Skip to main content
Erschienen in: HNO 4/2017

14.06.2016 | Hörstörungen | Leitthema

Pathophysiologie des Hörverlusts

Klassifikation und Therapieoptionen

verfasst von: Prof. Dr. Dr. A. Kral

Erschienen in: HNO | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Aus dem Blickwinkel der Therapien von Hörstörungen können die Ursachen und die pathophysiologischen Folgen von Hörschäden nach der Ausprägung der primären Ursachen klassifiziert werden. Hörstörungen können unterschiedliche Folgen für den Zellerhalt im Corti-Organ und im Spiralganglion haben. Diese haben aus Sicht der Autoren nicht nur wesentliche Konsequenzen für den Erfolg von prothetischer Therapie, sondern beinhalten auch sehr unterschiedliches Potenzial für neue kausale molekulare Therapie. Ursachen, die auf ein einzelnes oder wenige Moleküle ohne nachgeschaltete zelluläre Schäden beschränkt sind, haben das beste Potenzial für eine kausale Therapie. Erste Erfolge von molekularer Therapie im Tierversuch sind seit wenigen Jahren bekannt. Leider sind diese Ursachen sehr selten, und die Therapie wird auch in der Zukunft unterschiedliche Methoden nutzen müssen. Zusätzlich zu peripheren Veränderungen haben Hörschäden auch Konsequenzen für die Funktion des Gehirns, die individuell unterschiedlich sein können. Wir plädieren deshalb für eine Individualisierung der Therapie, die nicht nur das Symptom des Hörschadens behandelt, sondern den Fokus auf die individuellen, zentralen Folgen und Adaptationen lenkt. Nur mit einer individualisierten Therapie kann der Erfolg der Therapie von Hörstörungen wesentlich gesteigert werden.
Literatur
1.
Zurück zum Zitat Kral A (2013) To hear or not to hear: neuroscience of deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 1–16 Kral A (2013) To hear or not to hear: neuroscience of deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 1–16
2.
Zurück zum Zitat Kral A, Baumhoff P, Shepherd RK (2013) Integrative neuronal functions in deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 151–188 Kral A, Baumhoff P, Shepherd RK (2013) Integrative neuronal functions in deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 151–188
3.
Zurück zum Zitat Kral A (2013) Auditory critical periods: a review from system’s perspective. Neuroscience 247:117–133CrossRefPubMed Kral A (2013) Auditory critical periods: a review from system’s perspective. Neuroscience 247:117–133CrossRefPubMed
4.
6.
Zurück zum Zitat Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68:293–308CrossRefPubMed Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68:293–308CrossRefPubMed
7.
Zurück zum Zitat Brownstein Z, Shivatzki S, Avraham KB (2013) Molecular etiology of deafness and cochlear consequences. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 17–39 Brownstein Z, Shivatzki S, Avraham KB (2013) Molecular etiology of deafness and cochlear consequences. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 17–39
8.
Zurück zum Zitat Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Schneider BL, Aebischer P, Holt JR (2015) Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med 7:295ra108CrossRefPubMed Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Schneider BL, Aebischer P, Holt JR (2015) Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med 7:295ra108CrossRefPubMed
9.
Zurück zum Zitat Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289CrossRefPubMed Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289CrossRefPubMed
10.
Zurück zum Zitat Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293CrossRefPubMedPubMedCentral Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Jung S, Maritzen T, Wichmann C, Jing Z, Neef A, Revelo NH, Al-Moyed H, Meese S, Wojcik SM et al (2015) Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J 34(21):2686–2702CrossRefPubMedPubMedCentral Jung S, Maritzen T, Wichmann C, Jing Z, Neef A, Revelo NH, Al-Moyed H, Meese S, Wojcik SM et al (2015) Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J 34(21):2686–2702CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N, Perfettini I, Zelles T, Aller M et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906CrossRefPubMed Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N, Perfettini I, Zelles T, Aller M et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906CrossRefPubMed
14.
Zurück zum Zitat Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, Lefèvre GM, Hardelin JP, Richardson GP et al (2008) Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456:255–258CrossRefPubMedPubMedCentral Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, Lefèvre GM, Hardelin JP, Richardson GP et al (2008) Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456:255–258CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276CrossRefPubMed Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276CrossRefPubMed
16.
Zurück zum Zitat Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541CrossRefPubMedPubMedCentral Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Reng D, Müller M, Smolders JW (2001) Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 6:66–78CrossRefPubMed Reng D, Müller M, Smolders JW (2001) Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 6:66–78CrossRefPubMed
