Skip to main content
Erschienen in: Current Behavioral Neuroscience Reports 3/2015

01.09.2015 | Mood and Anxiety Disorders (D Iosifescu, Section Editor)

Anhedonia and the Brain Reward Circuitry in Depression

verfasst von: Mitra Heshmati, Scott J. Russo

Erschienen in: Current Behavioral Neuroscience Reports | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain’s reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms, like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens.
Literatur
1.
Zurück zum Zitat Kessler RC, Wang PS. The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health. 2008;29:115–29.PubMedCrossRef Kessler RC, Wang PS. The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health. 2008;29:115–29.PubMedCrossRef
2.
Zurück zum Zitat Greenberg PE et al. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76(2):155–62.PubMedCrossRef Greenberg PE et al. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76(2):155–62.PubMedCrossRef
3.
Zurück zum Zitat Rush AJ et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.PubMedCrossRef Rush AJ et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.PubMedCrossRef
6.
Zurück zum Zitat McMakin DL et al. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J Am Acad Child Adolesc Psychiatry. 2012;51(4):404–11.PubMedCentralPubMedCrossRef McMakin DL et al. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J Am Acad Child Adolesc Psychiatry. 2012;51(4):404–11.PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Keedwell PA et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58(11):843–53.PubMedCrossRef Keedwell PA et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58(11):843–53.PubMedCrossRef
8.
Zurück zum Zitat Satterthwaite TD et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacol 2015. Satterthwaite TD et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacol 2015.
9.
Zurück zum Zitat Schlaepfer TE et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33(2):368–77.PubMedCrossRef Schlaepfer TE et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33(2):368–77.PubMedCrossRef
10.
Zurück zum Zitat Bewernick BH et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.PubMedCrossRef Bewernick BH et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.PubMedCrossRef
12.
Zurück zum Zitat McKinney Jr WT, Bunney Jr WE. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21(2):240–8.PubMedCrossRef McKinney Jr WT, Bunney Jr WE. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21(2):240–8.PubMedCrossRef
13.
Zurück zum Zitat Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.PubMedCrossRef Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.PubMedCrossRef
14.
Zurück zum Zitat Krishnan V et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404.PubMedCrossRef Krishnan V et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404.PubMedCrossRef
16.
17.
Zurück zum Zitat Steinberg EE et al. Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr Opin Neurobiol. 2015;30:9–16.PubMedCrossRef Steinberg EE et al. Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr Opin Neurobiol. 2015;30:9–16.PubMedCrossRef
18.
Zurück zum Zitat Drevets WC et al. A functional anatomical study of unipolar depression. J Neurosci. 1992;12(9):3628–41.PubMed Drevets WC et al. A functional anatomical study of unipolar depression. J Neurosci. 1992;12(9):3628–41.PubMed
19.
Zurück zum Zitat Schlaepfer TE et al. Deep brain stimulation of the human reward system for major depression—rationale, outcomes and outlook. Neuropsychopharmacology. 2014;39(6):1303–14.PubMedCentralPubMedCrossRef Schlaepfer TE et al. Deep brain stimulation of the human reward system for major depression—rationale, outcomes and outlook. Neuropsychopharmacology. 2014;39(6):1303–14.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA. Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav. 1991;38(2):315–20.PubMedCrossRef Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA. Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav. 1991;38(2):315–20.PubMedCrossRef
21.
Zurück zum Zitat Papp M, Willner P, Muscat R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacol (Berl). 1991;104(2):255–9.CrossRef Papp M, Willner P, Muscat R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacol (Berl). 1991;104(2):255–9.CrossRef
22.
Zurück zum Zitat Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol (Berl). 1997;134(4):319–29.CrossRef Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol (Berl). 1997;134(4):319–29.CrossRef
23.
Zurück zum Zitat Donahue RJ et al. Effects of striatal DeltaFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry. 2014;76(7):550–8.PubMedCrossRef Donahue RJ et al. Effects of striatal DeltaFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry. 2014;76(7):550–8.PubMedCrossRef
24.
