fluid in tuberculous meningitis. Br Med J (Clin Res Ed). 1987;294(6567):284–5. Ellard GA, Humphries MJ, Gabriel M, et al. Penetration of pyrazinamide into the cerebrospinal fluid in tuberculous meningitis. Br Med J (Clin Res Ed). 1987;294(6567):284–5.
179.
Zurück zum Zitat Phuapradit P, Supmonchai K, Kaojarern S, et al. The blood/cerebrospinal fluid partitioning of pyrazinamide: a study during the course of treatment of tuberculous meningitis. J Neurol Neurosurg Psychiatry. 1990;53(1):81–2.PubMed Phuapradit P, Supmonchai K, Kaojarern S, et al. The blood/cerebrospinal fluid partitioning of pyrazinamide: a study during the course of treatment of tuberculous meningitis. J Neurol Neurosurg Psychiatry. 1990;53(1):81–2.PubMed
180.
Zurück zum Zitat Gumbo T, Dona CS, Meek C, et al. Pharmacokinetics–pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009;53(8):3197–204.PubMed Gumbo T, Dona CS, Meek C, et al. Pharmacokinetics–pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009;53(8):3197–204.PubMed
181.
Zurück zum Zitat Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.PubMed Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.PubMed
182.
Zurück zum Zitat Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol. 1996;33(3):167–75.PubMed Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol. 1996;33(3):167–75.PubMed
183.
Zurück zum Zitat Pilheu JA, Maglio F, Cetrangolo R, et al. Concentrations of ethambutol in the cerebrospinal fluid after oral administration. Tubercle. 1971;52(2):117–22.PubMed Pilheu JA, Maglio F, Cetrangolo R, et al. Concentrations of ethambutol in the cerebrospinal fluid after oral administration. Tubercle. 1971;52(2):117–22.PubMed
184.
Zurück zum Zitat Hughes IE, Smith H. Ethionamide: its passage into the cerebrospinal fluid in man. Lancet. 1962;1(7230):616–7.PubMed Hughes IE, Smith H. Ethionamide: its passage into the cerebrospinal fluid in man. Lancet. 1962;1(7230):616–7.PubMed
185.
Zurück zum Zitat Donald PR, Seifart HI. Cerebrospinal fluid concentrations of ethionamide in children with tuberculous meningitis. J Pediatr. 1989;115(3):483–6.PubMed Donald PR, Seifart HI. Cerebrospinal fluid concentrations of ethionamide in children with tuberculous meningitis. J Pediatr. 1989;115(3):483–6.PubMed
186.
Zurück zum Zitat Baron H, Epstein IG, Mulinos MG, et al. Absorption, distribution, and excretion of cycloserine in man. Antibiot Annu. 1955;3:136–40.PubMed Baron H, Epstein IG, Mulinos MG, et al. Absorption, distribution, and excretion of cycloserine in man. Antibiot Annu. 1955;3:136–40.PubMed
187.
Zurück zum Zitat Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.PubMed Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–52.PubMed
188.
Zurück zum Zitat Dudley MN, Levitz RE, Quintiliani R, et al. Pharmacokinetics of trimethoprim and sulfamethoxazole in serum and cerebrospinal fluid of adult patients with normal meninges. Antimicrob Agents Chemother. 1984;26(6):811–4.PubMed Dudley MN, Levitz RE, Quintiliani R, et al. Pharmacokinetics of trimethoprim and sulfamethoxazole in serum and cerebrospinal fluid of adult patients with normal meninges. Antimicrob Agents Chemother. 1984;26(6):811–4.PubMed
189.
Zurück zum Zitat Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.PubMed Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.PubMed
190.
Zurück zum Zitat Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. 2006;3(2):219–32.PubMed Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. 2006;3(2):219–32.PubMed
191.
Zurück zum Zitat Witt KA, Gillespie TJ, Huber JD, et al. Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides. 2001;22(12):2329–43.PubMed Witt KA, Gillespie TJ, Huber JD, et al. Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides. 2001;22(12):2329–43.PubMed
192.