18.
Zurück zum Zitat Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentral Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):606–6015CrossRef Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):606–6015CrossRef
20.
Zurück zum Zitat Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562CrossRefPubMed Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562CrossRefPubMed
21.
Zurück zum Zitat Chen I, Limb CJ, Ryugo DK (2010) The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. J Assoc Res Otolaryngol 11:587–603CrossRefPubMedPubMedCentral Chen I, Limb CJ, Ryugo DK (2010) The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. J Assoc Res Otolaryngol 11:587–603CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Willaredt MA, Ebbers L, Nothwang HG (2014) Central auditory function of deafness genes. Hear Res 312:9–20CrossRefPubMed Willaredt MA, Ebbers L, Nothwang HG (2014) Central auditory function of deafness genes. Hear Res 312:9–20CrossRefPubMed
23.
Zurück zum Zitat Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE 7:e46355CrossRefPubMedPubMedCentral Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE 7:e46355CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, Taylor-Jeanfreau J, Keats BJ, John PS et al (2010) Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 49:30–43CrossRefPubMed Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, Taylor-Jeanfreau J, Keats BJ, John PS et al (2010) Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 49:30–43CrossRefPubMed
25.
Zurück zum Zitat Santarelli R, Del Castillo I, Rodríguez-Ballesteros M, Scimemi P, Cama E, Arslan E, Starr A (2009) Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J Assoc Res Otolaryngol 10:545–556CrossRefPubMedPubMedCentral Santarelli R, Del Castillo I, Rodríguez-Ballesteros M, Scimemi P, Cama E, Arslan E, Starr A (2009) Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J Assoc Res Otolaryngol 10:545–556CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Kral A, Kronenberger WG, Pisoni DB, O’Donoghue GM (2016) Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol (Epub ahead of print) Kral A, Kronenberger WG, Pisoni DB, O’Donoghue GM (2016) Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol (Epub ahead of print)
27.
Zurück zum Zitat Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015CrossRefPubMed Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015CrossRefPubMed
28.
Zurück zum Zitat Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373CrossRefPubMed Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373CrossRefPubMed
29.
Zurück zum Zitat Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122CrossRefPubMed Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122CrossRefPubMed
30.
Zurück zum Zitat Kral A, Hubka P, Heid S, Tillein J (2013) Single-sided deafness leads to unilateral aural preference within an early sensitive period. Brain 136:180–193CrossRefPubMed Kral A, Hubka P, Heid S, Tillein J (2013) Single-sided deafness leads to unilateral aural preference within an early sensitive period. Brain 136:180–193CrossRefPubMed
31.
Zurück zum Zitat Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat – population statistics and degenerative changes. Hear Res 115:101–112CrossRefPubMed Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat – population statistics and degenerative changes. Hear Res 115:101–112CrossRefPubMed
32.
Zurück zum Zitat Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6:136–147CrossRefPubMedPubMedCentral Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6:136–147CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410CrossRefPubMedPubMedCentral Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A, Warnecke A (2013) TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 75C:416–425CrossRef Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A, Warnecke A (2013) TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 75C:416–425CrossRef
35.
Zurück zum Zitat Moore BC, Glasberg B, Schlueter A (2010) Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation. Adv Otorhinolaryngol 67:43–50PubMed Moore BC, Glasberg B, Schlueter A (2010) Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation. Adv Otorhinolaryngol 67:43–50PubMed
36.
Zurück zum Zitat Garadat SN, Litovsky RY, Yu G, Zeng FG (2010) Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. J Acoust Soc Am 127:977–989CrossRefPubMedPubMedCentral Garadat SN, Litovsky RY, Yu G, Zeng FG (2010) Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. J Acoust Soc Am 127:977–989CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316C:65–72CrossRef Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316C:65–72CrossRef
38.
Zurück zum Zitat Kral A, Tillein J (2006) Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol 64:89–108PubMed Kral A, Tillein J (2006) Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol 64:89–108PubMed
39.