Zurück zum Zitat Der-Avakian A et al. Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response. Biol Psychiatry. 2014;76(7):542–9.PubMedCrossRef Der-Avakian A et al. Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response. Biol Psychiatry. 2014;76(7):542–9.PubMedCrossRef
26.
Zurück zum Zitat Dias C et al. Beta-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 2014;516(7529):51–5.PubMedCentralPubMed Dias C et al. Beta-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 2014;516(7529):51–5.PubMedCentralPubMed
27.
Zurück zum Zitat Elliott E et al. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci. 2010;13(11):1351–3.PubMedCrossRef Elliott E et al. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci. 2010;13(11):1351–3.PubMedCrossRef
28.
Zurück zum Zitat Vialou V et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci. 2010;13(6):745–52.PubMedCentralPubMedCrossRef Vialou V et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci. 2010;13(6):745–52.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Trainor BC et al. Sex differences in social interaction behavior following social defeat stress in the monogamous California mouse (Peromyscus californicus). PLoS One. 2011;6(2):e17405.PubMedCentralPubMedCrossRef Trainor BC et al. Sex differences in social interaction behavior following social defeat stress in the monogamous California mouse (Peromyscus californicus). PLoS One. 2011;6(2):e17405.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.PubMedCrossRef Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.PubMedCrossRef
32.
Zurück zum Zitat Hodes GE, Russo SJ. Animal models of mood disorders. In: Charney DS, editor. Neurobiology of mental illness. 4th ed. New York: Oxford University Press; 2013. p. 411–24. Hodes GE, Russo SJ. Animal models of mood disorders. In: Charney DS, editor. Neurobiology of mental illness. 4th ed. New York: Oxford University Press; 2013. p. 411–24.
33.
Zurück zum Zitat Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.PubMedCrossRef Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.PubMedCrossRef
35.
Zurück zum Zitat Nieh EH et al. Decoding neural circuits that control compulsive sucrose seeking. Cell. 2015;160(3):528–41.PubMedCrossRef Nieh EH et al. Decoding neural circuits that control compulsive sucrose seeking. Cell. 2015;160(3):528–41.PubMedCrossRef
36.
Zurück zum Zitat Larson EB et al. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci. 2015;35(8):3537–43.PubMedCrossRef Larson EB et al. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine. J Neurosci. 2015;35(8):3537–43.PubMedCrossRef
37.
Zurück zum Zitat Shabel SJ et al. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345(6203):1494–8.PubMedCentralPubMedCrossRef Shabel SJ et al. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345(6203):1494–8.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Isomura Y et al. Reward-modulated motor information in identified striatum neurons. J Neurosci. 2013;33(25):10209–20.PubMedCrossRef Isomura Y et al. Reward-modulated motor information in identified striatum neurons. J Neurosci. 2013;33(25):10209–20.PubMedCrossRef
39.
Zurück zum Zitat Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A. 2011;108(27):E255–64.PubMedCentralPubMedCrossRef Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A. 2011;108(27):E255–64.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;490(7419):262–6.PubMedCentralPubMedCrossRef Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;490(7419):262–6.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Brown MT et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492(7429):452–6.PubMedCrossRef Brown MT et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492(7429):452–6.PubMedCrossRef
42.•
Zurück zum Zitat Christoffel DJ et al. Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci. 2015;18(7):962–4. This manuscript is the first to implicate an increase in excitatory drive at thalamo-striatal synapses in depression. Christoffel DJ et al. Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci. 2015;18(7):962–4. This manuscript is the first to implicate an increase in excitatory drive at thalamo-striatal synapses in depression.
43.
Zurück zum Zitat Montaron MF et al. Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience. 1996;71(2):371–82.PubMedCrossRef Montaron MF et al. Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience. 1996;71(2):371–82.PubMedCrossRef
44.
Zurück zum Zitat Ballard IC et al. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J Neurosci. 2011;31(28):10340–6.PubMedCentralPubMedCrossRef Ballard IC et al. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J Neurosci. 2011;31(28):10340–6.PubMedCentralPubMedCrossRef
45.
46.
47.
48.
Zurück zum Zitat Leung BK, Balleine BW. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific pavlovian-instrumental transfer. J Neurosci. 2015;35(12):4953–64.PubMedCrossRef Leung BK, Balleine BW. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific pavlovian-instrumental transfer. J Neurosci. 2015;35(12):4953–64.PubMedCrossRef