Zurück zum Zitat Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–70.PubMed Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–70.PubMed
193.
Zurück zum Zitat Lin C, Sunkara G, Cannon JB, et al. Recent advances in prodrugs as drug delivery systems. Am J Ther. 2012;19(1):33–43.PubMed Lin C, Sunkara G, Cannon JB, et al. Recent advances in prodrugs as drug delivery systems. Am J Ther. 2012;19(1):33–43.PubMed
194.
Zurück zum Zitat Micheli MR, Bova R, Magini A, et al. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov. 2012;7(1):71–86.PubMed Micheli MR, Bova R, Magini A, et al. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov. 2012;7(1):71–86.PubMed
195.
Zurück zum Zitat Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers. 2008;90(5):617–23.PubMed Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers. 2008;90(5):617–23.PubMed
196.
Zurück zum Zitat Marquet F, Tung YS, Teichert T, et al. Noninvasive, transient and selective blood–brain barrier opening in non-human primates in vivo. PLoS One. 2011;6(7):e22598.PubMed Marquet F, Tung YS, Teichert T, et al. Noninvasive, transient and selective blood–brain barrier opening in non-human primates in vivo. PLoS One. 2011;6(7):e22598.PubMed
197.
Zurück zum Zitat O’Reilly MA, Hynynen K. Blood–brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology. 2012;263(1):96–106.PubMed O’Reilly MA, Hynynen K. Blood–brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology. 2012;263(1):96–106.PubMed
198.
Zurück zum Zitat Liu HL, Yang HW, Hua MY, et al. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood–brain barrier disruption for brain tumor treatment: an overview of the current preclinical status. Neurosurg Focus. 2012;32(1):E4.PubMed Liu HL, Yang HW, Hua MY, et al. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood–brain barrier disruption for brain tumor treatment: an overview of the current preclinical status. Neurosurg Focus. 2012;32(1):E4.PubMed
199.
Zurück zum Zitat Etame AB, Diaz RJ, Smith CA, et al. Focused ultrasound disruption of the blood–brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus. 2012;32(1):E3.PubMed Etame AB, Diaz RJ, Smith CA, et al. Focused ultrasound disruption of the blood–brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus. 2012;32(1):E3.PubMed
200.
Zurück zum Zitat Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61.PubMed Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61.PubMed
201.
Zurück zum Zitat Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.PubMed Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.PubMed
202.
Zurück zum Zitat Dunlop EM, Al-Egaily SS, Houang ET. Penicillin levels in blood and CSF achieved by treatment of syphilis. JAMA. 1979;241(23):3. Dunlop EM, Al-Egaily SS, Houang ET. Penicillin levels in blood and CSF achieved by treatment of syphilis. JAMA. 1979;241(23):3.
203.
Zurück zum Zitat van der Valk PG, Kraai EJ, van Voorst Vader PC, et al. Penicillin concentrations in cerebrospinal fluid (CSF) during repository treatment regimen for syphilis. Genitourin Med. 1988;64(4):223–5.PubMed van der Valk PG, Kraai EJ, van Voorst Vader PC, et al. Penicillin concentrations in cerebrospinal fluid (CSF) during repository treatment regimen for syphilis. Genitourin Med. 1988;64(4):223–5.PubMed
204.
Zurück zum Zitat Landis MS, Boyden T, Pegg S. Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective. Ther Deliv. 2012;3(2):195–208.PubMed Landis MS, Boyden T, Pegg S. Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective. Ther Deliv. 2012;3(2):195–208.PubMed
205.
Zurück zum Zitat Manda P, Hargett JK, Vaka SR, et al. Delivery of cefotaxime to the brain via intranasal administration. Drug Dev Ind Pharm. 2011;37(11):1306–10.PubMed Manda P, Hargett JK, Vaka SR, et al. Delivery of cefotaxime to the brain via intranasal administration. Drug Dev Ind Pharm. 2011;37(11):1306–10.PubMed
206.