Zurück zum Zitat Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15:552–562CrossRefPubMed Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15:552–562CrossRefPubMed
40.
Zurück zum Zitat Tillein J, Heid S, Lang E, Hartmann R, Kral A (2012) Development of brainstem-evoked responses in congenital auditory deprivation. Neural Plast 2012:182767PubMedPubMedCentral Tillein J, Heid S, Lang E, Hartmann R, Kral A (2012) Development of brainstem-evoked responses in congenital auditory deprivation. Neural Plast 2012:182767PubMedPubMedCentral
41.
Zurück zum Zitat Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426:561–571CrossRefPubMed Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426:561–571CrossRefPubMed
42.
Zurück zum Zitat Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35:7878–7891CrossRefPubMedPubMedCentral Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35:7878–7891CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Leake PA, Hradek GT, Bonham BH, Snyder RL (2008) Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. J Assoc Res Otolaryngol 9:349–372CrossRefPubMedPubMedCentral Leake PA, Hradek GT, Bonham BH, Snyder RL (2008) Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. J Assoc Res Otolaryngol 9:349–372CrossRefPubMedPubMedCentral
44.
45.
Zurück zum Zitat Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506CrossRefPubMed Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506CrossRefPubMed
46.
Zurück zum Zitat Clause A, Kim G, Sonntag M, Weisz CJ, Vetter DE, Rűbsamen R, Kandler K (2014) The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 82:822–835CrossRefPubMedPubMedCentral Clause A, Kim G, Sonntag M, Weisz CJ, Vetter DE, Rűbsamen R, Kandler K (2014) The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 82:822–835CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Kral A, Hubka P, Tillein J (2015) Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurootol 20:7–12CrossRefPubMed Kral A, Hubka P, Tillein J (2015) Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurootol 20:7–12CrossRefPubMed
48.
Zurück zum Zitat Eggermont JJ (1996) Differential maturation rates for response parameters in cat primary auditory cortex. Aud Neurosci 2:309–327 Eggermont JJ (1996) Differential maturation rates for response parameters in cat primary auditory cortex. Aud Neurosci 2:309–327
49.
Zurück zum Zitat Bonham BH, Cheung SW, Godey B, Schreiner CE (2004) Spatial organization of frequency response areas and rate/level functions in the developing AI. J Neurophysiol 91:841–854CrossRefPubMed Bonham BH, Cheung SW, Godey B, Schreiner CE (2004) Spatial organization of frequency response areas and rate/level functions in the developing AI. J Neurophysiol 91:841–854CrossRefPubMed
50.
Zurück zum Zitat Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733CrossRefPubMed Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733CrossRefPubMed
51.
Zurück zum Zitat Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807CrossRefPubMed Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807CrossRefPubMed
52.
Zurück zum Zitat Kral A, Tillein J, Heid S, Klinke R, Hartmann R (2006) Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 157:283–313CrossRefPubMed Kral A, Tillein J, Heid S, Klinke R, Hartmann R (2006) Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 157:283–313CrossRefPubMed
53.
Zurück zum Zitat Kral A, Heid S, Hubka P, Tillein J (2013) Unilateral hearing during development: hemispheric specificity in plastic reorganizations. Front Syst Neurosci 7:93CrossRefPubMedPubMedCentral Kral A, Heid S, Hubka P, Tillein J (2013) Unilateral hearing during development: hemispheric specificity in plastic reorganizations. Front Syst Neurosci 7:93CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269CrossRefPubMed Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269CrossRefPubMed
55.
Zurück zum Zitat Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203:134–143CrossRefPubMed Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203:134–143CrossRefPubMed
56.
Zurück zum Zitat Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P, Dorman M (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573CrossRefPubMed Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P, Dorman M (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573CrossRefPubMed
57.
Zurück zum Zitat Sharma A, Gilley PM, Dorman MF, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46:494–499CrossRefPubMed Sharma A, Gilley PM, Dorman MF, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46:494–499CrossRefPubMed
58.
Zurück zum Zitat Gordon KA, Tanaka S, Wong DD, Stockley T, Ramsden JD, Brown T, Jewell S, Papsin BC (2010) Multiple effects of childhood deafness on cortical activity in children receiving bilateral cochlear implants simultaneously. Clin Neurophysiol 122:823–833CrossRefPubMed Gordon KA, Tanaka S, Wong DD, Stockley T, Ramsden JD, Brown T, Jewell S, Papsin BC (2010) Multiple effects of childhood deafness on cortical activity in children receiving bilateral cochlear implants simultaneously. Clin Neurophysiol 122:823–833CrossRefPubMed