49.
Zurück zum Zitat Saunders A et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 2015. Saunders A et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 2015.
50.
Zurück zum Zitat Galynker II et al. Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med. 1998;39(4):608–12.PubMed Galynker II et al. Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med. 1998;39(4):608–12.PubMed
51.
Zurück zum Zitat Elliott R et al. Reduced medial prefrontal responses to social interaction images in remitted depression. Arch Gen Psychiatry. 2012;69(1):37–45.PubMedCrossRef Elliott R et al. Reduced medial prefrontal responses to social interaction images in remitted depression. Arch Gen Psychiatry. 2012;69(1):37–45.PubMedCrossRef
52.
Zurück zum Zitat Zhong M et al. Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biol Psychol. 2011;88(2–3):233–42.PubMedCrossRef Zhong M et al. Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biol Psychol. 2011;88(2–3):233–42.PubMedCrossRef
53.
Zurück zum Zitat Siegle GJ et al. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.PubMedCrossRef Siegle GJ et al. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.PubMedCrossRef
54.
Zurück zum Zitat Johansen-Berg H et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18(6):1374–83.PubMedCrossRef Johansen-Berg H et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18(6):1374–83.PubMedCrossRef
55.
56.
Zurück zum Zitat Radley JJ et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20.PubMedCrossRef Radley JJ et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20.PubMedCrossRef
57.
58.
Zurück zum Zitat Veerakumar A et al. Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems. Biol Psychiatry. 2014;76(3):203–12.PubMedCrossRef Veerakumar A et al. Antidepressant-like effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems. Biol Psychiatry. 2014;76(3):203–12.PubMedCrossRef
59.
60.
Zurück zum Zitat Vialou V et al. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of DeltaFosB. J Neurosci. 2014;34(11):3878–87.PubMedCentralPubMedCrossRef Vialou V et al. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of DeltaFosB. J Neurosci. 2014;34(11):3878–87.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Richardson MP, Strange BA, Dolan RJ. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci. 2004;7(3):278–85.PubMedCrossRef Richardson MP, Strange BA, Dolan RJ. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci. 2004;7(3):278–85.PubMedCrossRef
62.
Zurück zum Zitat Yonelinas AP, Ritchey M. The slow forgetting of emotional episodic memories: an emotional binding account. Trends Cogn Sci. 2015;19(5):259–67.PubMedCrossRef Yonelinas AP, Ritchey M. The slow forgetting of emotional episodic memories: an emotional binding account. Trends Cogn Sci. 2015;19(5):259–67.PubMedCrossRef
63.
Zurück zum Zitat Fairhall SL et al. Memory related dysregulation of hippocampal function in major depressive disorder. Biol Psychol. 2010;85(3):499–503.PubMedCrossRef Fairhall SL et al. Memory related dysregulation of hippocampal function in major depressive disorder. Biol Psychol. 2010;85(3):499–503.PubMedCrossRef
64.
Zurück zum Zitat Soderlund H et al. Autobiographical episodic memory in major depressive disorder. J Abnorm Psychol. 2014;123(1):51–60.PubMedCrossRef Soderlund H et al. Autobiographical episodic memory in major depressive disorder. J Abnorm Psychol. 2014;123(1):51–60.PubMedCrossRef
65.
Zurück zum Zitat McEwen BS. Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann N Y Acad Sci. 2010;1204(Suppl):E38–59.PubMedCentralPubMedCrossRef McEwen BS. Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann N Y Acad Sci. 2010;1204(Suppl):E38–59.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacol 2015. Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacol 2015.
67.
Zurück zum Zitat Mitra R et al. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102(26):9371–6.PubMedCentralPubMedCrossRef Mitra R et al. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A. 2005;102(26):9371–6.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Ambroggi F et al. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron. 2008;59(4):648–61.PubMedCentralPubMedCrossRef Ambroggi F et al. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron. 2008;59(4):648–61.PubMedCentralPubMedCrossRef
70.•
Zurück zum Zitat Namburi P et al. A circuit mechanism for differentiating positive and negative associations. Nature. 2015;520(7549):675–8. This study along with Ref 47 dissects amygdala projections to the nucleus accumbens using optogenetics. It supports a role for BLA to NAc projections in positive reinforcement and distinguishes these afferents from BLA projections to the centromedial amygdala. Namburi P et al. A circuit mechanism for differentiating positive and negative associations. Nature. 2015;520(7549):675–8. This study along with Ref 47 dissects amygdala projections to the nucleus accumbens using optogenetics. It supports a role for BLA to NAc projections in positive reinforcement and distinguishes these afferents from BLA projections to the centromedial amygdala.