Zurück zum Zitat Reesor C, Chow AW, Kureishi A, et al. Kinetics of intraventricular vancomycin in infections of cerebrospinal fluid shunts. J Infect Dis. 1988;158(5):1142–3.PubMed Reesor C, Chow AW, Kureishi A, et al. Kinetics of intraventricular vancomycin in infections of cerebrospinal fluid shunts. J Infect Dis. 1988;158(5):1142–3.PubMed
207.
Zurück zum Zitat McCracken GH Jr, Mize SG, Threlkeld N. Intraventricular gentamicin therapy in gram-negative bacillary meningitis of infancy. Report of the Second Neonatal Meningitis Cooperative Study Group. Lancet. 1980;1(8172):787–91.PubMed McCracken GH Jr, Mize SG, Threlkeld N. Intraventricular gentamicin therapy in gram-negative bacillary meningitis of infancy. Report of the Second Neonatal Meningitis Cooperative Study Group. Lancet. 1980;1(8172):787–91.PubMed
208.
Zurück zum Zitat Shah S, Ohlsson A, Shah V. Intraventricular antibiotics for bacterial meningitis in neonates. Cochrane Database Syst Rev. 2004;4:CD004496. Shah S, Ohlsson A, Shah V. Intraventricular antibiotics for bacterial meningitis in neonates. Cochrane Database Syst Rev. 2004;4:CD004496.
209.
Zurück zum Zitat Tangden T, Enblad P, Ullberg M, et al. Neurosurgical gram-negative bacillary ventriculitis and meningitis: a retrospective study evaluating the efficacy of intraventricular gentamicin therapy in 31 consecutive cases. Clin Infect Dis. 2011;52(11):1310–6.PubMed Tangden T, Enblad P, Ullberg M, et al. Neurosurgical gram-negative bacillary ventriculitis and meningitis: a retrospective study evaluating the efficacy of intraventricular gentamicin therapy in 31 consecutive cases. Clin Infect Dis. 2011;52(11):1310–6.PubMed
210.
Zurück zum Zitat De Sarro A, Ammendola D, Zappala M, et al. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob Agents Chemother. 1995;39(1):232–7.PubMed De Sarro A, Ammendola D, Zappala M, et al. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats. Antimicrob Agents Chemother. 1995;39(1):232–7.PubMed
211.
Zurück zum Zitat Arnell K, Enblad P, Wester T, et al. Treatment of cerebrospinal fluid shunt infections in children using systemic and intraventricular antibiotic therapy in combination with externalization of the ventricular catheter: efficacy in 34 consecutively treated infections. J Neurosurg. 2007;107(3 Suppl):213–9.PubMed Arnell K, Enblad P, Wester T, et al. Treatment of cerebrospinal fluid shunt infections in children using systemic and intraventricular antibiotic therapy in combination with externalization of the ventricular catheter: efficacy in 34 consecutively treated infections. J Neurosurg. 2007;107(3 Suppl):213–9.PubMed
212.
Zurück zum Zitat Nau R, Prange HW, Kinzig M, et al. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob Agents Chemother. 1996;40(3):763–6.PubMed Nau R, Prange HW, Kinzig M, et al. Cerebrospinal fluid ceftazidime kinetics in patients with external ventriculostomies. Antimicrob Agents Chemother. 1996;40(3):763–6.PubMed
213.
Zurück zum Zitat Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47(3):303–27.PubMed Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47(3):303–27.PubMed
Metadaten
Titel
Clinical Pharmacokinetics of Antibacterials in Cerebrospinal Fluid
verfasst von
Antonello Di Paolo
Giovanni Gori
Carlo Tascini
Romano Danesi
Mario Del Tacca
Publikationsdatum
01.07.2013
Verlag
Springer International Publishing AG
Erschienen in
Clinical Pharmacokinetics / Ausgabe 7/2013
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0062-9

Weitere Artikel der Ausgabe 7/2013

Clinical Pharmacokinetics 7/2013 Zur Ausgabe