59.
Zurück zum Zitat Luria AR (1973) The working brain: an introduction to neuropsychology. Basic Books, New York Luria AR (1973) The working brain: an introduction to neuropsychology. Basic Books, New York
60.
Zurück zum Zitat Myklebust HE (1960) The psychology of deafness. Grune and Stratton, New York Myklebust HE (1960) The psychology of deafness. Grune and Stratton, New York
61.
Zurück zum Zitat Bavelier D, Dye MW, Hauser PC (2006) Do deaf individuals see better? Trends Cogn Sci (Regul Ed) 10:512–518CrossRef Bavelier D, Dye MW, Hauser PC (2006) Do deaf individuals see better? Trends Cogn Sci (Regul Ed) 10:512–518CrossRef
62.
Zurück zum Zitat Pavani F, Bottari D (2012) Visual abilities in individuals with profound deafness a critical review. In: Murray MM, Wallace MT (Hrsg) The neural bases of multisensory processes. CRC Press, Boca Raton Pavani F, Bottari D (2012) Visual abilities in individuals with profound deafness a critical review. In: Murray MM, Wallace MT (Hrsg) The neural bases of multisensory processes. CRC Press, Boca Raton
63.
Zurück zum Zitat Kral A, Schroder JH, Klinke R, Engel AK (2003) Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 153:605–613CrossRefPubMed Kral A, Schroder JH, Klinke R, Engel AK (2003) Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 153:605–613CrossRefPubMed
64.
Zurück zum Zitat Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427CrossRefPubMed Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427CrossRefPubMed
65.
Zurück zum Zitat Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P (2010) Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20:1217–1222CrossRefPubMed Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P (2010) Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20:1217–1222CrossRefPubMed
66.
Zurück zum Zitat Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52CrossRefPubMed Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52CrossRefPubMed
68.
Zurück zum Zitat Lazard DS, Lee HJ, Gaebler M, Kell CA, Truy E, Giraud AL (2010) Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage 49:3443–3451CrossRefPubMed Lazard DS, Lee HJ, Gaebler M, Kell CA, Truy E, Giraud AL (2010) Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage 49:3443–3451CrossRefPubMed
69.
Zurück zum Zitat Koo D, Crain K, LaSasso C, Eden GF (2008) Phonological awareness and short-term memory in hearing and deaf individuals of different communication backgrounds. Ann N Y Acad Sci 1145:83–99CrossRefPubMed Koo D, Crain K, LaSasso C, Eden GF (2008) Phonological awareness and short-term memory in hearing and deaf individuals of different communication backgrounds. Ann N Y Acad Sci 1145:83–99CrossRefPubMed
70.
Zurück zum Zitat Quittner AL, Smith LB, Osberger MJ, Mitchell TV, Katz DB (1994) The impact of audition on the development of visual attention. Psychol Sci 5:347–353CrossRef Quittner AL, Smith LB, Osberger MJ, Mitchell TV, Katz DB (1994) The impact of audition on the development of visual attention. Psychol Sci 5:347–353CrossRef
71.
Zurück zum Zitat Dye MW, Hauser PC (2014) Sustained attention, selective attention and cognitive control in deaf and hearing children. Hear Res 309:94–102CrossRefPubMed Dye MW, Hauser PC (2014) Sustained attention, selective attention and cognitive control in deaf and hearing children. Hear Res 309:94–102CrossRefPubMed
72.
Zurück zum Zitat Kronenberger WG, Beer J, Castellanos I, Pisoni DB, Miyamoto RT (2014) Neurocognitive risk in children with cochlear implants. JAMA Otolaryngol Head Neck Surg 140:608–615CrossRefPubMed Kronenberger WG, Beer J, Castellanos I, Pisoni DB, Miyamoto RT (2014) Neurocognitive risk in children with cochlear implants. JAMA Otolaryngol Head Neck Surg 140:608–615CrossRefPubMed
73.
Zurück zum Zitat Castellanos I, Kronenberger WG, Beer J, Colson BG, Henning SC, Ditmars A, Pisoni DB (2015) Concept formation skills in long-term cochlear implant users. J Deaf Stud Deaf Educ 20:27–40CrossRefPubMed Castellanos I, Kronenberger WG, Beer J, Colson BG, Henning SC, Ditmars A, Pisoni DB (2015) Concept formation skills in long-term cochlear implant users. J Deaf Stud Deaf Educ 20:27–40CrossRefPubMed
74.
Zurück zum Zitat Lammers MJ, Jansen TT, Grolman W, Lenarz T, Versnel H, Zanten GA van, Topsakal V, Lesinski-Schiedat A (2015) The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope 125:985–990CrossRefPubMed Lammers MJ, Jansen TT, Grolman W, Lenarz T, Versnel H, Zanten GA van, Topsakal V, Lesinski-Schiedat A (2015) The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope 125:985–990CrossRefPubMed
Metadaten
Titel
Pathophysiologie des Hörverlusts
Klassifikation und Therapieoptionen
verfasst von
Prof. Dr. Dr. A. Kral
Publikationsdatum
14.06.2016
Verlag
Springer Medizin
Schlagwort
Hörstörungen
Erschienen in
HNO / Ausgabe 4/2017
Print ISSN: 0017-6192
Elektronische ISSN: 1433-0458
DOI
https://doi.org/10.1007/s00106-016-0183-1

Weitere Artikel der Ausgabe 4/2017

HNO 4/2017 Zur Ausgabe

Einführung zum Thema

Cochleaimplantat heute

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.