71.
72.
Zurück zum Zitat Schultz W. The phasic reward signal of primate dopamine neurons. Adv Pharmacol. 1998;42:686–90.PubMedCrossRef Schultz W. The phasic reward signal of primate dopamine neurons. Adv Pharmacol. 1998;42:686–90.PubMedCrossRef
73.
Zurück zum Zitat Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.PubMed Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.PubMed
74.
Zurück zum Zitat Berton O et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311(5762):864–8.PubMedCrossRef Berton O et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311(5762):864–8.PubMedCrossRef
75.
Zurück zum Zitat Walsh JJ, Han MH. The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience. 2014;282C:101–8.PubMedCrossRef Walsh JJ, Han MH. The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience. 2014;282C:101–8.PubMedCrossRef
76.••
Zurück zum Zitat Chaudhury D et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493(7433):532–6. This study uses circuit-specific optogenetics to confirm that increased phasic firing of VTA dopamine neurons projecting to the NAc has a role in in mediating stress susceptibility. Chaudhury D et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493(7433):532–6. This study uses circuit-specific optogenetics to confirm that increased phasic firing of VTA dopamine neurons projecting to the NAc has a role in in mediating stress susceptibility.
77.••
Zurück zum Zitat Friedman AK et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344(6181):313–9. This study defines an active mechanism of resiliency in VTA dopamine neurons that project to the NAc and enhancing this mechanism using optogenetic stimulation promotes increased social interaction. Friedman AK et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344(6181):313–9. This study defines an active mechanism of resiliency in VTA dopamine neurons that project to the NAc and enhancing this mechanism using optogenetic stimulation promotes increased social interaction.
79.•
Zurück zum Zitat Tye KM et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493(7433):537–41. Along with reference 82, this paper highlights the complexity of reward circuit function in stress disorders. Contrary to the increase in dopamine neuron firing observed after social defeat, these authors find that chronic mild stress decreases dopamine firing to promote depression-like behaviour. Tye KM et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493(7433):537–41. Along with reference 82, this paper highlights the complexity of reward circuit function in stress disorders. Contrary to the increase in dopamine neuron firing observed after social defeat, these authors find that chronic mild stress decreases dopamine firing to promote depression-like behaviour
80.
Zurück zum Zitat Van Bockstaele EJ, Pickel VM. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 1995;682(1–2):215–21.PubMedCrossRef Van Bockstaele EJ, Pickel VM. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 1995;682(1–2):215–21.PubMedCrossRef
81.
Zurück zum Zitat Lammel S et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron. 2015;85(2):429–38.PubMedCrossRef Lammel S et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron. 2015;85(2):429–38.PubMedCrossRef
82.•
Zurück zum Zitat Stuber GD, Stamatakis AM, Kantak PA. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron. 2015;85(2):439–45. Along with Reference 81, this study identifies inherent problems with traditional Cre drivers lines when attempting to target specific cell types. They find ectopic expression of Cre in a small subset of non dopaminergic neurons in the VTA. Stuber GD, Stamatakis AM, Kantak PA. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron. 2015;85(2):439–45. Along with Reference 81, this study identifies inherent problems with traditional Cre drivers lines when attempting to target specific cell types.  They find ectopic expression of Cre in a small subset of non dopaminergic neurons in the VTA.
84.
Zurück zum Zitat Wieland S et al. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci. 2014;34(35):11549–59.PubMedCrossRef Wieland S et al. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci. 2014;34(35):11549–59.PubMedCrossRef
85.
Zurück zum Zitat English DF et al. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2012;15(1):123–30.CrossRef English DF et al. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2012;15(1):123–30.CrossRef
87.
Zurück zum Zitat Kawaguchi Y et al. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18(12):527–35.PubMedCrossRef Kawaguchi Y et al. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18(12):527–35.PubMedCrossRef
88.
Zurück zum Zitat Taverna S, Ilijic E, Surmeier DJ. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci. 2008;28(21):5504–12.PubMedCentralPubMedCrossRef Taverna S, Ilijic E, Surmeier DJ. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci. 2008;28(21):5504–12.PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Lalchandani RR et al. Dopamine D2 receptors regulate collateral inhibition between striatal medium spiny neurons. J Neurosci. 2013;33(35):14075–86.PubMedCentralPubMedCrossRef Lalchandani RR et al. Dopamine D2 receptors regulate collateral inhibition between striatal medium spiny neurons. J Neurosci. 2013;33(35):14075–86.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Koos T, Tepper JM, Wilson CJ. Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci. 2004;24(36):7916–22.PubMedCrossRef Koos T, Tepper JM, Wilson CJ. Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci. 2004;24(36):7916–22.PubMedCrossRef
91.
Zurück zum Zitat Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol. 2012;107(2):692–703.PubMedCrossRef Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol. 2012;107(2):692–703.PubMedCrossRef
92.
93.
Zurück zum Zitat Warner-Schmidt JL et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci U S A. 2012;109(28):11360–5.PubMedCentralPubMedCrossRef Warner-Schmidt JL et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci U S A. 2012;109(28):11360–5.PubMedCentralPubMedCrossRef
94.
Zurück zum Zitat Gong S et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–25.PubMedCrossRef Gong S et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–25.PubMedCrossRef
95.
Zurück zum Zitat Wong AC et al. D1- and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience. 1999;89(1):221–33.PubMedCrossRef Wong AC et al. D1- and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience. 1999;89(1):221–33.PubMedCrossRef
96.
Zurück zum Zitat Surmeier DJ, Yan Z, Song WJ. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. Adv Pharmacol. 1998;42:1020–3.PubMedCrossRef Surmeier DJ, Yan Z, Song WJ. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. Adv Pharmacol. 1998;42:1020–3.PubMedCrossRef
97.
Zurück zum Zitat Francis TC et al. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry. 2015;77(3):212–22.PubMedCrossRef Francis TC et al. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry. 2015;77(3):212–22.PubMedCrossRef
98.
Zurück zum Zitat Lobo MK et al. DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33(47):18381–95.PubMedCentralPubMedCrossRef Lobo MK et al. DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33(47):18381–95.PubMedCentralPubMedCrossRef
99.
100.
101.
Zurück zum Zitat Haim A et al. The effects of gestational stress and SSRI antidepressant treatment on structural plasticity in the postpartum brain—a translational model for postpartum depression. Horm Behav 2015. Haim A et al. The effects of gestational stress and SSRI antidepressant treatment on structural plasticity in the postpartum brain—a translational model for postpartum depression. Horm Behav 2015.
102.
Zurück zum Zitat Warren BL et al. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress. Dev Neurosci. 2014;36(3–4):250–60.PubMedCentralPubMedCrossRef Warren BL et al. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress. Dev Neurosci. 2014;36(3–4):250–60.PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Bessa JM et al. Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Transl Psychiatry. 2013;3:e266.PubMedCentralPubMedCrossRef Bessa JM et al. Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Transl Psychiatry. 2013;3:e266.PubMedCentralPubMedCrossRef
105.
106.
Zurück zum Zitat Shepherd GM. The synaptic organization of the brain. 5th ed. Oxford: Oxford University Press; 2004. xiv, 719 p.CrossRef Shepherd GM. The synaptic organization of the brain. 5th ed. Oxford: Oxford University Press; 2004. xiv, 719 p.CrossRef
Metadaten
Titel
Anhedonia and the Brain Reward Circuitry in Depression
verfasst von
Mitra Heshmati
Scott J. Russo
Publikationsdatum
01.09.2015
Verlag
Springer International Publishing
Erschienen in
Current Behavioral Neuroscience Reports / Ausgabe 3/2015
Elektronische ISSN: 2196-2979
DOI
https://doi.org/10.1007/s40473-015-0044-3

Weitere Artikel der Ausgabe 3/2015

Current Behavioral Neuroscience Reports 3/2015 Zur Ausgabe

Mood and Anxiety Disorders (D Iosifescu, Section Editor)

The Role of Pharmacogenomics to Guide Treatment in Mood and Anxiety Disorders

Mood and Anxiety Disorders (D Iosifescu, Section Editor)

Latest Developments in Cognitive Functioning in Mood and Anxiety Disorders

Mood and Anxiety Disorders (M Thase, Section Editor)

Biomarkers for Antidepressant Selection: iSPOT-D Study

Mood and Anxiety Disorders (D Iosifescu, Section Editor)

Recent Developments in Noninvasive Neuromodulation for Mood and Anxiety Disorders

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.